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Abstract

Handwriting is a vital skill for everyday human activities. It has a wealth of information

about writers’ characteristics and can hint toward underlying neurological conditions,

such as Parkinson’s disease, autism, dyslexia, and attention-deficit/hyperactivity dis-

order (ADHD). Many previous studies have reported a link between personality and

individual differences in handwriting, but the evidence for the relationship tends to be

anecdotal in nature.Using functionalmagnetic resonance imaging (fMRI),weexamined

whether the association between personality traits and handwriting was instantiated

at the neural level. Results showed that the personality trait of conscientiousnessmod-

ulated brain activation in the left premotor cortex and right inferior/middle frontal

gyrus, whichmay reflect the impact of personality on orthography-to-grapheme trans-

formation and executive control involved in handwriting. Such correlations were not

observed in symbol-drawing or word-reading tasks, suggesting the specificity of the

link between conscientiousness and handwriting in these regions. Moreover, using a

connectome-based predictive modeling approach, we found that individuals’ consci-

entiousness scores could be predicted based on handwriting-related functional brain

networks, suggesting that the influenceof personality onhandwritingmayoccurwithin

a broader network. Our findings provide neural evidence for the link between per-

sonality and handwriting processing, extending our understanding of the nature of

individual differences in handwriting.
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INTRODUCTION

Handwriting is a landmark of human language and motor skills, and

it is essential for communication, academic learning, and cognitive

development.1,2 It is a complex skill involving the integration of cog-

nitive, linguistic, and motor processes, which are broadly divided into

central and peripheral processes. The central process refers to the

process of orthographic access via orthographic long-term memory

(the lexical route) or phoneme-to-grapheme conversion (the sublex-

ical route). Orthographic working memory is an essential module

of the central process that supports the temporary storage of a

grapheme for subsequent motor processes.3 The peripheral process

refers to the process of motor output, including allograph selection,

motor planning, and execution of motor sequences.4–6 Previous neu-

ropsychological and brain imaging studies have implicated a complex

set of neural underpinnings supporting handwriting processing.7–10

For the central component, the left fusiform gyrus has been identi-

fied to support long-term memory for orthographic representation,11

while the left premotor area extending to Broca’s area supports the

phoneme-to-grapheme conversion for orthographic access.12 In addi-

tion, the intraparietal sulcus and the middle frontal gyrus were found

to be responsible for orthographic working memory.3,13,14 The periph-

eral component is mainly involved in the left dorsal premotor cortex

(Exner’s area), the left inferior/superior parietal lobule, and the cere-

bellum. Specifically, Exner’s area is a writing-specific brain region

that serves as an interface bridging between orthography and motor

programs.13 Moreover, the inferior and superior parietal lobules have

been found to serve as the storage for motor programs, while the cere-

bellum is thought to carry out planning and execution-specific motor

programs during handwriting.15

Typically, handwriting skill takes about 10 years for an individual

to develop.16 Through this long period of learning and practice, indi-

viduals establish a stable personal handwriting style.17 Many previous

studies have explored factors that modulate individual variability in

handwriting by using an index of the writing product (e.g., shape and

legibility) and writing process (e.g., speed and pause). These factors

include cognitive-linguistic and motor factors, such as orthographic

awareness and visuomotor integration during development.18,19

Moreover, previous studies have showed that the physical and mental

health status of the writers can influence handwriting. For example,

there is evidence showing that handwriting features can hint at

underlying neurological conditions, such as Parkinson’s disease,20,21

autism,22 dyslexia,23,24 and ADHD.25

Another important factor that has been frequently linked to indi-

vidual differences of handwriting is personality traits.26,27 It has been

proposed that a person’s personality characteristics may be projected

in the way he or she writes, due to the highly individualized nature

of handwriting.26 Indeed, there has been evidence suggesting that

some handwriting features indicate specific personality traits. For

example, a prior study showed that measures of the rightward slant

of handwriting products were related to extraversion and that fast

writing speed was related to impulsivity.27 Additionally, individuals

with antisocial personality exhibited differences in the graphic fea-

tures of handwriting compared with controls. These findings support

the association between personality and handwriting.28 On the other

hand,many empirical studies failed to validate the correlation between

handwriting and personality.26,29,30 Some researchers have proposed

that the correlation between handwriting and personality is illusory

and actually derives from the semantic association between words

used for describing handwriting features (e.g., regular rhythm) and

personality traits (e.g., reliable).30

One major challenge to validate the association between hand-

writing and personality is related to methodological limitations. For

example, traditional analysis of handwriting scripts confronts a major

problem of relying on subjective appraisal of the frozen handwritten

products, such that the interpretation depends much on the profes-

sional skills and the graphological theories applied by the analyst.31 In

this study, we aimed to explore a more comprehensive and objective

approach for linking handwriting and personality by characterizing

the brain activation patterns during the dynamic handwriting process.

