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Observing non-ergodicity due to kinetic constraints
in tilted Fermi-Hubbard chains
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Bharath Hebbe Madhusudhana1,2,3, Immanuel Bloch 1,2,3✉ & Monika Aidelsburger 1,3✉

The thermalization of isolated quantum many-body systems is deeply related to fundamental

questions of quantum information theory. While integrable or many-body localized systems

display non-ergodic behavior due to extensively many conserved quantities, recent theore-

tical studies have identified a rich variety of more exotic phenomena in between these two

extreme limits. The tilted one-dimensional Fermi-Hubbard model, which is readily accessible

in experiments with ultracold atoms, emerged as an intriguing playground to study non-

ergodic behavior in a clean disorder-free system. While non-ergodic behavior was established

theoretically in certain limiting cases, there is no complete understanding of the complex

thermalization properties of this model. In this work, we experimentally study the relaxation

of an initial charge-density wave and find a remarkably long-lived initial-state memory over a

wide range of parameters. Our observations are well reproduced by numerical simulations of

a clean system. Using analytical calculations we further provide a detailed microscopic

understanding of this behavior, which can be attributed to emergent kinetic constraints.
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Understanding the complex out-of-equilibrium dynamics
of quantum many-body systems is central to a number of
research areas ranging from statistical physics to quantum

information theory1–3. State-of-the-art experimental platforms
are now able to test novel theoretical concepts and approximate
descriptions based on experimental observations. Important
experimental results were obtained in particular with integrable4

or many-body localized (MBL)5–7 systems. Both phenomena
emerge due to the existence of extensively many conserved
quantities and have been of considerable interest, because they
break the eigenstate thermalization hypothesis, which assumes
that each individual eigenstate behaves locally like a thermal
ensemble and is believed to hold for generic ergodic systems8–10.

In between the two extreme limits of ergodic and localizing
dynamics there exists a rich variety of more complex thermalizing
behavior. Models with many-body scar states, e.g., host a van-
ishing fraction of non-thermal eigenstates embedded within an
otherwise thermal spectrum11–16. They exhibit a weak form of
ergodicity-breaking, that strongly depends on the initial state, as
has been observed with Rydberg atoms14,17,18. More recently, a
whole new class of models has been suggested, where the presence
of only few conserved quantities, in particular dipole conserva-
tion, results in non-ergodic dynamics due to an emergent frag-
mentation of the Hilbert space into exponentially many
disconnected subspaces19–22. Fragmented models offer an alter-
native view on a central open question, namely if many-body
localization can occur in translationally-invariant models without
disorder23–29.

In this work, we study non-ergodic behavior in the disorder-
free tilted one-dimensional (1D) Fermi-Hubbard model (Fig. 1a),
which lies at the interface of MBL and Hilbert-space fragmenta-
tion. In the presence of additional weak disorder or harmonic
confinement, theoretical studies have found characteristic MBL
phenomenology, known as Stark MBL30–34. This, however, does
not hold for a clean system with pure linear potential30,33. While
conventional MBL predicts localization for any typical initial
state, we do not expect this to hold for our system, where reso-
nances can occur between interaction and tilt energies (regime ①
in Fig. 1b). Intriguingly, it has been predicted, that in the limit of
large tilts, Δ≫ J, ∣U∣, non-ergodicity may still occur despite the
absence of disorder. In this regime, the large tilt energy imposes

kinetic constraints, which result in an emergent dipole
conservation19,20,22,31,33. This emergent behavior is in fact gov-
erned by a fragmented Hamiltonian resulting in non-ergodic
dynamics. Starting from an initial charge-density wave (CDW) of
singlons (singly-occupied site), we study relaxation dynamics in
the tilted 1D Fermi-Hubbard model for a large range of inter-
action strengths and moderate values of the tilt (Δ < 4J), where
none of the two mechanisms described above should apply and
where naively one may expect the system to thermalize35,36. At
short times we observe coherent dynamics due to Bloch oscilla-
tions, whose amplitude strongly depends on the Hubbard inter-
actions. Surprisingly we find that after intermediate times and
even close to resonance (regime ①), the evolution converges to a
steady-state, that persists for long evolution times up to 700
tunneling times, signaling a robust memory of the initial CDW
throughout.

