Contents lists available at ScienceDirect

Journal of Pharmaceutical Analysis

Original Article

Analysis of pesticide residues in commercially available chenpi using a modified QuEChERS method and GC-MS/MS determination

Shuang Li^{a,b}, Peipei Yu^a, Ceng Zhou^a, Ling Tong^c, Dongxiang Li^c, Zhiguo Yu^a, Yunli Zhao^{a,*}

^a School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China

^b Baoding No.1 Central Hospital, Baoding, Hebei Province 071000, China

c State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Analysis Institute, Tasly Academy, Tianjin 300402, China

ARTICLE INFO

Article history Received 2 September 2018 Received in revised form 8 January 2019 Accepted 30 January 2019 Available online 31 January 2019

Keywords: Pesticide residues Chenpi GC-MS/MS QuEChERS

ABSTRACT

To ensure the safety of the commercially available chenpi, a convenient and fast analytical method was developed for the determination of 133 pesticide residues in chenpi using gas chromatography-tandem mass spectrometry (GC-MS/MS). In this study, different extraction solvents, redissolution solvents and adsorbents were tested according to the recovery and purification effect to obtain a modified QuEChERS method. The samples were extracted with acetonitrile. During the clean-up step, octadecyl-modified silica (C18) and graphitized carbon black (GCB) were selected, and aminopropyl (NH₂) was used instead of primary secondary amine (PSA) because of its weaker ion exchange capacity which had little effect on the recovery of ditalimfos. Samples were quantified by matrix-matched calibration with internal standards. All pesticides showed good linearity in the respective range, both with values of $r^2 > 0.99$. The average recoveries of the pesticides spiked samples ranged from 70.0% to 112.2% with the RSDs of 0.2%-14.4%. The modified QuEChERS method was validated and applied to twenty real samples. Five pesticides were found in eight batches, but no pesticide exceeded the maximum residue limits (MRL, MRL reference to European commission).

© 2019 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Pericarpium citri Reticulatae (chenpi), the dried pericarp of the fruit of Citrus reliculate Blanco or its cultivars, is used in medicine and food [1]. As a food, chenpi has the effect of strengthening the spleen. As a traditional herb, chenpi is widely used to treat indigestion and inflammatory respiratory tract conditions [2].

Pesticide residues are detected frequently in commercially available chenpi. Relevant literature shows that pesticides pollution in chenpi is serious [3]. Pesticides are very toxic to humans and research has shown that some pesticides have teratogenic, carcinogenic and mutagenic effects [4,5]. In 2016, Peng et al. [6] used gas chromatography to determine organophosphorus pesticides in chenpi and only 11 kinds of organophosphorus pesticides were determined by this method. Therefore, it is extremely important to establish a set of convenient and fast detection techniques for the determination of multiple pesticide residues in chenpi.

Sample preparation is a crucial step in all analytical methods and an appropriate clean-up method was developed for the

extraction of pesticide residues with high selectivity, and low co-extraction. The most common sample preparation methods include solid-phase extraction (SPE) [7,8], QuEChERS [9], solid-phase micro extraction (SPME) [10,11] and gel permeation chromatography (GPC) [12–14].

The QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) method was developed by Anastassiades et al. in 2003 [15] and it has become one of the most commonly used methods for the determination of pesticides. A typical QuEChERS method involves an extraction with acetonitrile (and water in dry commodities), followed by a phase partitioning assisted by salting out and further clean up by d-SPE. [16–19]. The method can be used to analyze many compounds, including highly polar pesticides and highly acidic compounds. It is suitable for the detection of samples with a low fat content and a high water content. Furthermore, the method has been applied to pesticide determination of many different matrices like vegetables, fruits and tea [20–22].

In the clean-up step, sorbent C18 and primary secondary amine (PSA) are used in most published methods, and florisil is used in some, but NH₂ is seldom used. NH₂ has a similar adsorption performance to PSA, while PSA contains two amino groups giving it a higher ion exchange capacity than NH₂. However, PSA sorbents result in the pH value of the final extract solutions being more than 8, which affects the stability of base-sensitive pesticides [23]

2095-1779/© 2019 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under the responsibility of Xi'an Jiaotong University.