We hypothesized that, if personality traits (based on five-factor model,

FFM) influence the way we wrote, this association should be able

to be detected by linking personality traits to brain activity patterns

that produce distinctive handwriting movements. Considering that

previous studies on handwriting have established that different

brain regions response to different components of the handwriting

processes, identifying the biological markers that instantiate the

association between personality traits and handwriting can also

help to understand which potential components of handwriting (e.g.,

orthographic conversion, cognitive control, or motor control) may be

modulated by personality traits.

We scanned 50 adult participants with functional MRI while they

were performing handwriting tasks using a specially developed fMRI-

compatible touch-sensitive tablet system. Participants’ personality

traits were assessed based on the FFM, a widely used framework

describing personality traits along five dimensions: neuroticism (N),

extraversion (E), openness (O), agreeableness (A), and conscientious-

ness (C).32

We first explored whether personality traits modulated brain acti-

vation during the dynamic handwriting process at the group level.

We hypothesized that the most plausible brain regions that instanti-

ated the associationbetweenpersonality traits andhandwriting should

reside within the brain network that was shared by handwriting and

personality traits. As previously mentioned, brain regions critically

involved in handwriting include premotor cortex, inferior and middle

frontal gyri, intraparietal sulcus, fusiform gyrus, and so on. In addition,

structural33–36 and functional37,38 neuroimaging studies have identi-

fied brain substrates that were associated with the FFM personality

dimensions, including the prefrontal cortex, precentral gyrus, cingu-

late gyrus, temporal gyrus, parietal cortex, and visual cortex. Among

the five FFMpersonality dimensions, we considered conscientiousness

(related to orderliness and impulse control) to be the most plausible

personality trait that modulated brain responses during handwriting,

for the following two reasons: (1) conscientiousness is associated with

the performance and efficiency of serial order actions39 and working
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memory,40 which are necessarily engaged in handwriting processing;

and (2) considerable evidence suggests the frontal cortex as the neu-

ral substrate of conscientiousness,34,41 and this region is critically

involved in handwriting.15 Besides, openness to experience is also

likely to modulate brain activity of handwriting, as it has been found to

be associatedwith cognitive processes that are involved in handwriting

process, includingworkingmemory42 and the efficiency of information

processing.43

We then examined the specificity of correlation between per-

sonality and handwriting by testing whether personality traits also

modulated brain activation during a symbol-drawing task (sharing the

visual-motor process with the handwriting task) and a word-reading

task (sharing with the handwriting task the visual-orthographic as well

as incidental phonological and semantic processing of the linguistic

stimuli).

Moreover, because the handwriting process encompasses a vari-

ety of subcomponents and involves a sophisticated interplay between

distributed brain areas,10 whole-brain measures of functional brain

networks should provide more comprehensive information about

handwriting process than activity in a single brain region. Thus, we next

used a connectome-based predictivemodel (CPM),44 an influential and

extensively validatedmodel approach, to examinewhether individuals’

brain networks during the dynamic handwriting process could pre-

dict individuals’ personality traits. Such analysis can help validate the

application of handwriting in personality measures at the individual

level.

MATERIALS AND METHODS

Participants

Fifty adults were recruited to participate in the study (24 males; mean

age = 22.30 years, standard deviation [SD] of age = 2.25). All partici-

pantswerenativeChinese speakers andwere right-handedas assessed

by a handedness inventory.45 The participants were physically healthy

and reported no history of neurological disease or psychiatric disor-

der. The study was approved by the Ethics Committee of the Institute

of Psychology, Chinese Academy of Sciences, and the experiments

were carried out in accordance with the approved guidelines. Free

and informed consent was obtained from each participant prior to the

experiment.

Task procedure and stimuli during fMRI scans

Handwriting task and symbol-drawing task

Acopying taskwas used during the fMRI scan, inwhich the participants

were required to write down Chinese characters that were previously

presented to them. In this handwriting task, the stimuli were 30 Chi-

nese characters of varying frequency, consisting 15 high-frequency

characters (>500 times per million) and 15 low-frequency character

(<5 times per million), according to the Modern Chinese Frequency

Dictionary (1986).46 The mean number of strokes was 6 (ranging from

4 to 8 strokes) for both the high-frequency and low-frequency char-

acters. In the symbol-drawing task, participants were asked to draw

geometric symbols. The stimuli include 15 symbols, including line, cir-

cle, triangle, diamond, trapezia, and parallelogram, and combinations of

these geometric shapes. During the handwriting and symbol-drawing

tasks, participants were instructed to write or draw at the speed as

in their daily life while minimizing movements of their upper arm and

forearm.

