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Semi-Automated Live Tracking of
Microglial Activation in CX3CR1GFP

Mice During Experimental
Autoimmune Encephalomyelitis
by Confocal Scanning Laser
Ophthalmoscopy
Moritz J. Frenger1, Christina Hecker1, Mustafa Sindi1, Andrea Issberner1,
Hans-Peter Hartung1,2,3, Sven G. Meuth1, Michael Dietrich1*† and Philipp Albrecht1†

1 Department of Neurology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany, 2 Brain and Mind
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Confocal scanning laser ophthalmoscopy (cSLO) is a non-invasive technique for real-time
imaging of the retina. We developed a step-by-step protocol for the semi-automatic
evaluation of myeloid cells in cSLO images from CX3CR1GFP mice, expressing green
fluorescent protein (GFP) under control of the endogenous CX3C chemokine receptor 1
locus. We identified cSLO parameters allowing us to distinguish animals with experimental
autoimmune encephalomyelitis (EAE) from sham-treated/naïve animals. Especially cell
count (CC) and the total microglial area (SuA) turned out to be reliable parameters.
Comparing the cSLO results with clinical parameters, we found significant correlations
between the clinical EAE score and the SuA and of the inner retinal layer thickness,
measured by optical coherence tomography, with the CC as well as the SuA. As a final
step, we performed immunohistochemistry to confirm that the GFP-expressing cells
visualized by the cSLO are Iba1 positive and validated the step-by-step protocol against
manual counting. We present a semi-automatic step-by-step protocol with a balance
between fast data evaluation and adequate accuracy, which is optimized by the option to
manually adapt the contrast threshold. This protocol may be useful for numerous research
questions on the role of microglial polarization in models of inflammatory and degenerating
CNS diseases involving the retina.

Keywords: confocal scanning laser ophthalmoscopy, microglia, CX3CR1-GFP, experimental autoimmune
encephalomyelitis, live-tracking
Abbreviations: AUC, Area under the curve; AvA, Average cell area; BAF, Blue auto fluorescence; CC, Cell count; CFA,
complete Freund’s adjuvants; CNS, Central nervous system; cSLO, confocal scanning laser ophthalmoscopy; CX3CR1, CX3C
chemokine receptor 1; EAE, Experimental autoimmune encephalomyelitis; (E)GFP, (Enhanced) green fluorescent protein;
IBA1, Ionized calcium-binding adaptor molecule 1; IRL, Inner retinal layers; MCB, Maximal cell brightness; MOG, Myelin
oligodendrocyte glycoprotein; MS, Multiple sclerosis; MVI, Average cell brightness; OMR, Optomotor response; PTX,
Pertussis toxin; SuA, Total microglial area; TRT, Total retinal thickness.
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INTRODUCTION

The chemokine receptor and chemokine ligand axis mediates
chemotaxis of immune cells. These mechanisms apply to
immune but also non-immune cells throughout the whole
body, but the exact expression pattern is cell type specific for
the particular organ (1). In the central nervous system (CNS), the
CX3C chemokine receptor 1 (CX3CR1) is mainly expressed on
the developmentally yolk sac-derived microglial cells or, in
pathological conditions, on infiltrating monocytes and
macrophages, whereas chemokine ligands are predominantly
expressed on neurons (2, 3). The higher the concentration of
C-X3-C motif chemokine ligand 1 on cells, the more pronounced
the chemotaxis of CX3CR1-bearing myeloid cells (4, 5). The
importance of microglial polarization as an aspect in the
pathogenesis of CNS diseases has increasingly moved in
the focus of interest and has been studied specifically in ex-
vivo models (6). Several preclinical studies have demonstrated
that targeting the infiltrating monocyte-derived cells during the
acute phase substantially reduces the severity of experimental
autoimmune encephalomyelitis (EAE) (7–9), an animal model of
multiple sclerosis (MS), while both detrimental (10) and
beneficial (3) effects have been attributed to the resident
microglia. In the remission phase, microglia may play an
important role in regulating immune functions and restoring
function by facilitating repair and remyelination, ultimately
preventing chronic neurodegeneration. At the same time,
chronic microgl ia l act ivat ion may very wel l dr ive
demyelination and neuroaxonal loss during progressive phases
(11). Transcriptome analyses of single microglial cells from
different regions of the CNS from demyelination models in
mice have led to the identification of specific microglial
clusters that appear to be associated with certain CNS diseases.
Furthermore, it was possible to extract microglial clusters from
human tissue of MS patients that display similarities with the
clusters of the demyelinating mouse models (12). Overall,
microglial activity, with its reactive oxygen species-mediated
phagocytosis, but also with its cytokine- and chemokine-
modulating function presents itself as a crucial aspect of the
MS pathogenesis. It has been associated with blood-brain barrier
permeability, dysregulated T-cell activation and modulating
effects on B-cells (13–19). Using non-invasive, in vivo confocal
scanning laser ophthalmoscopy (cSLO), microglial activation can
also be assessed in the retina of CX3CR1GFP mice in the context
of EAE (20).