Using numerical calculations we show that the observed non-
ergodicity cannot be explained by the phenomenon of Stark-
MBL, i.e., the robust memory is not due to experimental imper-
fections, such as residual harmonic confinement or disorder, and
the bipartite entanglement entropy does not exhibit the char-
acteristic behavior of MBL systems30,37 (Supplementary Fig. 5).
Hence, non-ergodicity appears to have a different origin, despite
similar experimental signatures. This raises the question about
the origin of the observed non-ergodicity. We construct effective
Hamiltonians in two distinct regimes (① and ②, Fig. 1b) by taking
the large tilt limit and find strongly-fragmented Hamiltonians in
both cases (Supplementary Note 3). While these models are only
expected to describe the dynamics at large tilt values and for
intermediate times (on the order of a few tens of tunneling times),
they allow us to identify the microscopic processes that initiate
dynamics at short times (Fig. 1b). In both regimes these are
correlated tunneling processes, which result in the formation of
doublons (doubly-occupied sites), either resonantly (regime ①) or
detuned by the Hubbard interaction energy U (regime ②).
Higher-order terms are expected to eventually drive the system
towards thermalization19. However, we are able to show that
energy penalties for the second- or higher-order tunneling pro-
cesses, which occur naturally in the model, render these dynamics
inefficient. This results in extremely slow relaxation (Supple-
mentary Note 3), which appears stable for > 104 tunneling times
in our exact diagonalization studies of small systems, in agree-
ment with our experimental observations (Supplementary Fig. 4).

In order to characterize the dynamics across the whole para-
meter regime studied experimentally, we compute the finite-time
connectivity of our initial CDW state Cϵ ¼ dimðN ϵÞ= dimðHÞ,
which is defined by the fraction of states that participate in the
time evolution up to a finite time TN ; here N ϵ denotes the
subspace in the complete Hilbert-space H, which is defined, such
that the residual overlap of the time-evolved state ψðtÞ

�� �
outside

of N ϵ is at most ϵ at any time t ≤TN (Methods). The value of ϵ is
typically chosen between 1 and 10%. The finite-time connectivity
can be understood as a measure of non-ergodicity, similar to the
more conventional return probability or other multifractality
measures38. While effective Hamiltonians can only be derived
explicitly in certain limits, the numerical construction is applic-
able in the whole parameter regime probed in this work (Fig. 1c).
We find that the finite-time connectivity vanishes in the ther-
modynamic limit for all parameters, suggesting that only a small
fraction of the states participates in the dynamics, signaling non-
ergodic behavior. Our results suggest that the emergent kinetic
constraints result in transient non-ergodic behavior across the
whole parameter range studied in this work. We further show
analytically that the relevant microscopic constraints in the
resonant ① regime give rise to Hilbert-space fragmentation in the
large tilt limit (Supplementary Note 4).

Fig. 1 Illustration of the experimental setup and the structure of the
Hilbert space. a Schematic of the tilted 1D Fermi-Hubbard model (with odd
o and even e sites) with tunneling J, on-site interaction U and spin-
dependent tilt Δ↑,Δ↓ (spin-up red, spin-down blue). b Dominant resonant
tunneling processes for different regimes. c Finite-time connectivity Cϵ (for a
cut-off ϵ= 10%) defined as the fraction of states that participate in the
dynamics up to an evolution time TN ¼ 1000τ (main text, “Methods”). The
calculation was performed for a Néel-ordered singlon CDW initial state,
using exact diagonalization (ED) with system size L= 13 and Δ↑=Δ↓≡Δ. In
the large-tilt limit, Δ/J→∞, we find emergent strongly-fragmented effective
Hamiltonians for regime ① and ② (see Supplementary Note 3 and 4).
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Results
The experimental setup consists of a degenerate Fermi gas of 50
(5) × 103 40K atoms that is prepared in an equal mixture of two
spin components "

�� � ¼ mF ¼ �7=2
�� �

and #
�� � ¼ mF ¼ �9=2

�� �
in the F= 9/2 ground-state hyperfine manifold. The atoms are
loaded into a 3D optical lattice with lattice constant ds= 266 nm
along the x direction and deep transverse lattices, with constant
d⊥= 369 nm, to isolate the 1D chains along x (“Methods”). The
central 1D chains have a length of about 290 lattice sites. The
residual coupling along the transverse directions is less than 3 ×
10−4J. The dynamics along x is described by the tilted 1D Fermi-
Hubbard model

Ĥ ¼ ∑
i;σ¼";#

�J ĉyi;σ ĉiþ1;σ þ h:c:þ Δσ in̂i;σ
� �

þ U ∑
i
n̂i;"n̂i;#;

ð1Þ

where ĉyiσ (̂ciσ) is the fermionic creation (annihilation) operator
and n̂i;σ ¼ ĉyiσ ĉiσ . The on-site interaction strength U is controlled
by a Feshbach resonance centered at 202.1 G and a magnetic field
gradient is used to create the tilt Δσ, with Δ↑≃ 0.9Δ↓. The weak
spin-dependence arises due to the different mF quantum numbers
(Supplementary Note 9 and 11). The initial state for all sub-
sequent measurements is a CDW of singlons on even sites, which
is prepared using a bichromatic optical superlattice (Supple-
mentary Note 7). The initial state can be described as an inco-
herent mixture of site-localized particles with random spin
configuration (“Methods”). The subsequent evolution is mon-
itored by extracting the spin-resolved imbalance
I σ ¼ ðNσ

e � Nσ
oÞ=Nσ ; here Nσ

eðoÞ denotes the total number of spin-
σ atoms on even (odd) sites and Nσ ¼ Nσ

e þ Nσ
o . A non-zero

steady-state imbalance signals a memory of the initial state, where
I σðt ¼ 0Þ ¼ 1.