^{*} Corresponding author.

E-mail address: yunli76@163.com (Y. Zhao). https://doi.org/10.1016/j.jpha.2019.01.005

and NH_2 can be used when PSA affects the determination of analytes.

In order to ensure food safety, in this study, a method was developed for multi-residue determination of pesticides in chenpi by GC-MS/MS and NH_2 sorbent was used in a modified QuEChERS method because of the pesticides influenced by PSA.

2. Experimental

2.1. Chemicals and other materials

Pesticide standards and the internal standard (IS), chlorpyrifosd10 with a purity > 98%, were provided by Dr. Ehrenstorfer (Augsburg, Germany). HPLC grade acetonitrile was obtained from Omni Chem (Schaumburg, IL, USA). HPLC grade acetone, ethyl acetate and n-hexane were obtained from Merck (Darmstadt, Germany). Anhydrous magnesium sulfate (MgSO₄) was obtained from Sigma-Aldrich (St. Louis, USA). Analytical reagent grade anhydrous sodium chloride (NaCl) was obtained from Weichen Chemical Reagent Co., Ltd (Tianjin, China). PSA, octadecyl-modified silica (C18), Florisil, graphitized carbon black (GCB) and aminopropyl (NH₂) were supplied by DIKMA Technologies (Beijing, China).

2.2. Instruments

GC-MS/MS analyses were carried out with a Shimadzu GCMS-TQ8030 (Japan). A Hitachi CF 16RN centrifuge (Japan) and an Eppendorf centrifuge 5804 (Germany) were used for the 50 mL and 10 mL centrifuge tubes, respectively, along with a BUCHI rotary evaporator (Switzerland), KQ-500DE numerical control ultrasonic cleaner (China) and Eppendorf tube (EP, China).

2.3. Preparation of pesticide standards and internal standard solutions

Individual stock standard solutions of each pesticide (1 mg/mL) were prepared by weighing pesticides and dissolving them in n-hexane. Mixed solutions of multiple pesticides ($2.5 \ \mu g/mL$) were prepared by combining appropriate volume of each stock standard solution and stored in a freezer ($-20 \ ^{\circ}C$). A suitable amount of mixed standard reserve solution was transferred into 10 mL volumetric flask, and was diluted into matrix-matched standard working solutions with concentrations of 1, 2, 5, 10, 20, 50, 100 and 200 ng/mL respectively by blank (pesticide-free) chenpi extract. The internal standard solution, chlorpyrifos-d10, was prepared at a concentration of 1 mg/mL, and then diluted to 2 μ g/mL.

2.4. Sample treatment and preparation

Each batch of chenpi was obtained from different markets in China. Pesticide residues can be easily extracted from small particle samples, so before use, all samples were ground to a powder mechanically, and passed through a no. 24 mesh sieve. (The particles retained in the sieve are not included for the analysis.)

2 g samples and 100 μ L internal standard (2 μ g/mL) were added to 50 mL polypropylene (PP) centrifuge tubes and then 10 mL acetonitrile was used for extraction. The ultrasonic extraction was carried out for 5 min and 0.8 g anhydrous MgSO₄ and 0.2 g NaCl were added. Each mixture was shaken by hand for 1 min and centrifuged at 11,180 g (rcf) for 5 min. Then, 7 mL of the upper acetonitrile layer was transferred to a 10 mL EP tube containing 200 mg C18, 200 mg NH₂, 200 mg anhydrous MgSO₄ and 30 mg GCB. The solution was subjected to vortex mixing for 1 min, and then centrifuged at 7155 g (rcf) for 5 min, and 5 mL of the upper layer was transferred to a 50 mL round-bottom flask and evaporated to near dryness on a rotary vacuum evaporator at 40 $^{\circ}$ C. The dry residue was redissolved in 2 mL acetone for analysis by GC-MS/MS.