A block design was employed, consisting of six blocks of copying

characters and three blocks of drawing symbols. Each block included

five trials. In each trial, a “+” symbol was first presented visually and

centrally for 0.3 s, followed by the presentation of a character stimulus

for 1 s that was then followed by a response period of 4.7 s. This was

the maximum possible time for responding, and it was fixed for each

trial. Four blocks of central fixation each with a 12-s period were also

interspersed among the task blocks as a “rest” control condition.

Handwriting and drawing data were recorded using a tablet system

specially developed for use in fMRI experiments.47 Writing latency and

durationwere analyzed.Writing latencywas defined as from the onset

of response stimuli to the beginning of writing, and writing duration

was defined as from the start of the response to the end of the last

written or drawn stroke of the response.

Visual word reading task

Because the character-handwriting task involves both linguistic and

motor components in the task, we designed a visual-word read-

ing task to examine whether the relationship between handwriting

and personality is related to the linguistic processing or is specific

to handwriting motor production. Participants were requested to

passively read visually presented characters and judge whether the

presented characterwas the sameas the prior one by pressing a button

using their right hand. A pseudocharacter and a scrambled character

conditions were also included as part of a larger study. The pseu-

docharacters were orthographically legal, but were meaningless and

unpronounceable. They were created by replacing one radical of the

real characters by another radical. The scrambled characters were

orthographically illegal,meaningless, and unpronounceable. Theywere

generated by disarranging the strokes of the real characters, result-

ing in disorganized visual layouts without any linguistic information.

The real-character reading task shared with the handwriting task the

visual-orthographic processing as well as incidental phonological and

semantic processing of the linguistic stimuli, and, therefore, it is suit-

able to test the specificity of the correlation between personality and

handwriting.Conversely, because thepseudocharacters and scrambled

character conditions did not involve the linguistic processes that we

were interested in, they were not analyzed in the present study.

The stimuli of the reading task were 160 real Chinese characters,

which were presented as both handwritten and printed versions. The

handwritten version of characters was written by a male expert in

handwriting. The mean frequency of the characters was 474.91 times

per million according to the Modern Chinese Frequency Dictionary
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(1986),46 and the mean number of strokes was 8.16 (ranging from 5 to

12 strokes). The participants underwent four runs of scanning. In each

run, therewere four blocks for each character condition and eachblock

consisted of 10 trials. In each trial, the visual stimuli were presented

for 0.2 s, followed by a blank interval for 1 s. In addition, five 12-s rest

blocks were interspersed into the task blocks.

MRI data acquisition

Imagingwasperformedusing a3TMRI system (MAGNETOMPrismafit,

Siemens, Erlangen, Germany) at the Beijing MRI Center for Brain

Research of the Chinese Academy of Sciences. Functional MRI time

series data with blood oxygen level–dependent (BOLD) contrast were

acquired using a two-dimensional, T2*-weighted, gradient echo pla-

nar imaging sequence (repetition time [TR] = 1000 ms, echo time [TE]

= 30 ms, slice thickness = 2.2 mm, in-plane resolution = 2.2 mm ×

2.2mm, and flip angle [θ]=45◦). A total of 64 axial sliceswere collected

to cover the whole brain. High-spatial resolution anatomical images

were acquired using a three-dimensional T1-weighted, magnetization-

prepared rapid acquisition gradient echo sequence (TR = 2200 ms,

TE = 2.08 ms, slice thickness = 1 mm, in-plane resolution = 1.0 mm ×

1.0mm, and θ= 8◦).

Assessment of personality traits

Participants’ personality traits were measured using the shortened

Chinese version of the NEO five-factor inventory (NEO-FFI),48 which

shows good validity and reliability for the Chinese population.49 This

inventory includes 60 items, with 12 items for each of the five per-

sonality dimensions: (1) neuroticism (N), which is associated with the

intensity and reactivity of negative emotion; (2) extraversion (E), which

is associatedwith a drive for affiliation and dominance; (3) openness to

experience (O), which is characterized by fantasy, interest in novelty,

and intellect; (4) agreeableness (A), which is associated with nurtu-

rance, kindness, and social harmony; and (5) conscientiousness (C),

which is associated with orderliness and impulse control.32 The scores

of the participants’ responses were assessed based on a 5-point Likert

scale, from strongly disagree (1 point) to strongly agree (5 point), thus

resulting in score sums between 12 and 60 for each dimension.