We therefore aimed to develop a protocol to facilitate the
investigation of the dynamics of microglial activation in the
myelin oligodendrocyte glycoprotein, fragment 35-55
(MOG35-55) EAE model, using cSLO as a non-invasive tool for
live cell tracking in CX3CR1GFP mice (21, 22). The specific aims
of the study were to I.) further characterize the macroscopic
dynamics of microglial activity in EAE; II.) develop a semi-
automated method for in vivo tracking and III.) correlate the
cSLO-based parameters with one another and against other
readouts, such as the retinal thickness measured by optical
coherence tomography (OCT) and histology.
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We developed a detailed instruction to simplify and
standardize the tracking of myeloid cell changes in vivo.
MATERIAL AND METHODS

Mouse Strain and Animal Housing
All experiments were performed in 6-week-old female and male
heterozygous mice of strain B6.129P2(Cg)-Cx3cr1tm1Litt/J (The
Jackson Laboratory, Stock No: 005582), hereafter referred to as
CX3CR1GFP. Mice were bred in-house under standard
conditions in temperature-controlled rooms under a 12/12
light/dark schedule, with lights on at 06:00 h until 18:00 h. In
this strain, an enhanced green fluorescent protein (EGFP)
sequence replaces the first 390 base pairs of the second
CX3CR1 exon, which encodes the N-terminus of the seven G-
coupled transmembrane receptors of the family (1, 4). Animal
experiments were performed in compliance with the
experimental guidelines approved by the regional authorities
(State Agency for Nature, Environment and Consumer
Protection; AZ 84-02.04.2014.A059, AZ 84-02.04.2016A137,
AZ 81-02.04.2019.A063) and conform to the European
directive 2010/63/EU on the protection of animals used for
scientific purposes.

Experimental Groups and EAE
Immunization
The animals were divided in three experimental groups. In the
first experimental group, we induced EAE by subcutaneous
injection of 200 µg of myelin oligodendrocyte glycoprotein,
fragment 35-55 (MOG35-55, Biotrend) emulsified in complete
Freund’s adjuvant (CFA) in CX3CR1GFPmice as previously
described (23). Two intraperitoneal injections of 200 ng of
pertussis toxin (PTX, Sigma-Aldrich) followed on the same day
and two days after immunization. For the second group,
CX3CR1GFP mice only received CFA and PTX serving as
control group, hereafter called Sham-treated. The third group
consisted of untreated CX3CR1GFP mice (naïve group). To rate
the EAE severity of the mice, we determined the clinical EAE
score daily using the following criteria: (0) no disease; (0.5) mild
tail paresis; (1) obvious tail paresis or plegia; (1.5) tail plegia and
no righting reflex; (2) mild signs of hind limb paresis with clumsy
gait; (2.5) obvious signs of hind limb paresis; (3) hind limb plegia,
mouse drags one leg behind; (3.5) hind limb plegia, mouse drags
both legs behind; (4) mild signs of quadriparesis; (4.5)
quadriplegia; and (5) death or moribund (23, 24).

Optical Coherence Tomography and
Confocal Scanning Laser
Ophthalmoscopy Acquisition
For in vivo imaging, we anesthetized the mice with isoflurane
(Piramal critical care, Mumbai, India; 3% at 2L 02/min) using a
vaporizer. We then wrapped the anesthetized animal in paper
tissue to protect it from cooling and positioned it on the custom-
made device. Eye drops with phenylephrine (2.5%)-tropicamide
(0.5%) were administered to dilate the mouse pupils and were
October 2021 | Volume 12 | Article 761776
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replaced after approximately one minute by Visc-Ophtal eye gel
(Dr. Winzer, Berlin, Germany) to prevent corneal desiccation.
Finally, we applied a custom-made contact lens (+4 diopters) to
the eye before OCT and cSLO measurement for better image
resolution as previously described (24–26).