2.5. GC-MS/MS conditions

GC separation was performed on a DB-5MS IU capillary column (30 m \times 0.25 mm \times 0.25 μ m; Agilent, America) and helium (purity \geq 99.996%) was used as a carrier gas at a constant flow of 1.5 mL/min. The inlet temperature was set at 250 °C; the mode of inlet was splitless; the injection volume was 1 μ L. The column temperature program is as follows: the initial temperature was maintained at 50 °C for 1 min, increased to 125 °C at a rate of 25 °C/min, raised to 230 °C at 4 °C/min, and then at 8 °C/min up to 310 °C, and held there for 3 min.

The mass spectrometer was operated with an electron impact (EI) source in multiple reaction monitoring (MRM) mode. The electron energy was 70 eV, and the ion and transfer line temperatures were set at 200 °C and 250 °C, respectively. In order to prevent instrument damage, the solvent delay was set at 3.5 min. Table 1 shows the optimized parameters of ion transition for 133 pesticide residues in chenpi.

3. Results and discussion

3.1. Optimization of extraction solvent

Acetonitrile, ethyl acetate and n-hexane are commonly used for extraction of multi-pesticide residues [24–27]. Fig. 1 shows the TIC chromatograms of negative samples extracted by different solvents. Those extracted with n-hexane had the lowest matrix; however, recoveries of dimethoate, metalaxyl, paraoxon, bromacil, isocarbophos, *E*-chlorfenvinfos, fipronil, triadimenol, *trans*-chlordane, *cis*-chlordane, fenthionsulfoxide, fensulfothion, fenthionsulfone, and azinphos-methyl were close to zero. When extracted with ethyl acetate, the recovery of *trans*-chlordane and pyridaben was less than 60%. Compared with n-hexane and ethyl acetate, acetonitrile had the strong dissolving capability for the analytes, meeting the recovery requirement. Therefore, in this study acetonitrile was used as the extraction solvent.

3.2. Selection of solvent for redissolution

Acetonitrile possesses many advantages for extraction, but the polarity of acetonitrile is high, which can damage the gas chromatography column. For the protection of chromatographic columns, before analysis, acetonitrile should be replaced. In this study, n-hexane and acetone were selected as solvents for redissolution. The recoveries of pesticides obtained with these two solvents are shown in Fig. 2.

Compared with that of acetone, the recoveries of some pesticides were lower when redissolved with n-hexane, and approximately 42% of pesticides were outside the range of 60%–120%. Dimethoate and *cis*-chlordane were close to zero. When dissolved with acetone, most of analytical pesticides satisfied the recovery requirement. So acetone was chosen as the solvent for redissolution.

3.3. Optimization of adsorbents

The use of co-extraction leads to an unsatisfactory peak shape, and an increased or inhibited response, which adversely affects the quantification. The adsorbents PSA, C18, Florisil, GCB and NH_2 were investigated to choose the most appropriate purification method.

 Table 1

 GC-MS/MS acquisition parameters for 133 pesticide residues in chenpi.