Out-of-scanner handwriting skill task

To examine the participants’ handwriting performance in a natural

state, a pen-and-paper writing test was administered after the MRI

scan. The task required the participants to copy 40 Chinese charac-

ters that contained two radicals arranged in left-right or top-down

structures. Half of the characters were high-frequency (>500 times

per million), and the other half were low-frequency (<5 times per

million). The mean number of strokes was 9 (6–13 strokes) for the

high-frequency characters and was 8 (5–11 strokes) for the low-

frequency characters. Because the participants used more familiar,

natural gestures during the pen-and-paper handwriting task, this task

enabled better assessment of their handwriting features relative to

the in-scanner handwriting task. Handwriting speed and quality were

assessed. Writing speed was defined as the number of characters

written per second by calculating the ratio between the number of

characters andwriting time.Writingqualitywasevaluatedby two inde-

pendent examiners using a 7-point Likert scale (1 = very bad and 7 =

very good) based on the scripts from the pen-and-paper copying tests

(natural written scripts). This assessment was based on six dimensions,

including stroke form, slant, organization of radicals, neatness, size, and

overall appearance.50 The scorewas the sumof eachdimension’s score,

and thus themaximum possible score of writing quality was 42.

To examine the relationship between personality traits and hand-

writing features, we performed regression analysis to test the contri-

bution of personality scores to handwriting performance (speed and

quality) in the pen-and-paper writing task after controlling for the

effect of age and sex.

fMRI data analysis

Preprocessing

Image preprocessing and statistical analyses were conducted using

SPM8 freeware (http://www.fil.ion.ucl.ac.uk/spm/, Wellcome Depart-

ment of Cognitive Neurology, University College London, London). The

fMRI time series data for each participantwere first corrected for head

motion, and the corrected images were coregistered to the associated

anatomical imaging data. The anatomical images were segmented and

transformed into Montreal Neurological Institute (MNI) stereotactic

space, and the resulting transformation parameters were then applied

to yield fMRI time series data to be normalized inMNI spacewith cubic

voxels at a spatial resolution of 2 mm × 2 mm × 2 mm. These images

were then spatially smoothed using an isotropic Gaussian kernel of

6mm full-width at half-maximum.

Whole brain regression analysis

At the individual level, activationmaps contrasting the activity of copy-

ing characters (combining high-frequency and low-frequency char-

acters) and drawing symbols to a “rest” condition were generated

for the handwriting task for each participant using a general linear

model (GLM). Similarly, activation maps for the reading task were

acquired by contrasting viewing characters (the handwritten charac-

ters or the printed characters) to rest. TheGLMdesignmatrix included

the block design time series convolved with a canonical hemodynamic

response function. To minimize residual motion artifacts, head move-

ment parameters (estimated with six degrees of freedom during the

motion correction step) were included in the designmatrix as nuisance

covariates. The data were high-pass filtered at 0.008 Hz. Then, the

individual activation maps were entered into a random-effects model

http://www.fil.ion.ucl.ac.uk/spm/
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for group-level analysis using one-sample t-test, resulting in brain acti-

vation for handwriting characters, drawing symbols, reading printed

characters, and reading handwritten characters, respectively.

Next, multiple regression analysis was applied to examine the brain

activation associated with personality traits. To account for the pos-

sible shared variance, all the five personal dimensions were entered

into the regressionmodel.Moreover, sex, age, and headmotion (frame-

wise displacement, FD) were included as covariates. To constrain the

search within the brain system for handwriting processing, a mask of

significant activation of handwriting and drawing was applied for the

regressionmodel. In addition, to examine the specificity of the associa-

tion between handwriting and personality, multiple regression analysis

was also applied for the symbol-drawing and character-reading tasks.

The voxel-wise threshold was set at p < 0.001 and p < 0.05, with the

family-wise error (FWE) corrected at the cluster level. To visualize the

relationship between the activation of a given region and personality

traits, the scatter plots of the correlation between the residuals of con-

trast estimates of brain regions (excluding the explanatory power of

age, sex, FD, and the other four factors) and personality scores were

illustrated.