OCT methodology is reported according to the updated
APOSTEL recommendations (27, 28). Like in previous OCT
studies (23, 24, 29, 30), we performed volume scans (25 x 25°) to
determine retinal layer thicknesses using a Spectralis™

HRA+OCT device (Heidelberg Engineering, Germany) under
ambient light conditions and excluded images with a quality
below 20 decibels. We determined the thickness of the total
retinal layer thickness (TRT) and of the inner retinal layer (IRL),
which is composed of the retinal nerve fiber layer (RNFL),
ganglion cell layer (GCL), and inner plexiform layer (IPL),
using the automatic segmentation of the Heidelberg Eye
Explorer™ software (version 1.9.10.0). Segmentation errors
were corrected by a blinded examiner. Previous studies have
demonstrated the usefulness of combining the three layers into
the IRL (25, 30).

The Spectralis™ HRA+OCT device (Heidelberg Engineering,
Germany) includes the option for cSLO (31–33), and
measurement of the CX3CR-1GFP mice was performed as
described above following the OCT imaging. The HRA+OCT
device was set to blue autofluorescence (BAF) mode (l = 488 nm,
barrier filter to capture fundus emissions above l= 500 nm) (34),
manually maximizing the image saturation while the reflected
light image of the retina was averaged from 30 real-time reflected
light images.

Image Analysis and Semi-Automatic
Step-By-Step Protocol
We developed a step-by-step instruction on how to semi-
automatically analyze microglial dynamics in vivo using the
open source Java image processing software ImageJ (version:
1.53g; provided in the public domain at https://imagej.nih.gov/ij/
index.html by the National Institutes of Health, Bethesda,
Maryland, USA). This two-part step-by-step instruction
Frontiers in Immunology | www.frontiersin.org 3
enables the transition of a mouse retina cSLO image
(Figure 1A) into quantifiable parameters by ImageJ.

In the first step, we created a mask from the original image by
increasing the contrast using ImageJ, which delineated the GFP
expressing microglia cells from the darker background of the
mouse retina. This was achieved by harmonizing the background
using the ImageJ command “Substract Backround” setting the
“rolling ball radius” to 500 pixels and then filtered the resulting
image via a Fast Fourier Transform (ImageJ command: “FFT
bandpass filter”), setting the limits for large structures at 30 pixels
and for small structures at 3 pixels. We then manually adjusted
the threshold (ImageJ command: “Threshold”) to delineate the
microglial cells from the background (Figure 1B). As this is a
step-wise process, the procedure requires an evaluator who is
blinded for the experimental groups, especially to determine the
separation threshold for microglia and the background.
The threshold then serves as a verifiable criterion for the
transformation of the qualitative picture into quantitative data.

In the second step, the mask obtained in step 1 is
superimposed on the original image and the parameters area,
maximum and minimum brightness, diameter of the area
separated by the template and its Feret diameter can be
obtained from the original image, using the mask (Figure 1C).
A detailed step-by-step description with the standardized
threshold values can be found in the Supplementary Data.

Immunohistochemical Staining of Retinal
Cross-Sections
In addition to the GFP signal from CX3CR1GFP retinae,
immunohistochemical Iba1 (ionized calcium binding adapter
molecule 1) staining of retinal sections was used for
histological detection of myeloid cells. After the mice were
sacrificed, we confirmed that the GFP signal indeed indicates
activated myeloid cells by additional Iba1 staining. A detailed
protocol can be found in the Supplementary Material. In brief,
the eyes were dissected from 6 representative animals per group
12 weeks after immunization and processed as previously
described (35). After paraffin embedding, eyes were
FIGURE 1 | Step-by-step protocol for image analysis via ImageJ. Original image of a MOG-immunized mouse after 6 weeks (A), semi-automatic generation of a
mask for the corresponding image by enhancing the light-dark contrast and establishing a threshold of the coloration (B). Color coded mapping of the mask to the
original image to obtain quantitative values within the yellow colored areas (C), numbered in the ImageJ application by structures here recognizable as black dots).
The size of the cells, as well as different brightness parameters are considered by the step-by-step protocol to create the mask.
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longitudinally sectioned at 5 µm and stained with Iba1 (1:500,
Wako chemicals) and Cy5 anti-rabbit (1:500, Millipore) as
secondary antibody. 40 retinal sections per mouse were analyzed.