No.	Pesticides	Ion ratio (%)	<i>t</i> _R (min)	Quantitative transition	Quantitative transition		
				Precursor > product	CE/V	Precursor > product	CE/V
IS	Chlorpyrifos-D10	28.37	22.122	324.0 > 260.0	15	324.0 > 195.0	30
1	Dichlorvos	29.96	6.585	185.0 > 93.0	14	185.0 > 109.0	14
2	Mevinphos	25.09	9.585	127.0 > 109.1	9	192.0 > 127.0	9
3	Methacrifos	26.34	11.112	240.0 > 208.0	4	240.0 > 180.0	10
4	Bropovur	20.26	13.371	130.0 > 121.0 152.1 > 110.1	9	121.0 > 103.1 152.1 > 64.0	12
5	Ftoprophos	12.34	13.371	152.1 > 110.1 158.0 > 97.0	0 18	152.1 > 64.0 158.0 > 114.0	20 6
7	Dicrotophos	20.52	14.225	138.0 > 37.0 1271 > 109.0	10	133.0 > 114.0 1271 > 95.0	18
8	Phorate	28.61	15 591	260.0 > 75.0	8	260.0 > 231.0	18
9	α -hexachlorocyclohexane	21.02	15.640	218.9 > 182.9	8	218.9 > 144.9	20
10	Hexachlorobenzene	21.31	15.762	283.8 > 248.8	24	283.8 > 213.8	28
11	2,6-dichloro-4-nitroaniline	18.89	16.227	206.0 > 176.0	10	206.0 > 160.0	16
12	Dimethoate	29.65	16.276	125.0 > 47.0	14	125.0 > 79.0	8
13	β -hexachlorocyclohexane	29.41	16.794	218.9 > 182.9	8	218.9 > 144.9	20
14	Pentachloroanisole	30.00	16.917	265.0 > 237.0	15	280.0 > 265.0	10
15	Quintozene	22.09	16.917	294.8 > 236.8	16	294.8 > 264.8	12
16	γ -hexachlorocyclohexane	24.30	17.188	218.9 > 182.9	8	218.9 > 144.9	20
17	Fonofos	23.98	17.656	137.0 > 109.0	6	246.0 > 137.0	6
18	Pyrimethanil	23.67	18.050	198.0 > 183.0	12	198.0 > 156.1	24
19	Diazinon	23.34	18.075	304.1 > 1/9.1	10	304.1 > 162.1	8
20	o-hexachlorocyclohexane	26.83	18.542	218.9 > 182.9	10	218.9 > 144.9	20
21	Isazofos Etuino for	25.67	18.542	161.0 > 119.0	9	162.0 > 120.0	9
22	Etrimios	23.67	18.786	292.1 > 181.1	8 10	292.1 > 153.1	20
25	Tofluthrin	10.00	10.700	155.0 > 97.0 177.0 > 127.1	10	155.0 > 125.0 177.0 > 127.1	16
24	Incohenfos	24.13	19 103	177.0 > 127.1 204.0 > 91.0	8	177.0 > 137.1 204.0 > 122.0	10
25	Pirimicarh	16.69	19.105	204.0 > 51.0 238.1 > 166.1	12	204.0 > 122.0 238.1 > 72.0	24
20	Pentachloroaniline	23.80	19.128	250.1 > 100.1 265.0 > 194.0	25	250.1 > 72.0 263.0 > 192.0	25
28	Fenchlorphos-oxon	23.63	19 372	269.0 > 254.0	20	269.0 > 224.0	25
29	Dichlofenthion	26.07	19.811	279.0 > 222.9	14	279.0 > 250.9	8
30	Chlorpyrifos-methyl	27.07	20.031	285.9 > 93.0	22	285.9 > 270.9	14
31	Acetochlor	20.12	20.031	223.1 > 132.1	22	223.1 > 147.1	10
32	Vinclozolin	29.39	20.275	285.0 > 212.0	12	285.0 > 178.0	14
33	Parathion-methyl	15.15	20.299	263.0 > 109.0	14	263.0 > 136.0	8
