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Abstract

Although tertiary folding of whole protein domains is prohibited by the cramped dimensions of 

the ribosomal tunnel, dynamic tertiary interactions may permit folding of small elementary units 

within the tunnel. To probe this possibility, we used a β-hairpin as well as an α-helical hairpin 

from the cytosolic N-terminus of a voltage-gated potassium channel and determined a probability 

of folding for each at defined locations inside and outside the tunnel. Minimalist tertiary structures 

can form near the exit port of the tunnel, a region that provides an entropic window for initial 

exploration of local peptide conformations. Tertiary subdomains of the nascent peptide fold 

sequentially, but not independently, during translation. These studies offer an approach for 

diagnosing the molecular basis for folding defects that lead to protein malfunction and provide 

insight into the role of the ribosome during early potassium channel biogenesis.

Keywords

Protein folding; nascent peptides; potassium channel biogenesis; T1 domain

Protein folding begins with the birth of the peptide within the ribosomal tunnel1–8, but the 

dimensions of this tunnel, 100Å in length and 10–20Å in width9–12, limit the dimensions of 

a folded peptide that can fit inside the tunnel. For example, the complete folding of a tertiary 

monomeric functional T1 domain of the voltage-gated potassium channel, Kv1.3, which is 

approximately 27×27×25Å13,14 (Fig. 1a), is precluded1. However, we may ask whether 

smaller subdomains can fold inside the ribosomal tunnel. Although compact secondary 

structures form within the tunnel1–8, including regions of the T1 domain1, subdomain 

formation inside the tunnel has not been investigated explicitly. The elementary tertiary 

folding unit has not been established.

The T1 domain is in the cytoplasmic N-terminus of voltage-gated potassium (Kv) channels. 

It is a recognition domain that plays a crucial role in the folding and oligomerization of Kv 

channel proteins, enabling formation of the tetrameric channel15–17, its axonal targeting18, 

and possibly the opening and closing of the permeation pathway for K+ ions13,19–21. We 

have previously shown that T1 domains tetramerize while still attached to ribosomes22, and 
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that the whole T1 domain folds into its tertiary structure only after the primary sequence 

emerges from the ribosomal tunnel and the linker between T1 and the first transmembrane 

segment has been synthesized1.

T1 is comprised of several subdomains, including a β-hairpin, β1/β2, and an α–helical 

hairpin, α4/α5 (Fig.1). Can these subdomains fold inside the ribosomal tunnel? In this paper, 

we assess the extent and relative ease of T1 subdomain folding and the compartment in 

which this folding occurs. We also address a key mechanistic issue in protein folding in 

general, namely, whether subdomains of nascent peptides fold sequentially in the tunnel or 

in a concerted fashion upon emergence, and whether the folding of one nascent subdomain 

depends on the synthesis and/or folding of another subdomain.

Here, we establish that tertiary intrapeptide interactions occur within the tunnel and that 

stable hairpins form upon emergence from the tunnel. In addition, folding of a C-terminal 

hairpin depends on the presence and status of the N-terminal β-hairpin. Moreover, the 

nascent peptide-tunnel complex may be more dynamic than thought previously, and a distal 

portion of the tunnel (near the exit port) provides an entropic window for exploration of 

conformational space by the nascent peptide.

RESULTS

Subdomain Folding

To study elementary tertiary folding of T1 subdomains at different stages of biogenesis, we 

chose two subdomains: a pair of antiparallel β-strands, i.e., a β-hairpin, and an α-helical 

hairpin (Fig. 1, red and blue, respectively). According to the T1 crystal structure of Kv1.213, 

which is 95% identical in sequence to the T1 domain of human Kv1.3, these subdomains are 

located at the N- and C-terminal regions, respectively, of the T1 domain (Fig. 1a). We 

engineered a pair of cysteines (53Cys and 66Cys, denoted as 53C66C) into the β-hairpin and 

a different pair (125C149C) into the α-helical hairpin. In each case, the cysteines are 

exposed in the folded monomer and are thus available to crosslinking reagents under the 

conditions of our assay1,23. Moreover, these cysteines are predicted to be within 4–6 Å of 

each other if the subdomain is folded similarly to that modeled in the crystal structure of the 

mature T1 domain13,14.