In a first set of measurements we study the effect of interac-
tions on the coherent short-time dynamics. In a tilted lattice an
initially localized particle exhibits Bloch oscillations39, with a
characteristic period Tσ= h/Δσ, set by the spin-dependent tilt. In
the presence of interactions, Bloch oscillations persist, showing a
rich variety of dynamics, such as interaction-induced dephasing
and amplitude modulation40–45. Here, we use the spin-resolved
imbalance to probe real-space Bloch oscillations in a parity-
projected manner. In the non-interacting limit the time-
dependence can be computed analytically:

I σðtÞ ¼ J 0
8J
Δσ

sin
πΔσ t
h

� �� �
; ð2Þ

which enables a precise calibration of the model parameters Δσ

and J (Fig. 2a) at short times. Here, J 0 denotes the 0th-order
Bessel function of the first kind. The dephasing of the oscillations
is caused by a residual harmonic confinement that results in a
weak local variation δTσ of the Bloch oscillation period Tσ
between adjacent sites. An upper bound for the trap frequency
ωh/(2π)= 39 Hz was extracted from independent measurements
(Supplementary Note 11) and corresponds to δTσ/Tσ≪ 10−3.
Since the imbalance dynamics for both spin components is very
similar (see Supplementary Fig. 10), we focus on one component
I#.

For weak tilt values, Δ↓= 1.2J, we find that the dynamics of the
interacting spin-mixture (U= 3J) exhibits the same dominant
frequency components as the non-interacting Bloch oscillations,
while the dephasing is strongly enhanced. This can be seen more
directly by calculating the power spectral density (PSD) of the
imbalance j~I σðνÞj2 (inset of Fig. 2a). We find three distinct peaks
in the spectrum, the Bloch frequency Δ↓ and an admixture of two
higher harmonics with the largest spectral weight in the second

harmonic at ν1= 2Δ↓/h. For U= 3J its weight is decreased by
70% compared to the non-interacting case. The higher-order
harmonics originate from the real-space evolution within one
Bloch cycle and are determined by the Bloch oscillation ampli-
tude Aσ/ds= 4J/Δσ. We anticipate frequency components at
integer multiples of Δσ, with an upper bound determined by
Aσ/ds, in agreement with our data.

Interaction effects are expected to be less relevant once the
Bloch oscillation amplitude is smaller than one site, resulting in
negligible overlap between neighboring particles for our CDW
initial state. In Fig. 2b we show the PSD of the coherent short-
time dynamics for Δ↓= 3.0J. While the largest spectral weight of
the PSD is now contained in the Bloch frequency ν2= Δ↓/h, the
reduction is still about 50% compared to the non-interacting case.
Indeed, the spectral weight is a sensitive measure of the
interaction-induced dephasing. Moreover, the on-site interactions
lift the degeneracy of the energy levels in the Wannier-Stark
spectrum, which results in additional frequency components in
the PSD. For our parameters (Fig. 2b) they occur at ≈ ν2 ± 0.5Δ↓/h
in the time-evolving block decimation (TEBD) simulations46–48,
which is consistent with our data.

The sensitivity of the coherent short-time dynamics on the
interaction strength is further highlighted by the strong
interaction-dependence of the peak power spectral density
(PPSD) j~I ðνjÞj2 of the respective dominant frequency compo-
nents νj, j= {1, 2} (Fig. 2c, d). We find a sharp decrease of the
PPSD by about 40% already for small interaction strength U=±
0.5J for Δσ= 1.2J. After reaching a global minimum at inter-
mediate interaction strength, it slowly recovers to the non-
interacting value in the limit of large interactions.