34	Tolclofos-methyl	20.41	20.348	264.9 > 249.9	14	264.9 > 93.0	24
35	Alachlor	29.58	20.421	188.1 > 160.1	10	188.1 > 132.1	18
36	Heptachlor	7.54	20.586	271.8 > 236.9	20	271.8 > 117.0	32
37	N-desethyl-pirimiphos-methyl	28.92	20.788	277.0 > 135.0	10	277.0 > 168.0	10
38	Metalaxyl	22.46	20.788	249.2 > 190.1	8	249.2 > 146.1	22
39	Fenchlorphos	22.29	20.788	284.9 > 269.9	16	284.9 > 93.0	24
40	Paraoxon	28.72	21.028	139.0 > 109.0	10	149.0 > 102.0	25
41	Prometryn	22.61	21.028	241.2 > 199.1	15	241.2 > 58.0	14
42	Fenitachion	30.00	21.504	296.0 > 263.0	15	240.0 > 211.0	20
45 44	Piriminhos-methyl	27.21	21.552	277.0 > 200.0 305.1 > 180.1	8	277.0 > 109.1 305.1 > 290.1	14
45	Bromacil	28.20	21.570	204.9 > 187.9	14	204.9 > 162.0	14
46	Metolachlor	23.38	22.172	238.1 > 162.1	12	238.1 > 133.1	26
47	Aldrin	13.34	2.195	262.9 > 193.0	28	262.9 > 203.0	26
48	Clorpyrifos	20.16	22.338	313.9 > 257.9	14	313.9 > 285.9	8
49	Dacthal	23.42	22.481	300.9 > 222.9	26	300.9 > 272.9	14
50	Fenthion	24.47	22.505	278.0 > 109.0	20	278.0 > 125.0	20
51	Parathion	25.33	22.672	291.1 > 109.0	14	291.1 > 137.0	6
52	Isocarbophos	26.63	22.863	289.1 > 136.0	10	289.1 > 113.0	14
53	Bromophos	29.87	23.244	330.9 > 315.9	14	330.9 > 285.9	28
54	Pirimiphos ethyl	23.99	23.544	304.0 > 168.0	10	318.0 > 166.0	15
55	Cyprodinil	26.30	23.891	224.1 > 208.1	16	224.1 > 197.1	22
56	E-chlortenvinphos	29.22	23.960	323.0 > 267.0	16	323.0 > 295.0	6
5/	trans-heptachlorepoxide	24.21	24.237	352.8 > 253.0	26	352.8 > 289.0	6
28 50	FIPFOIIII 7 shlarfanuinnhas	21.44	24.237	300.9 > 212.9	30 16	300.9 > 234.9	22
59	Z-chionenvinphos Mecarbam	21.49	24.422	323.0 > 207.0 329.0 > 159.1	10	323.0 > 233.0	18
61	Quinalphos	25.62	24.504	298.0 > 156.0	5	298.0 > 190.0	10
62	Phenthoate	27.03	24.630	273.9 > 125.0	20	273.9 > 246.0	6
63	Procymidone	17.47	24.722	283.0 > 96.0	10	283.0 > 255.0	12
64	Triadimenol	9.37	24.791	168.1 > 70.0	10	168.1 > 112.1	4
		12.67	25.161				
65	Methidathion	22.20	25.161	145.0 > 85.0	8	145.0 > 58.0	14
66	Bromophos-ethyl	28.69	25.276	358.9 > 302.9	16	358.9 > 330.9	10
67	Methoprene	22.56	25.392	111.0 > 55.1	15	109.0 > 67.1	9
68	o,p'-DDE	15.41	25.415	246.0 > 176.0	30	246.0 > 211.0	22
69	Paclobutrazol	29.19	25.554	236.1 > 125.0	14	236.1 > 167.0	10
70	Trans-chlordane	19.56	25.754	374.8 > 263.9	28	372.8 > 336.8	10
71	renothiocarb KCO-3001 Panocon	7.55	25.843	160.1 > 72.0	10	160.1 > 106.1	12