Statistical Analysis
Statistical analysis was performed using Prism 5.0 (Graphpad,
San Diego, USA) and SPSS Statistics 20 (IBM, Endicott, USA).
P-values were considered significant with p<0.025 resulting from
a Bonferroni correction for multiple testing.

Linear Regression (Prism) was used to analyze the following
correlations: I.) The correlation between manual and automated
counting of cells by ImageJ, II.) the correlation between Iba1
histology and cSLO data at 12 weeks, III.) the correlation
between the cSLO parameters total microglial area (SuA) and
cell count (CC) and the clinical score, and IV.) the correlation
between cSLO parameters [SuA, CC, Average cell brightness
(MVI), Maximal cell brightness (MCB), Average cell area (AvA)]
and the retinal thickness parameters (TRT, IRL) measured
by OCT.

The area under the curve (AUC) was applied to assess the
predictive power of the individual cSLO parameters (SuA, CC,
MVI, MCB, AvA) with regard to the presence and severity of an
active EAE. Each cSLO parameter was subsequently transformed
into a Z-score, allowing the combination of individual
parameters into a composite score from multiple parameters.

Differences of the cSLO and OCT parameters between means
of the EAE, sham and naïve groups were analyzed using
generalized estimating equations (GEE) with an exchangeable
correlation matrix, considering the specification of the mouse eye
(right or left) as a within-subject variable. The number of weeks
after immunization was included as an additional within-subject
variable when analyzing the association between OCT and
cSLO parameters.

The differences between the microglial cell counts of the three
treatment groups in Iba1 histology at the 12-week time point
were investigated by one-factor ANOVA, followed by
Bonferroni correction.
RESULTS

The cSLO Parameters Separate EAE and
Sham-Treated Animals
To establish a quantitative image analysis using the ImageJ step-
by-step protocol described above, we evaluated 130 cSLO-
CX3CR1GFP retinal images manually determining the cell
number for each image by a blinded investigator (gold
standard) and by a second investigator using the new step-by-
step protocol. A Pearson correlation of the cell counts obtained
by both approaches revealed an excellent correlation coefficient
of R2 0.997 (p<0.001, Figure 2A), with results ranging from 22 to
660 cells across all images.

We then analyzed the cSLO images of the EAE (n = 34), sham
(n = 21), and naïve (n = 20) CX3CR-1GFP mice to capture the
cSLO parameters at weeks 0, 1, 2, 4, 6, 8 and 12
after immunization.
Frontiers in Immunology | www.frontiersin.org 4
The most profound changes for these measurements were
observed in weeks 4, 6, and 8, the peak of each cSLO parameter
was reached in week 6 (Figures 2B–F). While the parameter
values did not differ significantly between the three treatment
groups at the beginning and at the end of the observational
period, significant differences were observed in weeks 4 to 8,
especially for the CC and SuA. EAE mice showed the highest
total values, while sham-treated and naïve animals presented
similar results with a significant difference to EAE mice
(p<0.025) (Figures 2D, E). The brightness parameters MVI
and MCB did not reveal a significant difference between the
experimental groups with the exception of the baseline
measurements of the sham-treated compared to the MOG35-55

immunized mice (Figures 2B, C). The AvA reflected the results
of the CC and SuA, however, without reaching significant levels
for naïve/sham-treated mice compared to EAE mice for the
different timepoints (Figure 2F).

While the IRL thickness and TRT of sham-treated and naïve
mice remained almost constant, the retinal thickness of EAE
mice slightly decreased initially, followed by retinal swelling at
week 2 and then continuously progressing degeneration over the
course of the experiment. The thickness change of the EAE
animals differed significantly compared to the baseline
measurement and differed significantly (p<0.025) compared to
the two other groups from week 4 onwards. (Figures 2G, H).