To crosslink a cysteine pair, we used ortho-phenyldimaleimide (PDM), a bifunctional 

crosslinking reagent with an intermaleimide distance of ~6Å. If the engineered cysteines in 

each of the T1 subdomains shown in Fig. 1b come within 4–7 Å of each other, then they can 

be crosslinked with PDM. To distinguish crosslinked from non-crosslinked products, we use 

methoxy-polyethylene glycol maleimide (PEG-MAL) and methoxy-polyethylene glycol 

thiol (PEG-SH). Addition of the PEG moiety to a protein (pegylation) shifts its molecular 

mass by ≥10 kDa. A free SH group can be labeled with PEG-MAL24, and a free peptidyl-

maleimide can be labeled with PEG-SH23. A crosslinked subdomain will fail to undergo a 

gel shift with either pegylation reagent, PEG-MAL or PEG-SH. A probability of 

crosslinking, Pxlink, can be calculated, as described in Kosolapov et al. 20041. We consider 

that the extent of crosslinking reflects tertiary interactions and, depending on the location of 

the engineered cysteine pairs, the probability of tertiary folding.
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To determine the cellular compartment (e.g., ribosomal tunnel vs cytosol) in which 

subdomain folding occurs, we generated double-cysteine constructs as nascent peptides (still 

attached to the ribosome) at various distances from the peptidyl transferase center (PTC; 

Fig. 1b) using different enzyme restriction sites (Supplementary Table 1) that eliminate the 

stop codon. This produces different chain lengths between the PTC and the cysteine at the 

C-terminus of each subdomain. The crosslinking assay was performed on each of these 

double-cysteine constructs. In addition, similar assays were carried out on constructs 

containing only a single cysteine of each cysteine pair to calculate the probability of 

crosslinking, Pxlink (Methods and Kosolapov et al., 20041). Each mRNA for the engineered 

nascent peptide was translated in a cell-free, membrane-free rabbit reticulocyte system with 

added 35S-methionine and then subjected to the crosslinking assay1 (see Methods). After 

labeling with PDM, samples are first treated with SDS and then pegylated to assay for either 

free available cysteines or free available peptidyl-maleimides.

Figure 2a shows data for the crosslinking assays of the β–hairpin (top two rows) and the α-

hairpin (bottom two rows) from constructs with different numbers of amino acids between 

the PTC and the C-terminal cysteine, ΔPTC (calculated as the number of the last residue 

included by the restriction site minus the residue number of the engineered cysteine, e.g., 

91−66 = 25 for the first construct shown in Figure 2a). Regardless of the ΔPTC and number 

of cysteines in the construct, both N- and C-terminal cysteines were available for pegylation 

(lanes 1), and were completely labeled by PDM (lanes 2). Moreover, all PDM-modified 

single-cysteine constructs show a similar efficiency of labeling with PEG-SH, regardless of 

ΔPTC (lane 3 for all single-cysteine constructs). For a ΔPTC of 52 (outside tunnel), both the 

β-hairpin and the α-hairpin double-cysteine nascent peptides that were modified with PDM 

produced negligible gel shifts with PEG-SH (lanes 3, second and fourth rows, leftmost gel). 

This indicates that no free peptidyl-maleimides were present, i.e., the cysteines are 

crosslinked and subdomains are mostly folded. In contrast, double-cysteine peptides with 

ΔPTC of 19 or 25 residues (deeper in the tunnel) were not crosslinked and therefore not 

folded. In this case, the PDM-treated peptides contained free peptidyl-maleimides that were 

pegylated with PEG-SH to produce gel shifts (bands 1 and 2 in lanes 3, first and third row, 

leftmost gels). Single-cysteine constructs were not crosslinked, yet were modified by PDM 

to contain a free maleimide that is pegylated by PEG-SH (band 1 in lanes 3, two rightmost 

gels). Crosslinking data for additional constructs with ΔPTC values of 27 and 39 for the β-

hairpin and 24 and 29 for the α-hairpin are shown in Supplementary Figure 1.

Location of the Subdomain in the Tunnel

The interpretation of these crosslinking data requires that we know the location of the 

subdomain, inside or outside of the tunnel, which depends on both ΔPTC and secondary 

structure of the peptide between the C-terminal cysteine of the subdomain and the PTC. To 

determine subdomain location, we used an accessibility assay (Fig. 2b and Supplementary 

Fig. 2). This assay also relies on a mass-tagging strategy using PEG-MAL2,24, but without 

the SDS pre-treatment used in the crosslinking assay (see Methods)1. The final extent of 

PEG-MAL labeling of a cysteine in the last 20Å of the tunnel is monotonically dependent on 

the distance of the modifiable cysteine from the PTC2. Accessibility is therefore an accurate 

estimator of distance from the PTC2 (see Discussion). For each subdomain, a single 
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cysteine, corresponding to the C-terminal cysteine of each cysteine pair was engineered into 

the nascent peptide, which was treated with PEG-MAL and the final extent of labeling 

determined. As shown in Figure 2b, for β- and α-hairpins located outside of the ribosomal 

tunnel, i.e., ΔPTC is 322 and 239, respectively (top gels), the fraction of pegylated protein is 

≥ 0.88. In contrast, the fraction of pegylated protein is ≤ 0.14 for constructs where C-

terminal cysteines of the β- and α-subdomains were placed at 25 and 19 residues, 

respectively, from the PTC (bottom gels). These cysteines, located inside the tunnel, are 80 

Å or less from the PTC2.

