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Abstract: Physical exercise is a well-proven neurogenic stimulus, promoting neuronal progenitor
proliferation and affecting newborn cell survival. Besides, it has beneficial effects on brain health and
cognition. Previously, we found that three days of physical activity in a very precocious period of
adult-generated granule cell life is able to antedate the appearance of the first GABAergic synaptic
contacts and increase T-type Ca2+ channel expression. Considering the role of GABA and Ca2+ in
fostering neuronal maturation, in this study, we used short-term, voluntary exercise on a running
wheel to investigate if it is able to induce long-term morphological and synaptic changes in newborn
neurons. Using adult male rats, we found that: (i) three days of voluntary physical exercise can
definitively influence the morpho-functional maturation process of newborn granule neurons when
applied very early during their development; (ii) a significant percentage of new neurons show
more mature morphological characteristics far from the end of exercise protocol; (iii) the long-term
morphological effects result in enhanced synaptic plasticity. Present findings demonstrate that the
morpho-functional changes induced by exercise on very immature adult-generated neurons are
permanent, affecting the neuron maturation and integration in hippocampal circuitry. Our data
contribute to underpinning the beneficial potential of physical activity on brain health, also performed
for short times.

Keywords: adult neurogenesis; dentate gyrus; running wheel; dendritic tree complexity; newborn
cell migration; synaptic plasticity; rat

1. Introduction

Neuroplasticity is an umbrella term that includes all the functional and structural
changes occurring within a neural circuit. These changes are related to functional modifica-
tions and have tremendous relevance under physiological and pathological conditions [1].
A large number of studies show that early aversive experiences in children occurring in
a specific critical period definitively affect subsequent brain development [2,3]. Physical
activity in children influences maturation of cognitive abilities [4,5], possibly changing
neural network morpho-functional development. However, it is not clear whether acute
physical activity causes long-term effects on subsequent network development.

In this context, the hippocampal region has been attracting great attention in the
neuroscience research field because of its extraordinary degree of neuroplasticity. Indeed, in
this brain structure, neuronal plasticity phenomena, such as synaptic long-term potentiation
(LTP) and adult neurogenesis, occur, deeply affecting hippocampal functions. Notably,
adult neurogenesis represents a fascinating example of plasticity that takes place in a
specific hippocampal area called the dentate gyrus (DG). Here, new granule cells are
daily generated and incorporated into the existing network throughout adulthood in
mammals [6–8].

Hippocampal adult neurogenesis is a dynamic process highly dependent on the
activity of the neural network. Therefore, consistently with the fact that DG receives
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various afferences from multiple brain regions, adult-born neuron development steps are
regulated by numerous factors related to global and local neuronal activities. Voluntary
physical exercise is one of the most studied activities able to positively influence adult
neurogenesis. Neurogenesis improvement induced by physical activity [9,10] is considered
able to maintain brain health; indeed, a large body of literature brings evidence about the
beneficial consequences of physical and mental training on cognitive performance [11].
Molecular mechanisms underlying the effect of physical exercise on new neuron production
are possibly related to many factors, such as BDNF [12,13], serotonin (5-hydroxytryptamine—
5HT) [14–16], vascular endothelial growth factor (VEGF) or insulin-like growth factor-1
(IGF-1) [17–21].

In this scenario, we previously pointed out that a brief period of three days of physical
activity delivered in a very precocious step of adult-generated granule cell development is
able to antedate the appearance of the first GABAergic synaptic contacts [22,23]. Indeed,
we demonstrated in rats that after voluntary physical activity on a running wheel, about
26% of 7-day-old granule cells clearly display a GABAergic contact, which is normally not
seen at this early stage of new neuron development. Moreover, this very protocol was
also capable of increasing the number of 7-day-old immature granule neurons showing
T-type Ca2+ channels [22]. These findings are of particular interest because they may
be correlated with the increased survival probability of newly generated granules seen
in association with physical activity [24], and, considering the role of GABA and Ca2+