For long enough evolution times, the coherent Bloch oscilla-
tions are dephased and a finite steady-state imbalance develops in
the non-interacting limit (Fig. 3a). Note that, if the dephasing was
solely due to residual harmonic confinement, we would expect a
coherent revival of the oscillations, which is suppressed in our
experiment by additional dephasing mechanisms and ensemble
averaging. The observed finite steady-state imbalance is caused by
Wannier-Stark localization and can be computed analytically by
time averaging the short-time dynamics:

I σ ¼ lim
T!1

1
T

Z T

0
I σðtÞ dt ¼ J 2

0
4J
Δσ

� �
: ð3Þ

Excellent agreement between our data and the analytical result
provides strong evidence that the effect of the harmonic con-
finement is negligible for the late-time steady-state imbalance, in
contrast to previous fermionic transport experiments35,36. This is
further supported by the data in Fig. 3b, where the steady-state
value is probed for a larger range of tilt values, even reproducing
the non-monotonous behavior that is found for small values of
the tilt. Note, that the vanishing imbalance, as observed for Δ↓ ≈
1.5J (dashed line in Fig. 3b), does not indicate delocalization. It
results from localized Wannier-Stark orbitals with equal weight
on even and odd sites.

In the presence of weak interactions localization was predicted
to survive in the limit of small additional disorder or harmonic
confinement, signaled by a finite steady-state imbalance30,31.
Here, we find that after a small decay at intermediate times a
plateau of the imbalance develops, which persists for long evo-
lution times up to 700τ (Fig. 3a) in the strongly-interacting
regime. A comparison with ED simulations (inset Fig. 3a) in a
clean system without spin-dependent tilt and without harmonic
confinement for a Néel-ordered initial CDW (as opposed to the
random-spin initial state realized in the experiment) further
highlights that this non-ergodic behavior is not due to experi-
mental imperfections at least for the experimentally relevant
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observation times (see Supplementary Fig. 5 for a systematic
finite-size scaling analysis). Moreover, this robust steady-state
value survives over a wide range of parameters (Fig. 3b). As a
function of the tilt it qualitatively follows the behavior of the non-
interacting system, but shows consistently lower steady-state
values.

The persistence of non-ergodicity down to very small values of
the tilt is surprising at first sight. One may expect that for large
Bloch-oscillation amplitudes the interactions between particles
result in a dephasing of the coherent dynamics that give rise to
Wannier-Stark localization in the non-interacting limit and hence
cause ergodic behavior35,36,40–43. We study the plateau value for
Δ↓= 1.1J and find that it is largely independent of interactions
(Fig. 3c). In a numerical analysis of this regime for a Néel-ordered
singlon CDW we indeed find that the imbalance decays to zero
for evolution times on the order of 104 τ (Supplementary Fig. 5),

which further agrees with the finite imbalance measured at ~ 200
τ. The observed inversion of the spin-resolved imbalance I# < I"

after long evolution times (although Δ↓ > Δ↑) is explained by the
non-monotonic dependence of the stationary imbalance on the
tilt for Δσ < 2J as shown in Fig. 3b.

For intermediate values of the tilt Δ/J≃ 3 on the other hand, we
find a surprisingly robust steady-state imbalance, in agreement
with numerical calculations, with a clear interaction dependence
(Fig. 3d). The behavior is similar for both spin components and
well reproduced by numerical simulations. The deviation between
experiment and numerical simulations at larger interaction
strengths is most likely due to the finite coupling between 1D
chains, which plays a larger role for increased interactions49. The
steady-state imbalance is symmetric around U= 0 due to a
dynamical symmetry [for (Δ↓− Δ↑)≪ J] between attractive and
repulsive interactions (Supplementary Note 2), similar to the

Fig. 2 Short-time interacting Bloch oscillations. a Imbalance I# for U= 0J (spin-polarized gas, light blue) and U= 3J (spin-resolved measurement, dark
blue) with J/h= 0.88(2) kHz and Δ↓= 1.22(1)J. Inset: Power spectral density (PSD) j~I ðνÞj2 of the time traces shown in the main panel, normalized to the
maximum of the non-interacting spectrum; ν1= 2Δ↓/h indicates the dominant frequency component. b PSD j~I ðνÞj2 for U= 3J (spin-resolved
measurement, dark blue), normalized to the maximum of the non-interacting spectrum; J/h= 0.54(1) kHz and Δ↓= 2.96(3)J. The data were obtained from
time-traces as in (a). Inset: PSD as in the main panel and for U= 0J (spin-polarized gas, light blue). ν2=Δ↓/h indicates the dominant frequency.
c, d Interaction scan of the peak power spectral density j~I ðνjÞj2 evaluated by summing the PSD in a window of ±3 data points around the dominant
frequency νj, j= {1, 2} at c Δ↓= 1.22(1)J and d Δ↓= 2.96(3)J obtained from traces as in (a). Each data point in (a, b) consists of four independent
measurements and the error bars denote the standard error of the mean (SEM). Solid lines in all panels are numerical simulations using TEBD (“Methods”).