Relationship between Subdomain Location and Folding

To determine the tunnel location where hairpin folding occurs, we combined the results 

from the crosslinking and accessibility assays for each hairpin. In Figure 3a, we plot the 

probability of crosslinking (Pxlink) against the fraction of accessible peptide (Facc). The 

midpoint of each PF-curve, F50, is the fraction accessible when 50% of the peptide is 

maximally crosslinked (dotted lines). Thus we can compare Pxlink at different distances from 

the PTC and the relative ease of folding for each subdomain at the same location. Both 

subdomains apparently begin to fold before they emerge completely from the ribosomal 

tunnel, and maximum folding occurs after the subdomains emerge from the tunnel. Pxlink 

saturates below 100% completion due to rapid binding of a PDM molecule to both 

cysteines23. The F50 values are 0.57 ±0.10 for the β-hairpin and 0.37 ± 0.06 for the α-

hairpin, not significantly different (P = 0.075, Z-test), suggesting that the relative ease of 

folding of the two different hairpins is similar.

Is subdomain folding affected by the interaction of the ribosomal tunnel with the subdomain 

or is it due solely to the intrinsic properties of the peptide? To address this question, we first 

released the nascent peptides from the ribosome using RNase, isolated the released peptide, 

and assayed it for crosslinking. A nascent peptide in which the C-terminus of the β-hairpin 

sequence was located 25 residues from the PTC was released and gave nearly maximal 

crosslinking for the hairpin (Supplementary Fig. 3), suggesting that it folded completely. In 

contrast, a released peptide in which the C-terminus of the α-hairpin sequence was 19 

residues from the PTC, crosslinked only 55% of the maximum attained while attached to the 

ribosome. Intriguingly, when this sequence was first positioned more distally in the tunnel, 

e.g., 24 and 29 residues from the PTC, and then released, the α-hairpin apparently folded 

more completely, 71% and 76% of the maximum, respectively. This behavior suggests that 

several factors may determine the probability of folding of the α-hairpin: the location of the 

α-hairpin sequence in the tunnel prior to release (so that the tunnel promotes a folding-

competent state of the peptide), the total length of the nascent peptide, and/or the number 

and nature of the residues between the hairpin C-terminus and the PTC. In addition, the 

maximally folded α-hairpin present in the crystal structure may represent only one of several 

hairpin structures. This α-hairpin behavior contrasts with the folding requirements for the β-

hairpin, which is constrained by the tunnel but apparently folds completely once it is 

released.

Two additional conclusions may be drawn from the PF-curves shown in Figure 3a. First, 

folding of the upstream β-hairpin does not require the presence and/or folding of the α-
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hairpin, as evidenced by maximum folding for the ΔPTC 52 peptide, which lacks the α-

hairpin. Second, tertiary folding of both hairpins is prohibited in short nascent intermediates 

with relatively inaccessible C-terminal cysteines (ΔPTC<21). However, the α-hairpin shows 

a significant amount of folding (Pxlink = 0.26, 34% of its maximum) when ΔPTC = 24, i.e., 

the C-terminal cysteine is inside the tunnel (Facc = 0.25), which suggests a dynamic 

equilibrium between folded and unfolded species (Supplementary Results).

Evidence for an Entropic Window

The PF-curves shown in Figure 3a make two predictions. First, at locations far outside the 

tunnel (ΔPTC>239), the hairpin subdomains, as well as the whole T1 domain1, are folded. 

We can therefore predict from the crystal structure of the T1 domain which side-chains in 

the folded T1 are too distant from one another to be intramolecularly crosslinked (>14Å 1) 

and should therefore exhibit a low Pxlink. Second, at tunnel locations within 80Å of the PTC, 

no folding occurs. Thus pairs of distant cysteines engineered anywhere along the nascent 

peptide, including non-hairpin sequences, should also exhibit a low Pxlink within these 80Å. 

Each prediction derives from a different constraint on tertiary folding. In the first case, the 

whole stably-folded T1 domain has a network of intramolecular interactions that restricts its 

mobility, decreasing the degrees of freedom allowed for any given stretch of primary 

sequence within the folded T1. In the second case, the tunnel itself is too small to permit 

intramolecular tertiary interactions in the nascent peptide. To test these predictions, we 

designed two separate double-cysteine constructs, 62C75C and 101C125C, in the region 

adjacent to the β-hairpin and α-hairpin, respectively. The cysteines in the 62C75C and 

101C125C pairs are separated by the same number of amino acids, respectively, as in the 

53C66C (β-hairpin) and 125C149C (α-hairpin) pairs. In contrast to intra-pair proximities (6–

7Å) for 53C66C and 125C149C, both 62C75C and 101C125C are farther apart in the folded 

T1 monomer, ~25 and ~17Å, respectively.

As predicted, crosslinking efficiencies for 62C75C (red squares, Fig. 3b) and 101C125C 

(blue triangles) are low when these constructs were placed either deep inside or completely 

outside of the tunnel (Facc ≤ 0.5 or ≥ 0.9, respectively), consistent with the lack of 

crosslinking reported for two cysteines located 14 Å apart in the whole folded T1 domain1.