Starting at week 2, EAE mice presented progressive EAE
disability scores, reaching a peak at week 6, and a slow recovery
with a rather chronic progression until the end of the
experiment. Sham-treated and naïve mice did not develop a
clinical score throughout the experiment, while the MOG-
immunized group presented significantly higher clinical EAE
scores (p<0.025; Figure 2I).

The Cell Count and the Sum of Area
Reflect Microglial Activation
Since microglial activation has been associated with retinal
degeneration in inflammatory CNS disorders (11, 36) we
addressed the question to what extent the cSLO parameters CC
and SuA can differentiate MOG- from sham-treated or naïve
mice. For this purpose, we calculated receiver operating
characteristics (ROCs) of the test variables CC and SuA for the
variable MOG immunization (Figures 3A, B). Based on the
AUC for each week the CC (AUC week (W) 4: 77.85%, W6:
85.95%, W8: 73.05%, W12: 75.85% - for all values p< 0.025)
proved to be slightly better suited to separate the groups than the
SuA (AUC W4: 77.8%, W6: 79.2%, W8: 68.45%, W12: 64.5% -
for all values p<0.025). However, the combination of both
parameters to a composite score resulted in an increase of the
diagnostic discriminatory power compared to each of the criteria
alone (AUCW6: 88.2% >W4: 81.4% >W8: 77.0% >W12: 75.0%
- for all values p<0.025), explaining 88.2% (W6) of all cases in the
best case and 75% (W12) in the worst case (Figure 3C). In
summary, depending on the requirements for sensitivity or
specificity, a cut-off of 0.6547 for week 6 (sensitivity 77.6%,
specificity 81.9%, see also Table S2) can be determined using the
composite score combining the CC and SuA, which allows the
October 2021 | Volume 12 | Article 761776
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separation of EAE immunization against sham-treated/naïve
mice based on a retinal fundus image with fluorescence-labeled
cells. For week 8 and 12 we determined a cut-off value of 0.439
(week 8, sensitivity 71.6%, specificity 69.5%) and 0.5704 (week
Frontiers in Immunology | www.frontiersin.org 5
12, sensitivity 72.3%, specificity 67.1%) respectively in order to
achieve a balanced ratio of sensitivity and specificity. By
modifying the cut-off values, the ratio of sensitivity and
specificity can be adapted, depending on the requirements of
A B C

FIGURE 3 | Receiver operating characteristic curves for the different cSLO parameters. ROC for CC (A), for SuA (B) and for the composite score combined from
the two parameters (C), 6 weeks after immunization; n = 75, p < 0,025, with Bonferroni correction. The composite score (C) achieves a higher diagnostic
discrimination, as shown by the larger area under the curve (AUC) indicating higher sensitivity and specificity.
A B

D E F

G
I

H

C

FIGURE 2 | Validation of the step-by-step semi-automated ImageJ protocol and results of cSLO, OCT, and EAE clinical score parameters within the EAE, sham-
treated, and naïve groups over 12 weeks. Correlation between cell count (CC) determined by retinal images from a blinded examiner and from the ImageJ step-by-
step protocol (A); n = 130, R2 = 0.997, p < 0.0001. Confocal-SLO parameters mean value intensity MVI (B), maximum cell brightness MCB (C), cell count CC (D),
sum of area SuA (E) and average cell area AvA (F). OCT parameters change of total retinal thickness TRT (G) and inner retinal layer thickness IRL (H). EAE clinical
score (I); (B–I) represent the pooled mean ± SEM; n = 75 (EAE n = 34, sham-treated n = 21, naïve n = 20); *p < 0.025 for EAE vs naïve, # p < 0.025 for EAE vs
sham-treated and ¥ p < 0.025 for sham-treated vs naïve by GEE with Bonferroni correction.
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the individual researchers (see Tables S2, S4, S6 for cut-off
values with corresponding sensitivities and specificities in the
Supplementary Material).