Brain activation–writing performance correlation
analyses

To further confirm the correlation between personality traits and brain

activation during handwriting, we conducted correlation analyses

between brain activity and handwriting performance in the out-of-

scanner pen-and-paper writing task. Specifically, the brain regions

showing significant correlation with personality traits were defined as

functional regions of interest (ROIs). The residuals of contrast esti-

mates (excluding the explanatory power of age, sex, and FD) were cal-

culated for each ROI, which were then correlated with pen-and-paper

handwriting speed and quality.

Connectome-based predictive modeling

Following the guidelines of the CPM approach,44 several steps are

included to establish the prediction model of personality based on

functional brain networks associated with handwriting: (1) network

construction, that is, establishing a handwriting-induced functional

connectivity (FC) matrix; (2) feature selection and summarization;

(3) model building and evaluation of prediction significance; and

(4) model validation.

Network construction

Networks were established based on a functional temple of 264

ROIs with 10-mm diameter spheres.51 Pearson’s correlation coeffi-

cients between each pair of nodes were computed using the CONN

Functional Connectivity Toolbox,52 with the effect of the fluctua-

tions in BOLD signals from cerebrospinal fluid, white matter and

their derivatives, head motion, and the effects of task were estimated

and removed. Correlation coefficients were transformed into Fisher’s

z-scores, resulting in undirected and weighted 264 × 264 FC matrices

for each participant. The resulting residual time series were band-

pass filtered at 0.008–0.09 Hz to reduce low-frequency drift and

high-frequency noise effects.53

Feature selection

Using linear regression analysis, FC edges significantly correlated with

personality scores were selected as features, after controlling for age

and sex. The significance threshold was set at p < 0.005, uncorrected

for multiple comparisons . The edges that showed positive or negative

correlation with personality scores were separated into two distinct

data sets. Next, the connectivity strength (Fisher’s z-scores) for posi-

tive and negative edges was summarized into a single value for each

participant.

Model construction

Three linear regression models (positive, negative, and combined pos-

itive and negative edges) were established, with personality scores

were set as dependent variables and connectivity edges were set as

independent variables. A leave-one-out cross-validation method was

applied to evaluate the predictive model. One subject was considered

a novel observation (test set) and the remaining subjects were used

to build the regression models. The correlation coefficients between

the observed and predicted scores were calculated for determining

the efficiency of predictive accuracy. Finally, a permutation test (1000

iterations) was performed to assess the statistical significance of the

true predictive correlation. In each iteration, personality scores were

randomly assigned to different subjects and then, a new correlation

coefficient between the observed and predicted scores was calculated

following the same procedure. The p value of the permutation test was

calculated as the proportion of sampled permutations that was greater

or equal to the true prediction correlation.

To illustrate the specific functional brain networks that signifi-

cantly contribute to the prediction model, FC edges that appeared

in at least 90% of the iterations were visualized. Those 264 regions

(also called nodes in graph theory analysis) contained in this template

were assigned to 11 well-established functional networks defined

previously.51 In addition, one node was identified as a hub in a func-

tional network, if its node degree (defined as the number of edges

directly connected to a given node) was 1.5 SD greater than the mean

degree across all nodes in this network.

Internal validation of the prediction model

Two internal validation procedures were applied for validating the

results. First, in order to determine whether the results were
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independent of connectivity edges, a more stringent (p < 0.001) and

a less conservative (p < 0.01) threshold was used for the edge section

procedure. Second, to examine whether the results were influenced

by the definition of node, we used another brain template derived

from brain structural-based parcellation to define the ROIs,54 which

includes 210 cortical and 36 subcortical subregions. We repeated the

whole CPM analyses based on these changed parameters.

RESULTS

Behavioral results of handwriting tasks and
personality measure

For the handwriting task during fMRI scanning, the mean writing

latency (SD) and writing duration (SD) was 476.66 ms (141.13 ms) and

2819.10 ms (484.50 ms). For the out-of-scanner pen-and-paper hand-

writing task, handwriting speedwas 0.40 character/second (SD= 0.07)

andwriting quality was 25.24 (SD= 6.38).

For personality measure, the participants’ NEO-FFI scores ranged

from 18 to 46 for neuroticism (mean = 33.54), from 25 to 48 for

extraversion (mean = 37.78), from 25 to 47 for openness (mean =

38.12), from 28 to 52 for agreeableness (mean = 42.28), and from 28

to 50 for conscientiousness (mean= 40.78).