However, between these two regions of restricted conformational entropy there is a region 

where some crosslinking is permitted (shaded area, Fig. 3b), even though in each case the 

introduced cysteines within the pair are distant from one another in the mature T1 structure. 

We used chain lengths that position 62C75C and 101C125C in the more distal regions of the 

tunnel, at ΔPTC values of 30, 35, 37, 43, 67, 313 and 27, 38, 41, 43, 48, 263, respectively. 

Short constructs (open symbols, Fig. 3b) with Facc between 0.6 and 0.95 crosslinked to give 

a Pxlink of ≥ 0.6, suggesting that this region of the tunnel is dynamic and allows the peptide 

to explore conformational space, therefore constituting an entropic window (shaded region) 

for sampling potential folding partners. For these constructs, both accessibility 

measurements and calculations based on secondary structure between the C-terminal 

cysteine and the PTC, indicate that these C-terminal cysteines are located either just within 

the tunnel at the exit port or outside in the immediate vicinity of the tunnel. To confirm 

findings in the restricted region, we engineered two constructs with ΔPTC > 285. We 
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engineered 86C99C between the β- and α-hairpin sequences. These cysteines are 14Å apart 

in the mature folded structure. We also engineered 59C72C in the β-hairpin sequence. These 

cysteines are 25Å apart in the mature folded structure. Pxlink for both 86C99C (filled green 

circle, Fig. 3b) and 59C72C (filled inverted black triangle) is ~0.3, in agreement with 

62C75C (filled red square) at this same location. All filled symbols represent cysteine pairs 

far outside the tunnel on a long tether, which have Pxlink of 0.2–0.3. To confirm findings in 

the interaction-permissive region, we engineered a construct containing 59C72C that poises 

this cysteine pair in the vicinity of the exit port, but outside the tunnel. The Pxlink is >0.6 

(data not shown). These findings permit a more precise interpretation of the crosslinking 

results for hairpin residues 53C66C and 125C149C that are in close proximity in the T1 

domain (Fig. 3a). While these residues in each hairpin initially interact as part of the 

exploration of conformational space allotted by the tunnel’s entropic window, the hairpins 

fold into stable structures only in the context of the longer, folded T1 domain.

Cooperative Subdomain Folding

The α-hairpin folds when the N-terminal region of the T1 domain, including the β-hairpin 

has already been synthesized and folded (Fig. 3a and Kosolapov et al., 20041). This folded 

N-terminus may provide a topological template. This hypothesis predicts folding of the α-

hairpin sequence should be sensitive to deletion of its preceding T1 residues. To explore this 

possibility, we truncated the T1 domain at position 122 (Fig. 4), which yields an N-

terminally deleted nascent peptide (ΔN) containing the α-hairpin sequence starting 3 

residues after the methionine start site. For a long tether (ΔPTC 239), Pxlink is significantly 

decreased by 46% (P = 0.004, Fig. 4). It appears therefore that the extent of α-hairpin 

folding depends on the presence of the N-terminal T1 domain. In addition to these long-

tethered ΔN-constructs with a folding domain outside of the tunnel, we investigated shorter 

ΔN-constructs, ΔN-ΔPTC24 and ΔN-ΔPTC29, in which the folding domains reside near the 

end of the tunnel. The truncated ΔN-ΔPTC24 folds less efficiently than the non-truncated 

peptide (Pxlink is 0.06 ± 0.12, n=2 versus 0.26 ± 0.03, n=3, respectively, (Supplementary 

Fig. 4)). Truncated ΔN-ΔPTC29, which is also near the end of the tunnel and provides a 

larger dynamic range, has a Pxlink of 0.30 ± 0.02 (n=2) versus 0.46 ± 0.03 (n=5) for the non-

truncated construct. For both ΔN-ΔPTC24 and ΔN-ΔPTC29 constructs lacking the N-

terminal β-hairpin, folding of the α-hairpin is less efficient, again consistent with folding of 

a C-terminal hairpin depending on the presence and status of the N-terminal β-hairpin 

sequence. In contrast, the β-hairpin apparently folds in the absence of the C-terminal region 

of T1, including the α-hairpin sequence. A 118-residue nascent peptide that includes the β-

hairpin sequence (ΔPTC = 86) but not the α-hairpin sequence, folds as much as the longer 

nascent peptides (ΔPTC = 322 (Fig. 3a)) that includes both β- and α-hairpins.