Fig. 3 Long-time dynamics. a Imbalance time traces at Δ↓= 3.30(3)J and J/h= 0.54(1)kHz for U= 0J (spin-polarized, light blue) and U= 5J (spin-
resolved measurement, dark blue). The shaded trace is an ED calculation for L= 16 (“Methods”). Each data point is averaged over 12 individual
experimental realizations. Inset: ED calculation for L= 16 in a clean system with Δ↓=Δ↑= 3J, ωh= 0 and U= 5J using a Néel-ordered initial CDW. The
dashed lines show the analytic prediction for the non-interacting steady-state imbalance [Eq. (3)]. b Steady-state imbalance versus Δ↓ measured at U= 0J
(spin-polarized, light blue) and U= 5J (spin-resolved measurement, dark blue). Each data point is averaged over ten equally spaced times in a time window
between 70τ and 100τ (U= 0J) and 340τ and 370τ (U= 5J). The solid line shows the analytic prediction for I# [Eq. (3)] and the dashed line indicates the
first root of the Bessel function at Δ↓≈ 1.5J. c Spin-resolved steady-state imbalance versus interaction strength at Δ↓= 1.10(1)J. Each point is averaged over
ten time steps equally spaced between 170τ and 200τ. d Spin-resolved steady-state imbalance versus interaction strength as in (c) for Δ↓= 3.30(3)J. The
shaded trace is an ED simulation, which is averaged over the same time steps as in (c) and where the width indicates the 1σ standard deviation.
e Resonances extracted from interaction scans for U > 0 as in (d) for different tilt values (Supplementary Note 12). The color plot shows ED calculations for
the same parameters as in the experiment, but with ωh= 0, for L= 13 sites. The dashed line indicates the analytic prediction for the resonance
Ures ’ 2Δ# � 8J2=ð3Δ#Þ. The gray shaded area in (b),(c) indicates our calibrated detection resolution. In all panels error bars denote the SEM.
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homogeneous Fermi-Hubbard model50,51. The curve displays a
global minimum for intermediate interactions, which we identify
with resonant processes at ∣U∣ ≃ 2Δ, where two singlons separated
by two lattice sites form a doublon. This coincides with regime ①
in Fig. 1c, where the largest connectivities were found. The precise
value of the resonance is slightly shifted, U res ’ 2Δ� 8J2=ð3ΔÞ,
due to perturbative corrections for finite J/Δ, in agreement with
our data (dashed line in Fig. 3e). For large interactions and weak
spin-dependence (Δ↓− Δ↑)≪ J, we expect the system to recover
the non-interacting regime (Supplementary Note 3).

In order to gain additional insights into the observed non-ergodic
behavior, we study the properties of our model perturbatively in the
large tilt limit for the two distinct regimes ① and ② (Fig. 1c). In
regime ②, Δ≫ J, ∣U∣, an effective Hamiltonian can be derived in
powers of λ= J/Δ. As predicted19,20,22,31,33, we find an emergent
dipole-conserving Hamiltonian Ĥ

dip
eff [Supplementary Eq. (9)] up to

third order in λ (Supplementary Note 3), where the dipole-moment
operator is defined as ∑i;σ in̂i;σ . The dominant off-diagonal terms of

Ĥ
dip
eff are of similar nature as those in the fragmented Hamiltonians

studied previously19,20, seemingly consistent with the observed non-
ergodic behavior. Yet, higher-order processes Oðλ4Þ, relevant for
Δ≃ 3J, are expected to melt the CDW within the experimentally
studied timescales19. These higher-order processes as well as the
dominant off-diagonal contribution, however, require the produc-
tion of doublons, which is penalized by the on-site interaction U. We
numerically show that this leads to a significant slowdown of the
dynamics (Supplementary Note 5), which explains the robustness of
the steady-state value observed in the experiment. Thus, for large
values of the tilt, the doublon number is effectively conserved as well,
as suggested in Ref. 31.

On resonance, ∣U∣ ≃ 2Δ (regime ① in Fig. 1c), doublons can be
formed without energy penalties, possibly leading to faster
dynamics. Indeed, after an initial faster dynamics, we find a lower
steady-state imbalance, which cannot be solely explained by the
second-order resonant tunneling process shown in Fig. 1c,
because it leaves the imbalance invariant. In this regime, we
derive an effective Hamiltonian Ĥ

res
eff [Supplementary Eq. (19)] up

to second order in λ (the third order vanishes), conserving the
dipole moment, the doublon number or the sum of the two
(∑i;σ in̂i;σ þ 2∑in̂i;"n̂i;#). The corresponding symmetry sector
exhibits strong fragmentation and results in a finite steady-state
imbalance (Supplementary Note 4). In Fig. 4c we show the
dominant second-order tunneling terms for our initial state,
illustrating the importance of doublon-assisted tunneling pro-
cesses for the reduction of the steady-state imbalance. For finite λ
or longer evolution times, higher-order hopping processes Oðλ4Þ
enable additional dynamics. These processes are expected to
eventually melt the CDW completely, although the required
timescales may be very large. In the experiment, we find robust
steady-state values even for rather low values of the tilt (Δ≃ 3J)
up to evolution times of about 700τ (Fig. 3a).