in fostering neuronal maturation and development, might have important implications
in granule cell maturation [23,25,26]. From a morphological perspective, we brought
evidence that the exercise induces the protrusion from 7-day-old immature neuron soma
of a significantly higher number of primary dendrites without changing the total length
and complexity degree of the dendritic trees [22]. In addition, a contribution of neuronal-
activity-induced BDNF release in mediating the effects of the exercise has been shown [22].
This correlation is of particular interest since the neurotrophin BDNF has been implicated
in activity-dependent synaptic plasticity and network remodeling [27,28]. BDNF is able
to regulate the extent of adult hippocampal neurogenesis [29], presumably via its specific
TrkB receptors [30], which are expressed on proliferating neural progenitor cells in the
dentate gyrus [31], suggesting a direct influence of BDNF on neurogenesis. Consistently,
we found that the TrkB agonist 7,8-dihydroxyflavone mimics the effect of physical exercise
in rats kept under control condition, while the TrkB antagonist ANA-12 counteracts the
effect of the three-days voluntary running [22].

Considering the results described above, we decided to go further and evaluate the
long-term effects on neuron plasticity of the same physical activity protocol consisting
of three days of voluntary wheel running administered at a very early stage during new
neuron development. Thus, in the present work, we moved our attention to 30-day-old
adult-generated granule cells, where we performed morphological and electrophysiological
analyses in order to assess if a short-term voluntary exercise is able to induce long-term
plastic morphological and synaptic changes, persistently affecting hippocampal function.

2. Results

Rats included in the RUN group, housed in cages containing stainless steel running
wheels equipped with an electronic counter, ran voluntarily and primarily during the dark
period (night). An average distance of 2.46 ± 0.68 km/day was covered by rats. In general,
the time spent running by rats increased night by night over the three days of exercise,
reaching an overall average distance of 7.4 ± 0.68 km. The inter-individual variation in
running activity was relatively small, and no rats were inactive.

2.1. Electrophysiological Analysis

Field recordings, in transversal hippocampal slices were used to investigate synaptic
plasticity in the dentate gyrus of CTRL and RUN rats by evaluating basal synaptic trans-
mission (input/output curves) and the ability to elicit LTP. The field potential responses to
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increasing intensity stimuli of the perforant pathway were not significantly different in the
two groups (Figure 1A). Similarly, the relationship between the fiber volley amplitude and
the stimulus intensity did not show differences between groups (Figure 1B).
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Figure 1. Basal synaptic transmission evaluation. Input-output of stimulus plots versus fiber volley
amplitude (A) and stimulus versus fEPSP slope (B) in CTRL and RUN group. Field potential and
fiber volley amplitude responses to increasing intensity stimuli of the perforant pathway were not
significantly different in the two groups.

High-frequency stimulation of the perforant pathway elicited a robust LTP both in
CTRL and in RUN groups (Figure 2). In slices from the RUN group, the evoked LTP
was similar to that elicited in the CTRL group during the first 15 min, but fEPSP in RUN
animals reached significantly higher values than controls, especially in the last minutes of
recordings (Figure 2).
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Figure 2. Electrophysiology analysis of long-term potentiation (LTP). The slope of EPSPs resulting
from the parasagittal sections (400 µm) of the hippocampal region was analyzed. The slopes of
the EPSP in the RUN group were significantly increased compared to CTRL group after recording
for 40 min following high-frequency stimulation; in addition, the y-intercept in the last 10 min of
recording was significantly higher in RUN group. Data statistical analysis: linear regression slope
F = 7.09361, p < 0.01; y-intercept F = 32.0045, p < 0.0001.

In accordance with the literature [32], ifenprodil, which inhibits NR2B-containing
NMDA receptors—almost exclusively expressed in immature cells—prevented the synaptic
potentiation after the tetanic stimulation of the perforant pathway (Figure 3). This finding
indicates that immature granule cells, affected by three days of physical exercise in a
precocious period of their development, contribute to the improved LTP maintenance



Int. J. Mol. Sci. 2022, 23, 6866 4 of 15

observed after the high-frequency stimulation of the perforant pathway, which induces a
synaptic potentiation based on immature cells.
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Figure 3. Long-term potentiation (LTP) in presence of ifenprodil. The slopes of the EPSP evoked
by high-frequency stimulation in CTRL slices treated with 3 µM ifenprodil significantly decreased
after recording for 40 min following; in addition, the y-intercept in the last 10 min of recording was
significantly lower in the group treated with 3 µM ifenprodil group. Data statistical analysis: linear
regression slope F = 128.141, p < 0.0001; y-intercept F = 566.889, p < 0.0001.