The second strategy we used to probe the dependence of α-hairpin formation on the β-

hairpin was to use a Kv1.3 mutation, T65D. Residue 65 lies in the β-hairpin at the 

intersubunit interface of the T1 tetramer. Kv1.3 with a T65D mutation does not tetramerize 

and only achieves one-half as much tertiary folding as wildtype T123,25. We therefore used 

the T65D mutation to investigate two issues. Does the T65D mutation impair tertiary folding 

of the β-hairpin? Does the T65D mutation affect α-hairpin formation? We introduced the 

T65D mutation into both a 53C66C background (ΔPTC 322) and a 125C149C background 
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(ΔPTC 239) that places the β- and α-hairpins far outside of the tunnel. As shown in Figure 4, 

Pxlink in the T65D mutant is 0.46 for the β-hairpin and 0.26 for the α-hairpin, each 

significantly lower than wildtype Pxlink (P = 0.003 and 0.01, respectively). The α-hairpin is 

more disrupted than the β-hairpin, consistent with accumulated disruption for the more C-

terminal location of the α-hairpin. We suggest that propagated disruption from the site of 

mutation all along the folded T1 interface is responsible for defective quaternary structure 

formation of the T65D mutant T1 domain. Folding of the α-hairpin depends on the presence 

and status of the β-hairpin.

DISCUSSION

Subdomain Folding

While it is too cramped inside the tunnel to accommodate the entire T1 domain of Kv 

channels in its fully folded state1, consistent with previous investigations of other 

proteins6,26,27 and the geometric analysis of Moore and co-workers28, tertiary interactions 

do occur in the tunnel, particularly in its last 20Å. This region supports helix formation1–

4,29, and specifically folding of the α5 helix of the T1 domain studied herein3. Why is this 

region permissive for tertiary interactions? First, the dimensions of the tunnel in this region 

may be wider30 than the 20Å estimated from the crystal structures of the ribosome, which 

lack both nascent peptides and attendant chaperones. Second, the ribosomal tunnel may be 

more dynamic than previously thought (whereas Steitz’s estimate of the diameter of the 

largest sphere that can fit inside a peptide-less tunnel, 13.7Å31, can accommodate the β-

hairpin, an increase of < 2-fold is required to accommodate the α-hairpin). Moreover, the 

entrance of the ribosomal tunnel undergoes conformational changes during peptide 

elongation32 and the tunnel is believed to have a gate33–35. Third, tertiary and secondary 

structure formation may be coupled36 and thus potentiated in this distal portion of the tunnel 

that favors secondary folding29, 3. An α-helix requires less room than a hairpin of similar 

length and amino acid composition, and thus an α-helix may form along the first 80Å of the 

tunnel, independent of tertiary folding, but the converse may not hold. For the α4/α5 

hairpin, tertiary structures in the last 20Å of the tunnel may be favored by coupled 

secondary structure formation. Moreover, chaperone proteins hovering at the exit port of the 

tunnel may facilitate tertiary and/or coupled folding.

Although these two subdomains differ in size and length of the hairpin, and the number of 

hydrophobic interactions along their respective hairpin interfaces, our crosslinking assay 

suggests that the ease of folding of the β- and the α-hairpin are not significantly different. 

The β-hairpin evidently folds despite the absence of the α-hairpin. Similarly, the α-hairpin 

apparently folds in the absence of the β-hairpin in a truncated N-terminally deleted (ΔN) 

mutant. However, folding of the α-hairpin is not independent of the β-hairpin. The α-hairpin 

in the ΔN mutant folds less than the α-hairpin in the full-length peptide that contains both β- 

and α-subdomains. Moreover, mutation of the β-hairpin residue 65 (T65D) causes a 

decrease in folding of both the β- and α-hairpins. In the full-length mature Kv1.3, T65D 

prevents both quaternary and complete tertiary folding of the T1 domain, and consequently, 

function of the Kv1.3 channel23,25. This is expected because tertiary folding and 

tetramerization of T1 are coupled25. We now understand that the basis for this defect in 
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tertiary folding involves the propagated disruption of subdomain formation. Our findings 

underscore the usefulness of this approach in diagnosing the molecular basis for folding 

defects.

Information regarding the extent of folding at discrete locations along the tunnel is 

embedded in the crosslinking-accessibility (PF) curves in Figure 3a. The locations are 

deduced from a cysteine accessibility assay. This assay is based on the monotonic 

dependence of the fraction pegylated for a given cysteine in an all-extended tape measure on 

the distance of that cysteine from the PTC2. We have compared the cysteine accessibility 

results obtained for α-hairpin constructs with those obtained for this all-extended tape 

measure. The accessibility of the C-terminal cysteine in the tunnel, in α-hairpin constructs, 

is similar to the accessibility of cysteines in the tape measure with the same ΔPTC, 

demonstrating that these cysteines are at the same location in the tunnel. This similarity is 

expected given that the segment of the peptide between the C-terminal cysteine of the α-

hairpin (149C) and the PTC is completely extended3. Thus, the measured accessibility of 

149C is not an artifact of secondary structure formation in the region downstream from 

149C. Nor is it an artifact of blocked access to 149C by the upstream α4 and α5 helices in 

the tunnel.