Regression analysis between personality scores and handwriting

performance (speed and quality) in the pen-and-paper writing task

showed that personality explained no additional variance in writing

quality (R2 change = 0.09, F = 1.55, p = 0.18) or writing speed (R2

change= 0.03, F= 0.64, p= 0.72) after controlling for the effect of age

and sex. This resultwas in accordancewith previous findings, indicating

weak correlation between static handwriting features and personality

traits.29

Correlation between personality traits and brain
activation during handwriting

The in-scanner handwriting task activated a distributed network

of brain regions, including the bilateral superior/middle/inferior

frontal gyrus (SFG/MFG/IFG), precentral gyrus (PreCG), supplemen-

tary motor area (SMA), middle/inferior temporal gyrus (MTG/ITG),

superior/inferior parietal gyrus (SPL/IPL), postcentral gyrus (PostCG),

precuneus, superior/middle/inferior occipital gyrus (SOG/MOG/IOG),

fusiform gyrus (FG), lingual gyrus (LG), cuneus, supramarginal gyrus

(SMG), cerebellum, insula, and thalamus (Figure 1A).These brain

regions were consistent with previous findings of the neural correlates

of handwriting.15,55,56

We then examined whether personality traits were associated with

brain activation during handwriting. Results showed that the scores of

conscientiousness were positively correlated with brain activation in

the left premotor region (peak at MNI: x = −34, y = −10, z = 46) and

right IFG extending to MFG (x = 52, y = 10, z = 28) (Figure 1B). Addi-

tionally, openness showed a trend of negative correlation with brain

activation in the left cerebellum (x = −40, y = −52, z = −38), but

the correlation did not survive multiple comparison corrections after

excluding an outlier who showed extremely reduced activation in the

left cerebellum.

Brain activation–writing performance correlation
analyses

Wenext testedwhether thebrain activation in the left premotor region

and the right IFG were also correlated with handwriting skill by con-

ducting behavior–brain correlation analyses between activity level in

the two regions during handwriting and participants’ out-of-scanner

handwriting performance (i.e., handwriting speed and handwriting

quality). Spearman’s rank correlation analysis showed that the activa-

tion in the right IFG during handwriting was positively correlated with

handwriting quality (r= 0.30, p= 0.037), but not correlated with hand-

writing speed (r=−0.08, p=0.565). The activation in the left premotor

region during handwriting task was not correlated with handwriting

quality (r=0.10, p=0.489) or handwriting speed (r=−0.08, p=0.593).

Specificity of the relation between personality and
brain responses during handwriting

We further examined the specificity of the relation between con-

scientiousness and brain responses during handwriting by testing

whether personality traits were related to brain activation during sym-

bol drawing and visual word reading. These two tasks could help to

disentangle whether personality traits simply modulated brain activ-

ity for visual-motor execution or visual-word recognition processing.

Results showed that although drawing symbols (Figure 2A) and visual-

character reading (Figure 2B,C) recruited several shared brain regions

with the handwriting task, individual differences in conscientiousness

were not correlated with brain activation in the premotor or inferior

frontal cortices during the symbol-drawing task or word-reading task.

However, we observed that the score of conscientiousness was posi-

tively related to brain activation in the right superior parietal lobule

(peak at x=20, y=−52, z=66) during reading handwritten characters

(Figure 2D). It should be noted that this region did not overlap with the

regions identified in the handwriting task.

Predicting personality traits using functional brain
networks for handwriting

Finally, we explored the extent to which conscientiousness scores

could be predicted by individual differences in the handwriting-evoked

FC. The CPM analysis showed that individuals’ scores of conscien-

tiousness (but not other personality traits) were successfully predicted

by handwriting-related brain connectivity patterns (positive network:

r = 0.43, ppermu = 0.016, negative network: r = 0.36, ppermu = 0.035;

combined network: r = 0.42, ppermu = 0.016) (Figure 3A). Moreover,
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F IGURE 1 Brain activation during handwriting task and its correlation with personality traits. (A) Brain activation associated with handwriting
Chinese characters (contrasted with fixation). (B) Correlations between conscientiousness scores and brain activation during handwriting.
Abbreviations: IFG, inferior frontal gyrus; L, left; PMd, dorsal premotor cortex; R, right.

F IGURE 2 Brain activation during drawing symbols and reading characters and its association with personality traits. (A) Brain activation
during drawing symbols. (B) Brain activation during reading printed characters. (C) Brain activation during reading handwritten characters. (D)
Brain activity correlated with conscientiousness during reading handwritten characters. Abbreviations: L, left; R, right.

brain networks that contributed to the prediction mainly involved

the default mode network (DMN), cingulo-opercular network (CON),

visual network (VN), and sensorimotor network (SMN) (Figure 3B).