2.2. Morphological Analysis

In vivo injection of GFP-expressing retrovirus allowed us to later reveal, in transversal
hippocampal slices, several newly-generated GFP-positive cells located in the dentate
gyrus of CTRL and RUN rats. In general, labeled cells of both groups showed one or more
primary dendrites, which emerged from the top of the cellular soma and branched into
higher-order dendrites (Figure 4A,B). The dendrites reached the molecular layer of DG,
and the spines were noticeable.
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Figure 4. Retroviral labeling of 30-day-old dentate granule cells in CTRL (A) and RUN (B) rats.
Morphological reconstruction of each GFP-positive cell shows retrovirally labeled newborn dentate
granule cells expressing GFP throughout the entire cell. Scale bar, 30 µm.

The measurement of the total dendritic length pointed out that dendrite extension
was significantly higher in the RUN group than in CTRLs (Figure 5A). Moreover, despite
the similar number of the I order dendrites between the two groups, a significantly higher
number of III to VI order dendrites was observed in the RUN group (Figure 5B), suggesting
higher dendritic complexity trees in the RUN group, as confirmed by Sholl’s analysis.
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Figure 5. Morphological properties of 30-day-old granule cells. Comparison of total dendritic length
(A) and dendritic tree complexity (B) between GFP-positive neurons of rats belonging to CTRL group
(n = 21 cells) and RUN group (n = 21 cells). Statistical analyses: (A) unpaired Student’s t-test * p < 0.05;
(B) multiple Student’s t-test * p < 0.05, *** p < 0.001. All data are expressed as mean ± SEM.

In particular, the most remarkable differences between groups were visible in the area
extending from 115 to 227 micrometers away from the cell body (Figure 6).
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Figure 6. Sholl’s analysis of dentate gyrus GFP-positive neurons. Dendritic length measured by
Sholl’s analysis (superimposed ring 8 µm) revealed an increase in arborization, particularly evident
at distances between 115–227 µm from the soma in the RUN group. Data statistical analysis: multiple
Student’s t-test, *** p < 0.001 from 115 to 227 µm. All data are expressed as mean ± SEM, CTRL n = 21,
RUN n = 21.

Along the DG granule differentiation process the adult-generated neurons migrate
throughout the granule cell layer; thus, the distance of the GFP-positive cell body from the
SGZ/hilus was calculated to gain further insight into the newborn granule maturation level
under control and exercised conditions. From this evaluation, we found that new granule
neurons of the RUN group were generally farther from the SGZ/hilus in comparison to the
CTRL group (Figure 7).
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Figure 7. Adult-generated granule neurons migration assessment. Newborn granule cell body
position within the granule cell layer was analyzed by measuring the distance between each GFP-
positive cell body and the SGZ/hilus zone. Many newborn granule cells in the dentate gyrus of the
RUN group migrated farther from the considered zone compared to controls. Data statistical analysis:
unpaired Student’s t-test, * p < 0.05. All data are expressed as mean ± SEM, CTRL n = 44, RUN n = 57.

It is noteworthy that in plotting the cell body distance from the SGZ/hilus versus
the dendritic length, it was possible to distinguish two separate populations of labeled
cells in the RUN group that we named RUN1 and RUN2 (Figure 8B). The presence of
subpopulations was not appreciable in the CTRL group (Figure 8A).
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Figure 8. Scatterplot of cluster assignments in CTRL (A) and RUN (B) groups projected on distance
from SGZ/hilus and total dendritic length parameters. The clusters are represented by different
shapes or colors (CTRL•, RUN 1 �, RUN 2 ◦). Cluster ranking score was calculated automatically by
Tableau software. Statistical analysis: distance from hilus (µm) RUN 1 vs. RUN 2, F = 14.08, p < 0.01;
total dendritic length (µm) RUN 1 vs. RUN 2, F = 10.94, p < 0.01. Note that in the RUN group, there
was a significant correlation between total dendritic length and distance from hilus (p = 0.0029).