Dynamics of the Nascent Peptide-Tunnel Complex

Our results suggest that the nascent peptide-tunnel complex may be more dynamic than 

originally believed. At one location (ΔPTC 24), the level of crosslinking suggests that the α-

hairpin exists in a time-averaged equilibrium between an extended α4/α5 species and a 

tertiary hairpin. Dynamics are also manifest in the distal portion of the tunnel that provides 

an entropic window for initial exploration of local peptide regions for folding. This 

represents a restricted time and space in which the nascent peptide visits potential tertiary 

conformational states. It is possible that this region, the last 20Å near the exit port, is lined 

by chaperone proteins, which operationally extend the length of an 80Å tunnel. Estimates of 

the length of the tunnel vary from 80–112Å2,9,10,12,28. Regardless, this region exhibits a 

monotonically increasing accessibility with increasing distance from the PTC2,30. If this 

increased accessibility represents a widening of the tunnel, this will allow an increased 

number and mobility of water molecules and ions, and therefore an increased driving force 

for burying hydrophobic residues at a tertiary folded interface (hydrophobic effect37). Both 

α4/α5 and β1/β2 hairpins contain hydrophobic residues that are in close contact all along 

their folded interfaces13. The final tertiary hairpin fold is stabilized by constraints of the 

additional secondary and tertiary interactions of the whole folded T1 domain outside the 

tunnel.

Our results highlight three principles that are likely to play critical roles in protein folding 

during biogenesis. The first is that intramolecular tertiary interactions occur before the 

nascent peptide has fully emerged from the ribosomal tunnel, allowing for a regulatory role 

of folding by the ribosome and its attendant chaperones. The second is that the nascent 

peptide in the exit port of the tunnel is structurally dynamic and can therefore explore a 

myriad of conformations before fully emerging from the ribosome. This may enable the 

peptide to fold more efficiently than it would in a less confined space. The third is that 
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tertiary interactions are influenced by subdomain folding elsewhere in the nascent peptide. 

We propose that these three principles constrain and shape the earliest stages of protein 

folding and may be used to help understand the molecular basis for folding defects that 

underlie protein malfunction.

METHODS

Constructs and In Vitro Translation

We used standard methods of bacterial transformation, plasmid DNA preparation, and 

restriction enzyme analysis. The nucleotide sequences of all mutants were confirmed by 

automated cycle sequencing performed by the DNA Sequencing Facility at the School of 

Medicine on an ABI 377 Sequencer using Big dye terminator chemistry (A0BI). All mutant 

DNAs were sequenced throughout the entire coding region. Engineered cysteines, restriction 

enzyme sites, and N-terminus deletions were introduced into pSP/Kv1.3/cysteine-free22 

using QuikChange Site-Directed Mutagenesis Kit as described in Kosolapov and Deutsch23.

We synthesized capped cRNA in vitro from linearized templates using Sp6 RNA 

polymerase (Promega, Madison, WI). Linearized templates for Kv1.3 translocation 

intermediates were generated using several restriction enzymes to produce different length 

DNA constructs lacking a stop codon. cRNAs were translated in vitro with [35S]Methionine 

(2 µl per 25 µl translation mixture; ~10 µCi µl−1 Express, Dupont/NEN Research Products, 

Boston, MA) for 1 h at 22°C in a rabbit reticulocyte lysate (2 mM final [DTT] ) according to 

the Promega Protocol and Application Guide.

Crosslinking assay

As described previously23, we added translation reaction (10–20 µl) to 500 µl phosphate 

buffered saline (PBS: Ca -free DPBS (GIBCO), containing 4 mM MgCl2, pH 7.3) with 2 

mM DTT. The suspension was centrifuged using a TLA100.3 Beckman rotor at 70,000 

rpm/20 min/4°C through a sucrose cushion (120 µl, containing 0.5 M sucrose, 100 mM KCl, 

50 mM Hepes, 5 mM MgCl2, 2 mM DTT, pH 7.5). The pellet was resuspended in 50 or 500 

µl PBS. Ortho-phenyldimaleimide (PDM; Sigma Chemical Co.), 0.5 mM, was added to 

those samples to be labeled while a control sample was treated identically but in the absence 

of PDM, at ~0°C for 30 min. No reducing agent is present in these incubations. PDM 

samples used for subsequent MAL-pegylation were quenched with 10 mM beta-

mercaptoethanol at room temperature for 10 min. Control samples, untreated with PDM, 

were treated identically. A third sample was labeled with PDM but reserved for treatment 

with PEG-SH. Thiol reducing agents must be avoided in PDM samples subsequently treated 

with PEG-SH, otherwise free maleimides will be modified and further assay with PEG-SH 

will be blocked. Samples were centrifuged at 70,000 rpm, 4°C, for 20 min (TLA100.3 

Beckman rotor), resuspended in 50 µl PBS containing 1% (w/v) SDS and incubated at room 

temperature for 20 min. Those samples designated for pegylation with methoxy-

polyethylene glycol maleimide (PEG-MAL, MW 5000; Shearwater, Inc.) were treated with 

10 mM beta-mercaptoethanol to prevent oxidation, which inhibits pegylation. Samples 

destined for pegylation with methoxy-polyethylene-thiol (PEG-SH, MW 5000; Shearwater, 

Inc.) received 50 µl PBS containing SDS only. All SDS-treated samples were diluted with 
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either 50 µl PBS containing PEG-MAL to give a final concentration of PEG-MAL of 20 

mM and 5 mM beta-mercaptoethanol or 50 µl PBS containing PEG-SH to give a final 

concentration of 20 mM PEG-SH. Both the pegylation and PDM reactions reached a 

maximum, constant level within 60 min and < 15 min, respectively, at 4°C 23.