In order to connect the large-tilt limit described by Ĥ
res
eff to the

experimental parameter regime, we investigate the states within
the explored subspace N ϵ, which we denote numerical fragment
in analogy to the phenomenon of Hilbert-space fragmentation.
For simplicity, we study a clean system (ωh= 0, Δ↑= Δ↓≡ Δ) and
a Néel-ordered CDW initial state. In Fig. 4a, we show the density
of states in the Hilbert space H and compare it to the density of
states in the numerical fragment N ϵ for different values of the
cut-off ϵ. Centered around the energy of the initial state, the
density of states acquires a finite width within the numerical
fragments, that is approximately set by the many-body band-
width ± 2JN (dashed line in Fig. 4a), where N=N↑+N↓ denotes
the total number of atoms. In stark contrast to thermal systems,
the low finite-time connectivity indicates that only a small

number of states is relevant for the dynamics. Moreover, it van-
ishes exponentially in the thermodynamic limit for finite evolu-
tion times up to 1000 τ (Fig. 4b). Since the perturbative
Hamiltonian Ĥ

res
eff is only valid in the limit of large tilts, the

intersection between the numerically constructed fragment and
the analytical one Kres (“Methods”), which was derived using the
perturbative Hamiltonian Ĥ

res
eff up to third order in λ= J/Δ, is

small for our experimental parameters Δ= 3J and U= 5J
(Fig. 4c). We expect, however, that the two subsectors coincide
for λ→ 0. Indeed the normalized intersection saturates to one,
although only for Δ/J≫ 20. For this comparison the cut-off value
ϵðKresÞ is chosen such that dim ðN ϵðKresÞÞ ¼ dim ðKresÞ, since
generally, N ϵ contains a much larger number of states. Despite
the large value of λ realized in the experiment, we find strong
evidence that the slow dynamics is due to kinetic constraints and
that the energetically allowed microscopic processes give rise to
the phenomenon of Hilbert-space fragmentation in the large tilt
limit, as demonstrated for the two regimes (① and ②). This is
further supported by the resonance feature that is shown in the
inset of Fig. 4c for the resonant regime ①.

Discussion
In conclusion, we have demonstrated both experimentally and
numerically non-ergodic behavior in the tilted 1D Fermi-Hubbard
model over a wide range of parameters and have provided a
microscopic understanding based on perturbative analytical cal-
culations. For future studies it would be interesting to study the
limit of large tilts, where strongly-fragmented effective Hamilto-
nians were identified and to investigate the initial-state depen-

Fig. 4 Theoretical analysis of the relevant many-body states for ωh= 0,
Δ↑=Δ↓≡Δ and a Néel-ordered initial state. a Density of states in the full
Hilbert space H restricted to quarter filling and zero magnetization for the
numerical fragments N 1 (ϵ= 1%), N 10 (ϵ= 10%), U= 5J, Δ= 3J and
TN ¼ 1000τ, normalized to the maximum in H; L= 15. b Scaling of the
finite-time connectivity Cϵ with system size for a time window
TN ¼ 1000τ, U= 5J and Δ= 3J. Solid lines are exponential fits to the data.
Dashed lines are the prediction for the finite-time connectivity of a thermal
state, showing a constant scaling at 1− ϵ. c Normalized intersection for
U= Ures between the Krylov subspace Kres and the numerical fragment
N ϵðKresÞ (Methods), where dim ðN ϵðKresÞÞ ¼ dim ðKresÞ (main text). The
schematic shows the most important processes, connecting the states
within the Krylov subspace Kres (Supplementary Note 4). Inset: Normalized
intersection as in the main plot for Δ= 3J. The dashed line illustrates the
resonance condition in regime ①.
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dence of the transient dynamics. This is a characteristic feature of
Hilbert-space fragmentation, where distinct thermalization prop-
erties are expected for different fragments19,20,22. Although
experimentally challenging due to finite evolution times, it would
be interesting to reconcile the phenomenon of Stark MBL and
Hilbert-space fragmentation, by studying the impact of weak
disorder or residual harmonic confinement on the long-time
dynamics33. Adding periodic modulation as an additional ingre-
dient, other strongly-fragmented models, scarred models and time
crystals could be engineered52–54 or drive-induced localization
could be investigated55,56. By tuning the direction of the tilt in a
2D lattice, dipole- and higher-moment conserving models could
be realized20,57 enabling studies beyond the hydrodynamic
regime58. Moreover, it will be interesting to explore the connec-
tion between lattice gauge theories and the phenomenon of
Hilbert-space fragmentation21,27,29,59–61, which could be addres-
sed experimentally in a similar model62.