As expected, the GFP-positive cells located farther from the SGZ/hilus (RUN2) showed
the greatest dendritic length (Figure 9A) and the most complex dendritic tree (Figure 9B,C).
Therefore, it emerged that the differences between CTRL and RUN groups were mainly
due to a subpopulation of cells detected in the latter group only. Notably, part of the GFP-
positive granule cells in the RUN group (RUN1) were not different in total dendritic length
and distance from SGZ/hilus when compared to labeled cells in CTRLs (Figure 9A); on the
other hand, about 33% of the RUN newborn cells (RUN2) were characterized by a greater
total dendritic length and distance of migration (Figure 9A,B). In addition, data from Sholl’s
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analysis, which provides an estimate of dendrite arborization by evaluating the dendritic
crossing along the Sholl rings, revealed a significantly higher degree of arborization in
dendrites of the RUN2 subpopulation compared to the CTRL and RUN1 groups (Figure 9C).
RUN1 new neurons also exhibited an increased dendritic arborization with respect to CTRL,
but it was limited to their proximal segments, where no difference was found compared to
the RUN2 neuronal subpopulation.
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3. Discussion

The present study aimed to gain insight into the long-term effects of a short-term,
voluntary running exercise on the development of adult-generated neurons in the DG of
rat hippocampus. The key findings in our study are as follows: (i) three days of voluntary
physical exercise definitively influence the morpho-functional maturation process of new-
born granule neurons when applied very early during their development; (ii) indeed, a
subpopulation of new neurons shows more mature morphological characteristics (Figure 10
for a summary of features), highlighting that long-term effects are targeted in selected cells;
(iii) the long-term morphological effects are paralleled by enhanced synaptic plasticity,
possibly affecting hippocampal functions.
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Physical exercise was ascertained to affect hippocampal neurogenesis and synapto-
genesis [33–35], but its effect may depend on several parameters, such as type, duration,
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and intensity of exercise [36]. About this, it has been demonstrated that long-term run-
ning, mainly voluntary running, can significantly enhance cell proliferation, neuronal
survival, and synaptic activity in the rat hippocampus. Importantly, elevated neuroge-
nesis induced by voluntary exercise has been associated with some form of cognitive
improvement [37–39].

In this scenario, we found that even a short-term voluntary running, only lasting three
days, is sufficient to positively influence the morpho-functional development of newly-
generated granule cells, with possible implications on hippocampal functions. Notably,
new cells in DG were responsive to the hippocampal activation induced by voluntary
exercise very early after their birth, and part of them showed morphological modifications
when analyzed far from the end of exercise. Indeed, an increased dendritic tree complexity
and length, together with enhanced migration, have been found in about 33% of 30-day-old
GFP-positive cells of the RUN group, indicating more mature neuronal characteristics.
Interestingly, this percentage is very close to our previous findings within the 7-day-old
cell population, which received a precocious GABAergic contact after the same voluntary
running protocol applied here [22]. It is, therefore, feasible that the anticipation of the
synaptic GABAergic contact, which antedates the exposition of cells to GABA action,
might affect the survival and morpho-functional development of granules that receive
the contact, and speed up neuronal differentiation. In keeping with this hypothesis, we
previously highlighted a mechanism through which GABA fine-tunes intracellular calcium
homeostasis in rat adult-born granule neurons at a very early stage of their maturation [26].
Thus, considering the crucial role played by calcium signaling in neurodevelopment [40],
it is conceivable that GABA activity related to physical exercise hippocampal activation
may influence neuron developmental processes, such as dendritic arborization, neuronal
migration [41–43], as well as cell survival, by modulating intracellular Ca2+ transients.

The advanced neuronal morphological differentiation of the 30-day-old cell subpopu-
lation, in particular the increased extension and branching of the dendritic trees, underpins
the possibility of a larger number of synaptic contacts onto them, resulting in a deeper
integration into the hippocampal network with a possible implication in the hippocampal
functions. In particular, this more mature population, which, however, is still in the “critical
period” of high excitability [44–48] due to a depolarizing GABAergic input, might influence
the synaptic plasticity related to the pool of immature cells [32]. According to this hypothe-
sis, our data derived from the electrophysiological analysis of field potentials revealed a
difference in the maintenance phase of LTP induced through high-frequency stimulation of
the medial perforant pathway. In the RUN group, this phase of the synaptic potentiation is
characterized by higher fEPSPs, suggesting a link between voluntary running, enhanced
morphological development, and hippocampal functions.