Single- and double-cysteine constructs were treated identically, as described above. Data 

derived from single-cysteine constructs serve as controls to calculate the efficiency of PEG-

SH pegylation needed to determine the probability of crosslinking/folding in the double-

cysteine constructs.

Accessibility Assay

We added translation reaction (10–20 µl) to 500 µl phosphate buffered saline (PBS: Ca -free 

DPBS (GIBCO), containing 4 mM MgCl2, pH 7.3) with 2 mM DTT. The suspension was 

centrifuged at 70,000 rpm/20 min/4°C (TLA100.3 Beckman rotor) through a sucrose 

cushion (120 µl, containing 0.5M sucrose, 100 mM KCl, 50 mM Hepes, 5 mM MgCl2, 2 

mM DTT, pH 7.5). The pellet was resuspended in 100 µl PBS with 50 µM beta-

mercaptoethanol and treated with 1 mM PEG-MAL (SunBio) at 4°C for 4–6 h. To quench 

the pegylation reaction each sample was treated with DTT to neutralize PEG-MAL (200:1 

ratio), incubated at room temperature for 15 min and centrifuged at 70,000 rpm/20 min/4°C 

(TLA100.3 Beckman rotor). . The relative accessibility of each C-terminal cysteine indicates 

whether the subdomain is inside or outside of the tunnel.

Gel Electrophoresis and Fluorography

We treated all samples with RNase (20 µg ml−1) before loading on the gel and performed 

electrophoresis using the NuPAGE system and precast Bis-Tris 10% or 12% gels and MOPS 

running buffer. Gels were soaked in Amplify (Amersham Corp., Arlington Heights, IL) to 

enhance 35S fluorography, dried, and exposed to Kodak X-AR film at −70°C. Typical 

exposure times were 16–30 hours. We quantified gels using a Molecular Dynamic 

PhosphorImager (Sunnyvale, CA), which detects cpm that are not necessarily visualized in 

autoradiograms exposed for 16–30 hours.

Analysis of Pegylation Ladders

For any given construct, radioactive protein incubated with PEG-MAL or PEG-SH was 

detected as distinct bands on NuPAGE gels and quantified using a PhosphorImager 

(Molecular Dynamics, Inc). The data were analyzed as follows. For each lane, j, of the gel, 

the fraction of total protein molecules with exactly i pegylated cysteines was calculated as 

Wj(i)=cpm(i)/Σcpm(i) [eqn. 1], where cpm(i) is the counts per minute in the ith bin. If each 

cysteine is assumed to label to the same final extent, the fraction Fj of individual cysteines 

pegylated in the jth lane is ΣiWj(i)/N [eqn. 2], where N is the total number of cysteines in 

the protein molecule.

In this study, we apply the analysis described in Kosolapov et al.1 to determine the 

probability of crosslinking cysteines that reside inside the ribosomal tunnel as well as those 

residing outside. Specifically, we compare the labeling in single cysteine constructs and 

double cysteine constructs and can estimate the crosslinking efficiency. The crosslinking 
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efficiency is used to determine the probability of a pair of cysteines being crosslinked by 

PDM: Pxlink = 1 − (2F3,AB)/(F3,A + F3,B), where F3,A and F3,B are fractions of PDM-treated 

single cysteine (A or B) mutants labeled with PEG-SH, and F3,AB is the fraction of PDM-

treated double cysteine (A and B) mutant labeled with PEG-SH.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The T1 domain and Experimental Design
(a) Hairpin structures. The monomeric T1 domain (taken from Minor et al., 200013 for 

Kv1.2) is shown with the indicated subdomains: a β–hairpin (red) comprised of β1 and β2, 

and an α-helical hairpin (blue) comprised of α4 and α5. Hairpin terminal residues Arg53, 

Gln66, Ile125, and Glu149 are shown as spacefilling atoms and are equivalent to residues 

34, 47, 106, and 130, respectively, at the homologous hairpin termini in Kv1.2. (b). Amino 

acid sequence of the T1 Kv1.3 β–hairpin (red) and α-helical hairpin (blue) with secondary 

structure assignments derived from the highly identical Kv1.2 structure in (a)14. Engineered 
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cysteines 53C and 66C (β–hairpin) and 125C and 149C (α-helical hairpin) in Kv1.3 are 

highlighted in yellow. The PTC is indicated by the vertical black bar at the right.
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Figure 2. Crosslinking and Accessibility Assays for β- and α- Hairpins
(a). Intramolecular crosslinking assay for indicated cysteine pairs (left column of gels) and 

single cysteines (two right-most columns of gels) for β-hairpin (top two rows) and α-hairpin 

(bottom two rows). The number of amino acids from the PTC to the C-terminal cysteine of 

the pair, or to the single cysteine, is indicated to the left of each row of gels as the ΔPTC. 