Retinal Degeneration Correlates With
cSLO Readouts
We then investigated the correlations between the cSLO
parameters and the clinical score as well as the OCT readouts.
For both correlations, only the cSLO parameters SuA and CCwere
taken into account, as only these two revealed significant
differences between the treatment groups. The correlation
analysis of cSLO with the clinical score for the period of
maximum microglial activation from week 4 to 8, only revealed
a positive correlation with the clinical EAE score for the parameter
SuA (R2 between 0.2 and 0.4, p<0.025, Figures 4A–C). Only
immunized EAE mice were included, as the other groups
presented no clinical score (Figure 2I). Investigating the retinal
layer thickness measured by OCT, SuA and CC revealed
significant negative correlations over all weeks: When the CC
increased, the IRL thickness decreased (R2 = 0.1, p<0.025;
Figure 4D); when the SuA increased, the TRT also decreased
(R2 = 0.11, p<0.025; Figure 4E). In summary, the SuA correlated
positively with the clinical scoring of the mice and negatively with
the TRT, while the CC correlated negatively with the inner retinal
layer thickness (Figure 4).

The Semi-Automated Step-By-Step
Protocol Can Be Validated by
Histological Analysis
As a final confirmatory step, we validated the microglial cSLO
readouts by a histological assessment. For this purpose, retinae of
Frontiers in Immunology | www.frontiersin.org 6
18 representative mice (6 EAE, 6 sham-treated, 6 naïve mice)
were immunohistochemically stained with Iba1 12 weeks after
immunization and evaluated by a blinded observer (Figure 5A).
Differences in microglial cell number at 12 weeks were analyzed
by ANOVA. The cSLO imaging revealed significantly higher cell
numbers in the EAE group compared to the other two groups
(Figure 5B). In line with these findings, the histological
assessment revealed higher microglial cell numbers in the EAE
animals compared to the sham-treated and naïve mice, which
did not differ between each other, confirming the results of the
cSLO measurement (Figure 5C). A positive correlation between
the cell count in the cSLO image and the histological analysis was
demonstrated at 12 weeks after immunization (R2 = 0.177
p<0.025, Figure 5D).
DISCUSSION

The retina represents an easily accessible compartment of the
CNS for in vivo imaging by OCT as well as fundus imaging and
live-cell tracking by cSLO (26, 37). Longitudinally tracking the
microglial cSLO outcomes revealed a steadily increasing CC and
SuA of all experimental groups over the period of 12 weeks,
although the sham-treated and naïve mice were not MOG35-55

immunized. Of note, the CC and SuA were significantly lower in
naïve and sham mice compared to EAE animals in the period of
maximum microglial activation (4-8 weeks post immunization).
It seems reasonable to assume that the increase in microglial cell
numbers and cell area in non-immunized animals can be
explained by the maturation of the animals (38). This should
be taken into account when planning experiments focusing on
A B

D E F

C

FIGURE 4 | Correlations between cSLO and OCT parameters. Positive correlation between SuA and clinical scoring of the EAE group at 4 weeks (A) - R2 = 0.4; p < 0.025),
6 weeks (B) - R2 = 0.2; p < 0.025), and 8 weeks (C) - R2 = 0.36; p < 0.025) after immunization. Negative correlation between CC and IRL (D) - R2 = 0.1; p < 0.025) and
SuA and TRT (E) - R2 = 0.11; p < 0.025) of all weeks. Non-significant association between SuA and IRL (F) - R2 = 0.137; p > 0.025), with Bonferroni correction.
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retinal microglia dynamics in mice of this age. In addition, the
genetic background of the animal strain has to be considered
when performing experiments on brain myeloid cells, as it was
demonstrated that genetic diversity significantly alters features
and dynamics of microglia, already in baseline neuroimmune
functions (39, 40). Therefore, these results obtained in mice with
a C57BL6J background may not be transferable and will have to
be confirmed in other mouse strains.

While the cSLO measurements presented a constant increase
in almost all parameters, the time courses of the retinal thickness
change measured by OCT showed an initial thickness loss one
week after immunization in EAE mice suggesting retinal damage
by early inflammatory processes. The thickness increase at week
2 can be explained by edema linked to early microglial activation
and astrogliosis. The following decrease of the total retinal
thickness and IRL reflects the chronic neurodegeneration after
axonal demyelination and the acute inflammatory insult (30, 41).