Table 1 (continued)

No.	Pesticides	Ion ratio (%)	$t_{\rm R}({\rm min})$	Quantitative transition		Qualitative transition		
				Precursor > product	CE/V	Precursor > product	CE/V	
72	Ditalimfos	20.77	25.977	130.0 > 102.1	12	148.0 > 130.1	12	
73	N,N-Diethyl-2-(1-naphthyloxy)propanamide	22.18	26.266	128.0 > 72.1	6	271.0 > 128.1	6	
74	Prothiofos	25.48	26.600	309.0 > 238.9	14	309.0 > 280.9	10	
75	Cis-chlordane	27.66	26.823	374.8 > 338.8	8	372.8 > 265.9	22	
76	Profenofos	24.54	26.823	336.9 > 266.9	14	336.9 > 308.9	6	
77	Myclobutanil	21.15	27.179	179.0 > 125.0	18	179.0 > 90.1	27	
78	Carboxin	29.42	27.290	235.0 > 143.1	12	235.0 > 87.0	21	
79	Flusilazole	29.81	27.335	233.1 > 165.1	14	233.1 > 152.1	14	
80	Buprofezin	21.48	27.380	172.1 > 57.0	14	172.1 > 131.1	6	
81	p,p'-DDE	16.07	27.888	246.0 > 211.0	22	246.0 > 176.0	30	
82	Dieldrin	22.21	27.888	262.9 > 193.0	34	262.9 > 228.0	24	
83	Endrin	21.22	27.888	262.9 > 191.0	30	262.9 > 193.0	28	
84	Nitrofen	27.28	27.995	282.9 > 162.0	24	282.9 > 253.0	12	
85	Fenthionsulfoxide	20.42	28.509	279.0 > 109.0	20	294.0 > 279.0	10	
86	Fensulfothion	29.20	28.595	293.0 > 125.0	14	293.0 > 153.0	8	
87	Diniconazole	27.40	28.638	268.0 > 232.0	12	268.0 > 149.0	24	
88	Fenthion-sulfone	24.24	28,766	310.0 > 105.0	15	310.0 > 109.0	20	
89	o.p'-DDD	23.54	28.852	235.0 > 165.0	24	235.0 > 199.0	14	
90	o.p'-DDT	23.54	28,766	235.0 > 165.0	24	235.0 > 199.0	16	
91	Ethion	29 55	29 024	230.9 > 174.9	14	230.9 > 184.9	12	
92	Fensulfothion sulfone	22.99	29 324	188.0 > 109.1	18	324.0 > 109.1	18	
93	Famphur	18 34	29 902	218.0 > 109.0	16	218.0 > 79.0	24	
94	Benalaxyl	24.19	29.981	148.0 > 771	27	148.0 > 105.1	18	
95	Endosulfan sulfate	24.15	30 191	386.8 > 252.9	16	386.8 > 788.8	10	
96	Propiconazole	22.75	30 325	250.0 > 60.0	10	250.0 > 101.0	2 Q	
50	Ποριεσπαζοις	20.34	20,523	255.0 > 05.0	14	255.0 > 151.0	0	
07	n n/ DDT	29.45	30.393	225.0 > 165.0	24	225.0 > 100.0	16	
97	p,p-DDI Tehusenensis	30.00	21147	255.0 > 105.0	24	255.0 > 199.0	10	
98	IEDUCONAZOIE Din energyi hystoryida	30.00	31.14/	250.1 > 125.1	12	250.1 > 153.1	12	
99	Piperonyi butoxide	27.48	31.739	1/6.1 > 131.1	12	1/6.1 > 11/.1	20	
100	Pyridaphenthion	26.92	32.223	340.0 > 199.2	9	199.0 > 77.1	30	
101	Phosmet	25.23	32.332	160.0 > 77.0	24	160.0 > 133.0	14	
102	Bromopropylate	23.50	32.612	340.9 > 182.9	18	340.9 > 184.9	20	
103	Bifenthrin	5.87	32.736	181.1 > 166.1	12	183.1 > 153.1	8	
104	Bifenazate	26.83	32.829	300.1 > 258.1	8	300.1 > 199.1	20	
105	Methoxychlor	26.37	32.845	227.1 > 169.1	24	227.1 > 212.1	14	
106	Fenpropathrin	12.20	33.016	265.1 > 210.1	12	265.1 > 172.1	14	
107	Tebufenpyrad	24.61	33.187	333.0 > 171.1	21	318.0 > 131.2	21	
108	Tetradifon	29.03	33.455	355.9 > 228.9	12	355.9 > 159.0	18	
109	Phenothrin	24.35	33.522	183.1 > 153.1	14	183.1 > 168.1	14	
		29.11	33.736					
110	Phosalone	21.89	33.682	182.0 > 111.0	14	182.0 > 138.0	8	
111	Azinphos-methyl	21.74	33.736	160.1 > 132.1	6	160.1 > 77.0	20	
112	Mefenacet	25.43	34.069	192.0 > 136.0	12	192.0 > 109.0	27	
113	Mirex	13.20	34.216	272.0 > 237.0	15	270.0 > 235.0	5	
114	Cyhalothrin	27.81	34.510	197.0 > 141.0	8	197.0 > 161.0	22	
	5	28.81	34.900					
115	λ-Cvhalothrin	21.73	34.510	181.0 > 152.1	21	197.0 > 141.1	9	
116	Fenarimol	28.56	34.550	251.0 > 139.0	14	251.0 > 111.0	26	
117	Pyrazophos	223.60	34.710	221.1 > 193.1	12	221.1 > 149.1	14	
118	Acrinathrin	24.36	34.900	289.1 > 93.0	14	289.1 > 77.0	26	
		24 67	35 206					
119	Bitertanol	29.26	35 548	170.0 > 141.1	18	170.0 > 115.2	27	
120	Permethrin	22.20	35.713	183.1 > 168.1	14	183.1 > 165.1	14	
120	remethin	24.90	35 012	105.1 > 100.1	14	105.1 > 105.1	14	
121	Coumanhos	23.63	35 750	362.0 \ 100.0	16	362.0 < 226.0	1/	
121	Elucitazolo	25.05	25 907	302.0 > 109.0	14	240.0 > 212.0	14	
122	Puridahan	20.10	25.807	1471 > 1171	22	340.0 > 313.0	14	
123	Cufluthrip	20.10	26 556	147.1 > 117.1	6	147.1 > 152.1	14	
124	Cynutiinii	27.00	20.330	220.1 > 200.1	0	220.1 > 199.1	14	
		24.88	30.717					
		24.11	36.792					
405	D 111	23.14	36.867	2424 4404		2424 4424	20	
125	BUSCAIIO	26.41	37.004	342.1 > 140.1	14	342.1 > 112.1	28	
126	Cypermethrin	15.11	37.024	163.1 > 127.1	ь	163.1 > 109.1	22	
		17.62	37.182					
		19.05	37.252					
		11.96	37.321					
127	Quizalofop-ethyl	29.31	37.242	372.0 > 299.2	12	299.0 > 91.2	24	
128	Flucythrinate	22.11	37.281	199.1 > 157.1	10	199.1 > 107.1	22	
		21.41	37.568					
129	Ethofenprox	25.46	37.479	163.0 > 135.1	10	163.0 > 107.1	18	
130	Phenvalerate	29.21	38.261	419.1 > 225.1	6	419.1 > 125.1	26	
		29.01	38.558					
131	Tua-Fluvalinate	17.50	38.465	250.1 > 55.0	20	250.1 > 208.0	20	
		16.53	38.567				-	