Several regions within these networks were identified as hubs, includ-

ing bilateral inferior and middle frontal gyri, bilateral postcentral gyri,

insula, and so on (Table S1). The prediction results based on func-

tional brain networks were further validated by using amore stringent

(p < 0.001) and a less conservative (p < 0.01) threshold for edge
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F IGURE 3 Predicting conscientiousness based on functional brain networks during handwriting. (A) Scatter plots for correlations between
observed scores and predictive scores of conscientiousness based on the positive, negative, and combined (positive and negative) functional
networks. (B) Functional brain networks that contribute to the prediction of conscientiousness. The connectivity matrices between pairs of the
11 brain networks described by Power et al. are shown.51 The color of each element in thematrices reflects the sum of the weight of all the edges.
Abbreviations: AN, auditory network; CON, cingulo-opercular network; DAN, dorsal attention network; DMN, default mode network; FPN,
frontal-parietal network; SAN, salience network; SCN, subcortical network; SMN, somatosensorymotor network; Unc, uncertain; VAN, ventral
attention network; VN, visual network.

selection (Figure S1) and using an alternative template for node

definition (Figure S2).

DISCUSSION

This study provides direct evidence for the link between personality

and handwriting at the neural level, advancing our understanding of

the individual differences in handwriting. In line with our hypothesis,

we found that the personality trait of conscientiousness modulated

brain activation in the left premotor cortex and right inferior/middle

frontal gyrus during the dynamic handwriting process, suggesting that

personality may modulate orthography-to-grapheme transcoding and

executive control processes involved in handwriting. Such connections

were specific to handwriting of characters, but not observed dur-

ing drawing symbols or visual-word reading. Moreover, individuals’

conscientiousness scores could be predicted based on handwriting-

related functional brain networks, indicating that the association

between individual differences in personality and handwritingwas also

instantiated at the brain-network level.

The association between premotor activation during
handwriting and conscientiousness

Conscientiousness is a personality trait characterized by orderliness,

industriousness, self-control, and responsibility.57 It is one of the

most reliable predictors of occupational performance,58 academic

outcomes,59 and physical health.60 In accordance with our hypothe-

sis, conscientiousness modulated brain activation during handwriting.

More specifically, the levels of conscientiousnesswerepositively corre-

lated with brain activation in left premotor region during handwriting,

suggesting that this region may be essential brain loci for the link

between personality traits and handwriting.

The activation peak of the left premotor region in our study is close

to Exner’s area,13 a key region specific for handwriting.13,15,55 Roux

et al. pointed out that Exner’s area was the brain basis of the interface

between orthographic representation andmotor programs, whichmay

govern allographic motor specifications by sending information down-

ward to the hand motor area, ultimately resulting in the variation of

handwriting processing or products. In addition, Exner’s area has been

proposed to be the neural substrate of orthographic working memory
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that houses the temporary storeof orthographic representation for the

process of orthography-to-grapheme transformation, as it is sensitive

to letter length or stroke number during handwriting.13,61 Accord-

ingly, conscientiousness may influence handwriting process through

targeting both the central and peripheral components of handwriting.

Besides, Exner’s area has also been found to be engaged in reading

in both alphabetic languages and Chinese.62 In our study, the copying

task necessarily involves an initial reading process before handwrit-

ing. Thus, it is possible that the activation in Exner’s area may reflect

the modulation of conscientiousness to the reading process. However,

this possibility can be ruled out by the control analysis of the sup-

plementary reading task, in which we did not detect the correlation

between brain activation in Exner’s area during the reading task and

conscientiousness.

The association between right IFG activation during
handwriting and conscientiousness

We also found that conscientiousness modulated neural responses of

handwriting in the right IFG. The involvement of the right IFG has

been occasionally evidenced in handwriting, but its exact function

remains unclear.15 Our data also showed that the activation of the

right IFG during handwriting was correlated with handwriting qual-

ity of the out-of-scanner writing task, confirming the role of the IFG

in handwriting processing. This region has frequently been implicated

in inhibition control processing, which is a critical aspect of execu-

tive control,63,64 such as inhibition actions for inappropriate response

given the operative goal.65 In line with this view, previous studies have

demonstrated the association between poor executive control and

handwriting impairment in children.66 In our study, individuals with

higher conscientiousness may exert greater effort on regulating exec-

utive function of inhibition, producing greater activity in the right IFG

during handwriting.