Engineered restriction sites, Xba I@91 and Kpn I@118, were used to produce ΔPTCs of 25 

and 52, respectively, for the β-hairpin constructs. An engineered restriction site, BstE 

II@168, and a native site, Xba I@201, were used to produce ΔPTCs of 19 and 52, 

respectively, for the α-hairpin constructs. Numbers to the right of each gel represent doubly 

(2) or singly (1) pegylated or unpegylated (0) protein. In all cases, lane 2 background is 

significantly less than other lanes due to >95% labeling of the peptide with PDM, which 

leads to unpegylated protein that accumulates entirely in band 0. (b) Accessibility assays for 

C-terminal cysteines. Nascent peptides were pegylated as described in the Methods for 4 and 

6 hours (lanes 1 and 2, respectively) for 66C (left column of gels) or 149C (right column of 

gels) in constructs with the indicated number of amino acids from the PTC to the C-terminal 

cysteine (ΔPTC). Long peptides (ΔPTC = 322 and 239), residing outside tunnel are shown in 

the top row of gels; short peptides (ΔPTC = 25 and 19) residing within the tunnel are shown 

in the bottom row of gels. Numbers to the left of each gel are molecular weight standards; 

numbers to the right of each gel represent singly (1) pegylated or unpegylated (0) protein.
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Figure 3. Accessibility-Dependent Probability of Crosslinking
(a). Probability of crosslinking, Pxlink, as a function of the fraction of accessible peptide, 

Facc. Data are derived from crosslinking and accessibility assays (exemplified in Fig. 2) for 

β-hairpins (red squares) α-helical hairpins (blue triangles) and fit to a sigmoidal function 

with two parameters (SigmaPlot 8.0). Data are means ± SEM for at least triplicate 

measurements. The dotted lines indicate F50 values as defined in the text. The β-hairpin has 

F50 = 0.37 ± 0.06, whereas the α-helical hairpin has F50= 0.57 ± 0.10. These midpoints are 

not significantly different (P= 0.075, Z-test). The ΔPTC values are (increasing order of Facc) 
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21, 25, 27, 29, 39, 322, 52, and 86 (latter two occur at the same Facc) for the β-hairpin and 3, 

19, 24, 29, 40, 52, and 239 for the α-hairpin. (b) Probability of crosslinking of 62C75C (red 

squares) and 101C125C (blue triangles). A curve was drawn through all the data points, but 

no particular function is intended. The shaded region indicates a region in which peptides 

can be crosslinked (an entropic window). All filled symbols represent cysteine pairs far 

outside the tunnel on a long tether (ΔPTC values > 285). Pxlink for these constructs is 0.2–

0.3. Pxlink for both 86C99C (filled green circle) and 59C72C (filled inverted black triangle) 

is ~0.3, in agreement with 62C75C (filled red square) at this same location. The ΔPTC 

values are (increasing order of Facc) 30, 35, 37, 43, 67 and 313 for the 62C75C constructs 

and 27, 38, 41, 48, 43, and 263 for the 101C125C constructs. Data are means ± average error 

or ± SEM for 2–4 replicate samples, except for points at ΔPTC 48, 67 and the 86C99C 

construct (green filled circle) at ΔPTC 289. For all other points, errors are either clearly 

visible or within the symbol.

Kosolapov and Deutsch Page 17

Nat Struct Mol Biol. Author manuscript; available in PMC 2009 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. T1 Domain Mutants
A schematic of T1 constructs with an N-terminal deletion or a T65D mutation is shown 

along with the full-length peptide for comparison. The T65D mutation is shown as a black 

circle. A truncated peptide (ΔN) begins at N122M. All constructs were cut with a BstEII 

restriction enzyme to give a ΔPTC value of 239 for the 125C149C constructs and 322 for the 

53C66C constructs. Nascent peptides were translated, isolated, and assayed for crosslinking 

as described in the Methods. The Pxlink values for these N-terminal deletion and T65D 

mutants are depicted as white bars. The gray bars represent data shown in Figure 3a for 
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nascent peptides 125C149C and 53C66C. The results for the α-helical hairpins are indicated 

by the right-most and left-most sets of bars. The results for the β–hairpin are shown in the 

middle set of bars. Pxlink data are means ± SEM for triplicate measurements.

Kosolapov and Deutsch Page 19

Nat Struct Mol Biol. Author manuscript; available in PMC 2009 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