Methods
Experimental sequence. Our sequence begins with loading a degenerate Fermi gas
with temperature T/TF= 0.15(1), where TF is the Fermi temperature, into a three-
dimensional (3D) optical lattice. The wavelength is λl= 1064 nm along the x
direction and λ⊥= 738 nm in the transverse directions. Repulsive interactions
during loading in combination with a short, off-resonant light pulse after loading
ensure an initial state free of double occupancies (Supplementary Note 7). By
adding a short lattice with wavelength λs= λl/2 along the x direction, we generate a
CDW initial state consisting of singlons (Supplementary Note 7). Holding the gas
in this deep 3D lattice with a tilted, bichromatic superlattice along the x direction,
dephases remaining correlations between neighboring sites and suppresses any
residual dynamics, while ramping up a magnetic field gradient and adjusting the
interaction strength. The lattice depths are 18 Ers for the short lattice, 20 Erl for the
long lattice and 55 Er⊥ for the transverse lattices. The depths are given in the
respective recoil energies, Erj ¼ _2k2j =ð2mÞ, with j∈ {l, s,⊥}, kj= 2π/λj the corre-
sponding wave vector, m the mass of 40K and and ℏ= h/(2π) the reduced Planck
constant. The deep transverse lattices decouple the 1D chains aligned along x and
generate a 2D array of nearly independent 1D systems. The residual coupling along
the transverse directions is typically less then 0.03 % of the coupling J along x. The
dynamics to probe the tilted 1D Fermi-Hubbard model described by the Hamil-
tonian in Eq. (1) is initiated by suddenly switching off the long lattice and
quenching the short lattice to depths between 6 Ers and 8 Ers. Simultaneously, the
strength of the dipole trap is adjusted in order to compensate the anti-confining
harmonic potential introduced by the lattice (Supplementary Note 8). After a
variable evolution time t the on-site population is frozen by suddenly ramping up
the longitudinal lattices to 18 Ers and 20 Erl respectively. Subsequently, we extract
the spin-resolved imbalance I σ , by using a bandmapping technique63,64 in con-
junction with Stern-Gerlach resolved absorption imaging. Note, that the imbalance
is defined as a charge imbalance between even and odd lattice sites in our system
and does not probe spin imbalances. The magnetization of the systems is conserved
during the evolution and it is equal to zero at all times.

Initial state. The initial state in all experiments consists of a CDW of singlons,
where "

�� �
and #

�� �
states are randomly distributed on even lattice sites and odd

lattice sites are empty. We work with an equal mixture of both states (N↑=N↓)
such that the total magnetization is zero. The fraction of residual holes on even
lattice sites, due to imperfections in the loading sequence and due to removed
doublons is expected to be about 10%65. Excellent agreement between the data and
numerical simulations, which do not consider residual holes on even sites, indi-
cates, that the hole fraction has a negligible effect on our dynamics. The initial state
can be modelled as incoherent mixture within the zero magnetization sector with
density matrix ρ̂ ¼ 1

N ∑fσgj∑iσ i¼0 ψ0ðfσgÞ
�� �

ψ0ðfσgÞ
� ��, where each product state

ψ0ðfσgÞ
�� �

, is given by a CDW of singlons and where the sum runs over all N
possible permutations of spin configurations {σ}. The product state ψ0ðfσgÞ

�� �
is

defined as ψ0ðfσgÞ
�� � ¼ Q

i¼even2trap ĉyi"
� �ni"

ĉyi#
� �ni#

0j i, where ĉyiσ is the fermionic

creation operator, niσ∈ {0, 1}, σ∈ {↑, ↓}, ni= ni↑+ ni↓ ≤ 1 and i is the lattice-site
index along x.

Note, that in the clean translationally-invariant Fermi-Hubbard model the
initial CDW corresponds to an infinite temperature state and a finite imbalance
value is a hallmark signature of localization. In the tilted model, the spectrum is
superextensive complicating a meaningful definition of temperature. This is
overcome by transforming into the interaction picture with respect to the tilt
potential, which leaves all density observables invariant and allows us to establish
the imbalance as a good probe for ergodicity breaking (Supplementary Note 1)

Details of numerical calculations. The numerical computations that are com-
pared with the experiment in Figs. 2 and 3 of the main text were performed using
ED or TEBD. The parameters J, Δ↑ and Δ↓ used in the computations were obtained
as fit parameters from the corresponding non-interacting data. Additionally, the
effect of harmonic confinement present in the experiment was simulated by scaling

the trap frequency by a factor
ffiffiffiffiffiffi
Lexp
L

q
where Lexp ¼ 290 is the system size in the

experiment and L is the system size used in the numerical calculation. This is done
to appropriately simulate the collapse and revival dynamics in the Bloch oscilla-
tions induced by the harmonic confinement (Supplementary Note 11).