Technically, the challenge of keeping the optic nerve head
focused and light saturation exactly identical during the
measurement and across the different time points of the mice
arose during the optimization process of the study (36). The
image evaluation using cSLO is strongly influenced by
parameters such as image illumination and the laser angle on
the retina of the examined animal, even leading to significant
differences between the baseline brightness values of the sham-
treated and EAE mice. In laboratory practice, it proved to be
Frontiers in Immunology | www.frontiersin.org 7
extremely difficult to keep these parameters exactly identical over
repeated measurement sessions spanning several weeks.
Therefore, we decided to include an adaptable threshold for
evaluation of the images. After the sub-step of contrasting the
microglia from the background, a threshold was manually set to
separate the microglial cell area from the background by means
of the mask (see Figure 1B). This approach of semi-automated
segmentation allowed the evaluator to compensate for variations
in illumination or focus. At the same time, it is a potential source
of bias. This is why it is of the utmost importance, that the
investigator is blinded for the experimental groups. The step-by-
step protocol was validated by histological retinal sections
stained with Iba1, which were manually counted and showed a
significant correlation with the results obtained by the cSLO.

Other approaches opted for a fully automated segmentation
using constant thresholds at this point of data acquisition (36, 42,
43). To delineate the microglia by a constant threshold, a fixed
algorithm is applied based on parameters such as the cell
morphology to decide whether a microglial cell is “activated”
or not (36, 43). However, inaccurate and inconsistent saturation
and focus settings can lead to artefacts in the GFP detection when
evaluating the images by a fully automatic algorithm without the
possibility of correction. The semi-automatic step-by-step
protocol presented here retains the possibility of correction by
the blinded observer, but it is more time-consuming than a fully
automatic algorithm. In order to make it more time-efficient,
A B

D
C

FIGURE 5 | Correlation of cSLO images and Iba1 histology validated cell count at 12 weeks after immunization. Iba1 stained retinal paraffin section of an EAE
mouse after 12 weeks (A) - (Confocal microscope, x63 enlargement: Iba1 stained cells marked by indicator arrows, scale bar = 25 µm). In both cSLO (B) and Iba1
staining (C), the EAE group shows the highest cell number, while sham-treated and naïve groups present nearly equal microglial cell numbers and differ significantly
from the EAE group in histology. The bar graphs are presented as mean ± SEM with *p < 0.025 for EAE vrs naïve and # p < 0.025 for EAE vrs sham-treated by one-
factor ANOVA, followed by Bonferroni correction. (C). The microglial cell count from the histological staining (n = 720) positively correlates with the cSLO images
[(D) - R2 = 0.177, p < 0.001)]; with *p < 0.025 for EAE vs naïve and # p < 0.025 for EAE vs sham-treated by GEE with Bonferroni correction.
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future research should focus on developing a software tool for
automating the microglia masking process.

The main challenges for the design of an automatic step-by-
step protocol to evaluate the cSLO-CX3CR-1GFP images also
arose from the morphological changes of microglial cells during
activation. Upon activation, the cells shift from small cell somata
with long, ramified branches to an amoeba-like structure with
short cell processes (40, 42–44). This morphology can easily be
identified in histological sections, but may be challenging to
detect in cSLO images depending on the image focus and overlay
of other microglial cells during massive infiltration in the context
of EAE (42). However, compared to histology, the cSLO-method
allows to investigate the retinal microglial activation non-
invasively and longitudinally, reducing the number of animals
required, avoiding the inter-subject variability and opening
up opportunities to react promptly to the dynamics of
an experiment.

Other researchers used cSLO to investigate the morphological
changes of microglial cells in non-inflammatory models (45).
Different and possibly fully automated algorithms may be
applicable to such models where microglial activation and
myeloid cell infiltration is less intense than it is in MOG EAE
where the huge number of microglia cells per image with
overlapping somata make the differentiation of individual
shapes extremely difficult. Therefore, in inflammatory models,
semi-automatic tracking by cSLO still requires histological
supplementation for morphological conclusions.

Optomotor response (OMR) is a method for investigating
clinical changes of the visual system which uses the optokinetic
nystagmus of the animals (24, 42). This could provide a closer
link between clinical and microglial readouts in future studies
than is achieved with the clinical score and its focus on
locomotor change.

In summary, we identified cSLO parameters, which can help
to discriminate EAE animals from sham-treated/naïve mice
based on retinal fundus images with CX3CR1-GFP
fluorescence-labeled cells. CC and SuA were increased in EAE
and revealed correlations with the retinal thickness changes
measured by OCT and with the clinical score. Our semi-
automated step-by-step protocol can be helpful for numerous
research questions and may contribute to further decipher the
role of microglial polarization in models of inflammatory and
degenerating CNS diseases involving the retina.
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