(continued on next page)

Table	1 (continued	1)
-------	--------------	----

No.	Pesticides	Ion ratio (%)	<i>t</i> _R (min)	Quantitative transition		Qualitative transition	
				Precursor > product	CE/V	Precursor > product	CE/V
132	Difenoconazole	15.30 19.56	38.846 38.927	323.0 > 265.0	14	323.0 > 202.0	28
133	Deltamethrin	26.41 27.14	39.015 39.278	252.9 > 93.0	20	251.0 > 172.0	10

Fig. 1. Full scan chromatograms of negative samples extracted with (A) n-hexane, (B) ethyl acetate and (C) acetonitrile.

If the extraction solution was injected into the GC-MS/MS without adding adsorbents, there was clear interference of the matrix for the pesticides bitertanol, cypermethrin, flucythrinate, and difenoconazole.

The addition of Florisil for purification seemed to have no effect. C18 can be used for the reduction of lipids and non-polar interference. Because of the addition of C18, the matrices that interfered with the determination of pesticides, such as bitertanol, flucythrinate and difenoconazole, were removed.

PSA can adsorb fatty acids and pigments extracted from chenpi to improve the chromatographic peak shape of cypermethrin (Fig. 3). When the amount of PSA was 200 mg, the chromatographic peaks of cypermethrin isomers was free of interference from impurities. However, PSA clearly had an effect on the recovery of ditalimfos. This study compared the effect of the addition of 50, 100, 150, 200 mg PSA on the recovery of ditalimfos, and the results obtained are shown in Fig. 4. When the adsorbent amount was 50 mg, the recovery of ditalimfos was about 73.1%, while the recovery of ditalimfos decreased to 23.9% when the amount of PSA reached 200 mg. The main reason for this may be that PSA may increase the pH value of the final extract solutions to more than 8. According to the structure of ditalimfos (Fig. 5), ditalimfos is unstable and decomposes easily in an alkaline environment, so as the amount of adsorbent is increased, the recovery of ditalimfos is reduced.