We use TEBD for short-time dynamics (Fig. 2 of the main text) and ED for
long-time dynamics (Fig. 3 of the main text). In ED, we consider the Hilbert space
as a tensor product H" �H# where Hσ is the Hilbert space of spin-σ atoms. In
order to efficiently compute the time dynamics, we decompose each time step in
the dynamics into three unitary propagators. One each corresponding to the
hopping of the two spin components and the third one corresponding to the on-
site potential and interactions. We use a Trotter-Suzuki approximation in this
decomposition (see Supplementary Note 13 for details and error analysis). In
Fig. 3a, d, we use L= 16,N↑=N↓= 4. In order to effectively model a mixed CDW
initial state, in Fig. 3a, this computation is averaged over 20 randomly chosen pure
CDW states. In Fig. 3d we use a superposition of pure CDW product states as we
are concerned only with time-averaged steady-state value. The parameters J, Δσ and
the harmonic confinement are fixed by fitting to the corresponding non-
interacting data.

In Fig. 2, we use TEBD calculations with L= 100 and bond-dimension χ= 120.
The truncation error was less than 10−2. In Fig. 2b, c, we compare the experimental
and numerical data in Fourier space. If the two data sets have different number of
samplings in the time domain, we scale the numerical data appropriately after the
fast Fourier transform.

Construction of the Krylov subspace. The Krylov subspace (corresponding to
the fragment Kres) is constructed by using the effective Hamiltonian on resonance
Ĥ

res
eff in Supplementary Eq. (19). This Hamiltonian is then interpreted as an

adjacency matrix in the Wannier basis and the Krylov subspace consists of all
states, which are connected to the Néel-ordered CDW initial state. The Krylov
subspace Kres is closed under time-evolution generated by the effective Hamil-
tonian Ĥ

res
eff . Starting from initial states within the Krylov subspace Kres and

including higher-order terms Oðλ4Þ, the dynamics is captured only approximately
(Supplementary Note 4). An improvement is obtained by further rotating the
diagonal basis in which the effective Hamiltonian becomes fragmented with the
unitary transformation obtained in powers of λ (as given by the Schrieffer-Wolff
perturbative expansion (Supplementary Note 3)). This results in a rotated Krylov
subspace.

Construction of the numerical fragment. We define the numerical fragment N ϵ
as the span of a subset Bϵ of the number basis B of H, where H is restricted to
quarter filling and zero magnetization. We define the set Bϵ via its complement,
Bϵ ¼ BnBc

ϵ , where Bc
ϵ would be ideally defined as the largest subset of B satisfying

maxt < TN ∑nc2Bc
ϵ

ncjψðtÞ� ��� ��2 < ϵ. Here TN defines a time window for the evolution

of the initial state ψðt ¼ 0Þ
�� �

. Equivalently, one could define the subset Bϵ as the

smallest one, satisfying min
t<TN

∑n2Bϵ
njψðtÞ� ��� ��2 ≥ 1� ϵ. We work with the com-

plement, because it is easier to implement numerically. This inequality condition
for the complement would ensure that the residual overlap of ψðtÞ

�� �
outside of

N ϵ at any time t ≤TN is bounded by ϵ. Constructing this Bc
ϵ , however, involves a

search in the powerset of B, which is exponential in the dimension of H. This is
intractable even for relatively small system sizes such as L= 7. It follows from the

inequality maxt < TN ∑nc ncjψðtÞ� ��� ��2 ≤∑ncmaxt < TN ncjψðtÞ� ��� ��2 that keeping the
latter sum smaller than ϵ will ensure that the former sum is also bounded by ϵ.
Moreover, the latter sum is computationally easier to handle and therefore, we
use it to define the fragment. We construct the numerical fragment N ϵ using a

Bc
ϵ , defined such that ∑ncmaxt < TN ncjψðtÞ� ��� ��2 < ϵ. The gap in the inequality

maxt < TN ∑nc ncjψðtÞ� ��� ��2 ≤∑ncmaxt < TN ncjψðtÞ� ��� ��2 loosely depends on the sum

∑n2Bmaxt < TN njψðtÞ� ��� ��2, which is in general, not normalized. Although this sum
can be as large as the dimension of H, in the examples that we study, it
remains small, i.e., < 10 for L < 20, and grows logarithmically in the dimension
of H.

Data availability
All data files are available from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
The code that supports the plots within this paper are available from the corresponding
author upon reasonable request.
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