An alternative explanation for the role of the right IFG is phono-

logical processing. A prior study by Gimenez et al. showed that, in

beginning readers/writers, handwriting quality was correlated with

gray matter volume of the right IFG and brain activation of this region

during a phonological processing task.67 The authors argued for a role

of the right IFG in phonological processing, which may be essential in

thedevelopmentof complexmotor skills required inhandwriting.Com-

pared toGimenez et al.’s study, our fMRI task is a handwriting task that

emphasizes more the motor-related execution components. The right

IFG may play a well-established role in executive function that affects

the formation of handwriting visual features.

Conscientiousness is predicted by brain functional
networks of handwriting

At the brain-network level, we also identified functional networks

associated with the dynamic handwriting process whose strengths

successfully predicted individual differences in conscientiousness,

including the CON, DMN, VN, and SMN. This finding suggests that the

influence of personality on handwriting may occur within a broader

networkengaged inhandwriting.We found theCON, anessential exec-

utive control network, contributed significantly to the prediction of

conscientiousness. This result is also in line with the previous finding

of resting-state FC that conscientiousness is associated with executive

control networks.37,41 The DMN has been suggested to support self-

related cognitive processes68 andworkingmemory.69 Recent evidence

indicates that the reconfiguration of the DMN serves handwriting

speed control.10 The VN and SMN are important brain networks for

visual-orthographic and motor processes in handwriting. The connec-

tivity between the SMN and VN was enhanced with the increase of

motor speed demand during handwriting.10 Together, conscientious-

ness may reflect how individuals are able to efficiently utilize brain

networks for high-level cognitive control and task-specific visual and

motor processes engaged in handwriting processing.

The specificity of the association between
conscientiousness and handwriting

Interestingly, we found that conscientiousness is the only trait reliably

associated with, and predicted by, brain activity/connectivity patterns

during handwriting. One explanation for the specificity of the rela-

tion between conscientiousness and neural responses to handwriting

is that conscientiousness may be more closely related to the cognitive

processes that are involved in handwriting relative to other person-

ality traits. This result is in line with previous findings showing that

conscientiousness is the only personality dimension that modulates

multicomponent behavior.70 During handwriting, the correct ortho-

graphic units have to be retrieved in the correct order and put into

a tuned motor system for stroke-by-stroke execution, which requires

ongoing monitoring to inhibit erroneous responses. Given that consci-

entiousness is conceptualized as a trait akin to orderliness and impulse

control, individual differences in brain activation associated with the

self-controlled and goal-directed handwriting process may be more

easily captured by individual differences in conscientiousness than

other personality traits. This explanation is supported by the functional

role of brain regions that we found to be modulated by conscientious-

ness. Particularly, the right IFGmay subserve the executive control and

goal-directed process during handwriting.

We also found a trend of correlation between openness and brain

activation in the left cerebellum during handwriting, but the result

did not survive multiple comparison correction. This result is partially

in accordance with our hypothesis. We hypothesized that openness is

likely to modulate brain activity in handwriting because it has been

found to modulate the cognitive processes of working memory42 and

the efficiency of information processing.43 Considering that the cere-

bellum has been frequently reported to support handwriting9,15 and

its function has been typically linked with motor control, the result

suggests that openness may modulate the motor component of hand-

writing. Further studies are required to validate this finding usingmore

stringent statistical criteria.
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Future directions

Our findings open up myriad opportunities for future research. First,

the personality measure in our study is derived from a self-report

inventory based on the five-factor personality model. Whether the

associations between personality and brain responses to handwriting

can be generalized to other personality models requires validation in

future studies. A second important question is about the developmen-

tal mechanisms that give rise to the link between personality traits

and handwriting. Of particular interest is the period from childhood

through late adolescence, when individual handwriting traits come to

be established.71 Future studies with a longitudinal design should be

able to resolve this question by elaborating both the consistency and

the dynamic change of personality and handwriting over time.

CONCLUSIONS

To conclude, this study revealed that a personality trait (conscien-

tiousness) modulated brain activation in the left premotor cortex

and right inferior/middle frontal gyrus during the dynamic handwrit-

ing processing. We also established a prediction model based on

handwriting-related brain networks that could reliably predict consci-

entiousness scores individually. These findings suggest that the associ-

ationbetweenpersonality traits andhandwriting is instantiatedatboth

regional and brain-network levels, extending our understanding of the

nature of individual differences in handwriting and opening up the

possibility of characterizing a person’s personality by analyzing brain

patterns during the dynamic handwriting process (“neurographology”).
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