The hippocampus is a crucial structure for episodic memory, for the establishment of
memory traces about “where”, “how”, and “when” a precise event happened, and the DG
of the hippocampus is known to have a role in pattern separation, by involving newborn
neurons [49]. Pattern separation is a key neuronal process relevant to cognitive functioning,
which can be influenced by exercise in several different ways [50]. This function of DG
underlies cognitive aspects of memory coding, allowing discrimination of similar experi-
ences or objects [51] (dorsal DG), while its impairment may underlie affective disorders,
including depression, anxiety, and post-traumatic stress disorder [52] (ventral DG). In
the DG, adult-born granule cells pass through a “critical period” of their development
characterized by morpho-functional properties, specifically hyperexcitability due to the
reverse driving force of Cl− and, consequently, the excitatory effect of GABA [32], suited for
pattern integration function and temporal separation of memories [53,54]. As suggested by
Piatti et al. [55], since the higher number of immature granules in the development period
is suited to perform pattern integration function, the increased development speed of im-
mature granules might ameliorate temporal resolution and the reliability of multiple-event
memorization. In addition, variation in the dendritic trees’ complexity and extension can
allow a higher number of synaptic contacts in the immature population; all of these contacts
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originate from not only the entorhinal cortex, but also from CA3 back-projection [56] and
might play an important role in the pattern integration function, supporting the corre-
lation between similar events or comparable stimuli. It is, therefore, suggested that the
subpopulation of more mature newly-generated neurons found in the RUN group can
allow a deeper integration into the hippocampal network. The effects related to physical
activity can influence aspects related to memory, such as the capability to associate different
mnestic traces or discern similar memory traces established in different points close in
time. Thus, the difference found in the maintenance phase of LTP is probably related to
the morphological characteristics of this more mature subpopulation of 30-day-old cells
and might influence DG functions leading to physical activity-associated improvements
in cognitive performance widely reported in the literature [57–60]. This difference might
lead to improvement in the pattern integration function of the DG in the RUN group since
it could improve the association of events through the activation of a similar population
of immature granules, which, after the completion of their development and reduction in
excitability, will only respond to the events experimented on during their development [54].

As regards the mechanistic aspect, BDNF seems to be the principal factor in medi-
ating the effects of physical activity on neurogenesis, and its mRNA and protein levels
increase in the hippocampus after exercise [61]. Consistently, our previous data [22] show
that the morpho-functional effects induced by the same short-term voluntary running
protocol on 7-day-old adult-generated cells in DG are mediated by BDNF, acting through
TrkB receptors via the MAP/ERK pathway and CREB activation [62,63]. In turn, BDNF
expression can be increased via a MAPK-CREB-dependent mechanism that, in developing
neurons, can be induced by GABA excitatory action [64]. It is documented that the CREB
transcription factor plays a major role in synaptic plasticity [65,66], synaptogenesis, and
newborn neuron integration in the adult hippocampus by inducing miRNA expression,
such as miR-132 [67–69]. Accordingly, Mojtahedi and colleagues [70] found that voluntary
running has the most positive impact on biomarkers, such as miRNA, that are associated
with stimulating neurogenesis and synapse formation in the rat hippocampus.

Summing up, based on our results and taking into account the above consideration, we
can figure out the following scenario: short-term voluntary running increases hippocampal
activity and influences adult-generated newborn granule cells very early during their de-
velopment, promoting the precocious appearance of the first GABAergic synaptic contacts
onto them, possibly by inducing BDNF release and TrKB receptor activation and regulating
miRNA expression involved in neurogenesis processes. The anticipation of synaptogenesis
fosters newborn cell survival and differentiation, speeding up their integration into the
hippocampal network. The population of adult-generated young neurons affected by
voluntary exercise enhances hippocampal plasticity, thus possibly improving hippocampal
functions.

In conclusion, other authors have reported beneficial effects of short-term exercise on
neurogenesis processes [71,72], but in our study, we demonstrate not only that the morpho-
functional changes induced by exercise on very immature adult-generated neurons are
permanent, being detected far from the end of exercise, but also that exercise changes timing
and kind of morpho-functional development occurring in the period of time subsequent
the end of exercise. Therefore, the present findings contribute to increasing the body of
information on exercise-induced changes and underpinning the beneficial potential of
physical activity on brain health, also when it is performed for short times.

4. Materials and Methods
4.1. Animals and Running Protocol

Sprague Dawley (SD) rats (Charles River Laboratories, Italy) were reared in a tem-
perature (21 ± 1 ◦C) and humidity (50 ± 5%)-controlled vivarium room with a 12 h/12 h
light/dark cycle (6:00 a.m. to 6:00 p.m. lights on). The animals were group-housed in
standard cages with water and food ad libitum. Male rats (6–8-week-old, n = 27, from
different litters) were used in accordance with the Italian law on animal experimentation
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(D.lgs. 26/2014; research project permitted with authorization N. 465/2015-PR by the
Italian Ministry of Health). All efforts were made to minimize animal suffering and to
reduce the number of animals used.

To in vivo label adult newly-generated granule cells in hippocampal DG, rats were
anesthetized with sodium thiopental (45 mg/Kg body weight) and stereotaxically injected
with Green Fluorescent Protein (GFP)-expressing retrovirus, as previously described [23].
Briefly, retroviral GFP-expressing virions were obtained cotransfecting the ecotropic pack-
aging Phoenix cell line (ORBIGEN) and infused bilaterally (twice 30 min spaced) into the
dentate gyrus (1 µL at 0.5 µL per min) (anteroposterior: 23 mm from bregma; lateral: 2 mm;
ventral: 3.2 mm).

On the fourth day after surgery, the animals were randomly assigned to the following
experimental groups: 1. voluntary running rats housed in a wheel cage (RUN; running for
three days: 4◦, 5◦, and 6◦ day after retroviral injection); 2. control rats (CTRL) housed in a
standard cage and not exposed to any behavioral experience.

4.2. Electrophysiological Experiments
4.2.1. Slices Preparation

Thirty days after the retroviral injection, rats were anesthetized with ketamine (65 mg/ Kg
b.w.) and killed by decapitation. Brains were quickly removed and incubated in chilled
oxygenated solution containing in millimolar: 110.0 choline Cl−, 2.5 KCl, 1.3 NaH2PO4,
5.0 NaHCO3, 0.5 CaCl2, 7.0 MgCl2, 20.0 dextrose, 1.3 Na+ ascorbate, 0.6 Na+ pyruvate,
5.5 kinurenic acid (pH: 7.4; 320 mOsm). Hippocampal transversal slices (400 µm thick)
were obtained from each hemisphere by vibrating microtome (Campden Instruments)
and allowed to recover in oxygenated Artificial Cerebrospinal Fluid (ACSF) containing
in millimolar: 125.0 NaCl, 2.5 KCl, 1.3 NaH2PO4, 25.0 NaHCO3, 2.0 CaCl2, 1.3 MgCl2,
1.3 Na+ ascorbate, 0.6 Na+ pyruvate, 10.0 dextrose (pH: 7.4; 320 mOsm). The slices were
kept in ACSF solution for at least 1 h at room temperature before electrophysiological
recordings. Afterwards, slices were individually transferred into a recording chamber
where they were held in place with nylon mesh and continuously superfused throughout
the electrophysiological recordings with oxygenated ACSF at a rate of 3 mL/min.

4.2.2. Electrophysiological Field Recordings

The influence of three days of voluntary running on synaptic plasticity was investi-
gated, evaluating the ability of DG granules to elicit LTP after the high-frequency stimu-
lation (HFS) of the medial perforant pathway in CTRL (n = 9 rats) and RUN (n = 10 rats)
groups. To specifically assess the role of immature granule cells, which were affected by
the training protocol applied [23], a peculiar stimulation protocol, developed by Snyder
and colleagues [32] and able to elicit LTP on the sole immature granule cells, was applied.

To this purpose, recording and bipolar stimulating electrodes were prepared and filled
with ACSF. The recording electrode was placed in the molecular layer of the DG, while
the stimulating one was in the medial perforant pathway. The stimulation intensity that
produced a half-maximal response was chosen for test pulse and tetanic stimulation. Slices
giving extracellular field excitatory postsynaptic potentials (fEPSPs) of at least 1 mV in
amplitude were considered for recordings. Low-frequency test pulses (at 30 s intervals)
were applied to elicit baseline responses. Once obtained, a stable baseline of approximately
20 min, the medial perforant pathway was simulated applying the LTP protocol consisting
of 2 trains, 500 ms each, 100 Hz within the train, repeated every 20s. The fEPSP was then
monitored by recordings for 40 min. Slope (between 10% and 80% of max) of the fEPSP
was analyzed and taken as a measure of synaptic strength. Values were normalized to the
mean value obtained over the last 20 min of the baseline period and expressed as a percent
of this baseline value.

To confirm that the elicited LTP was due to the immature granule cells only, as NM-
DARs containing NR2B subunits are preferentially expressed on immature granule cell
membranes [73], some slices underwent the LTP protocol in the presence of 3 µM ifenprodil,



Int. J. Mol. Sci. 2022, 23, 6866 11 of 15

an NMDAR antagonist that selectively inhibits receptors containing the NR2B subunit, in
the perfusion ACSF.

4.3. Morphological Analysis

To investigate if the voluntary running induced long-term structural modifications
in newly-generated granule cells born during the training, a morphological study of 30-
day-old GFP-positive DG cells was performed on slices from the RUN (n = 4 rats) and
CTRLs (n = 4 rats) groups. The slices, obtained as described above, were immediately
fixed in paraformaldehyde 4% in 0.1 M phosphate buffer saline (phosphate buffered saline
(PBS), pH = 7.4) and kept overnight at 4 ◦C. To enhance GFP labeling, free-floating slices
were immunohistochemically processed by incubating overnight at 4 ◦C with the anti-
GFP made in mouse primary monoclonal antibody (1:200 in PBS; Sigma) followed by the
FITC-conjugated horse anti-mouse IgG secondary antibody (1:50 in PBS; Vector, D.B.A.).

GFP-positive cell was observed and acquired using a Leica TCS-SL confocal mi-
croscope equipped with Argon and He/Ne laser sources. The reconstruction of each
GFP-labeled granule cell has been performed using NeuronStudio software, following the
dendritic arborization through the three dimensions of the slice thickness made of confocal
stacks. Morphological analysis was carried out on a subset of reconstructed cells showing
no clear dendritic cutting at the slice surface (Figure 11).
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Figure 11. Three-dimensional reconstruction of granule cells. Three-dimensional reconstruction of 30-
day-old GFP-positive granule cells performed using NeuronStudio software on confocal microscopy
stacks. It is possible to notice the blue traces of dendrites (arrow) which spread through the three
dimensions of the slice.

The images obtained were used to evaluate the total length of dendrites and the
number of primary dendrites. To evaluate dendritic arborization, the images obtained
in NeuronStudio were analyzed using NeuronJ. Sholl’s analysis was adopted to estimate
dendrite arborization and was performed by Sholl’s Analysis Plugin (https://imagej.net/
plugins/sholl-analysis, accessed on 17 June 2022) [74], using an 8-µm interval between
concentric circles. Moreover, considering that throughout the development stages the
newly-generated DG granules move from the subgranular zone (SGZ), located at the
border of the granule cell layer facing hilus, where they originate, through the granular
layer, the distance of each GFP-positive granule cell from the SGZ/hilus has been evaluated
as an index of neuronal migration.

4.4. Statistical Analysis

Data are expressed as the mean ± SEM. Statistical analyses were performed using
the commercial program GraphPad PRISM version 6.0.1 (GraphPad Software, San Diego,
California, USA) by appropriately applying linear regression analysis, multiple Student’s
t-test, one-way ANOVA with Tukey post-hoc test, and two-way ANOVA with Tukey’s
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post-hoc test. Cluster analysis was performed using Tableau analysis software version
2021.2 (TABLEAU analysis software, Seattle, Washington, USA). Tableau uses the K-means
algorithm for clustering. Starting with a cluster, the method chooses a variable whose
average value is used as a threshold to divide the data in two. The centroids of these two
parts are then used to initialize K-means to optimize the membership of the two clusters.
The significance threshold was established at p = 0.05.
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