Fig. 5 shows the structures of NH_2 and PSA. They had a similar adsorption, while PSA contains two amino groups, which resulted in a higher ion exchange capacity than NH_2 . Therefore, NH_2 could not only improve the chromatographic peak shape of cypermethrin, but also have small effect on ditalimfos. When the dose of NH_2 reached 200 mg, the recoveries of pesticides were all between 72.4% and 118.6%.

The solution extracted with acetonitrile contained more pigments. GCB is widely used in the adsorption of pigments. The color of the extraction solution changed with an increase in the amount of GCB. In addition, GCB is well known for adsorbing pesticides with a planar structure, leading to unsatisfactory recoveries and poor precision. This study compared the effect of the addition of 10, 20, 30 and 40 mg GCB on the recovery of pesticides, and the results obtained are shown in Fig. 6. As the amount of GCB increased, the recoveries of some pesticides, such as hexachlorobenzene with a planar structure, decreased but were still in an acceptable range. Also, the extraction was improved when 30 mg GCB was added. In summary, 30 mg GCB was used as the adsorbent.

3.4. Validation study

Under the modified QuEChERS method conditions, a validation study was carried out to evaluate the performance characteristics of the method for multiple pesticides in chenpi by estimating the linearity, limit of quantification (LOQ), accuracy (expressed by recovery), precision and matrix effects. Validation was performed following the European Union SANTE/11945/ 2015 guideline [28].

3.4.1. Linearity

The linearity for each pesticide was assessed in matrix-matched standard solution. The calibration curves of the compounds were obtained by plotting the pesticide/IS peak area ratios against the concentration of the corresponding calibration standards at eight different levels (1, 2, 5, 10, 20, 50, 100, 200 ng/mL). The linearity results are shown in Table 2. The linearity of the method for all the pesticides was satisfactory, with correlation coefficients (r^2) higher than 0.99.

3.4.2. LOQ

The LOQ for each pesticide was defined as the lowest validated spiked level satisfying the requirement of recovery ranging from 70% to 120% and a relative standard deviation (RSD) less than 20%. Samples were spiked at two different concentrations: 0.005 and 0.01 mg/kg (6 replicates per level). The LOQ values are presented in Table 2.

3.4.3. Accuracy and precision

Recovery was evaluated at three different spiked levels of 0.05, 0.1 and 0.2 mg/kg by spiking six blank samples at each level. Precision was expressed as the relative standard deviation (RSD)

Fig. 2. Recoveries of pesticides obtained using (A) n-hexane and (B) acetone for redissolution.

Fig. 3. Chromatogram of cypermethrin with (A) PSA adsorbent and (B) without adsorbent.

and was obtained from the six spiked samples at three spiking levels. Table 2 shows the recoveries and RSDs of all pesticides at all concentrations. The recovery of all the pesticides met the requirements of the pesticide residue determination.

3.4.4. Matrix effects (ME)

In this study, some pesticides, such as mevinphos, propoxur, dicrotophos and carboxine, have better chromatographic peak shapes in matrix-matched blank solutions than in pure solvent solutions because of the ME.

The ME was evaluated by the slope of the solvent calibration curve and the matrix-matched blank extract calibration curve according to the equation: ME (%) = [(slope in matrix/slope in solvent)-1] * 100 [29]. The ME results were grouped into 3 classes: a high ME (less than -50% or higher than +50%), a medium ME (between -50% and -20% or +20% and +50%) and a low ME (between +20% and -20%). Fig. 7 shows the ME of each pesticide. Among 133 pesticides, 53% showed low ME, 32% showed medium ME and 16% showed high ME. In order to avoid the ME, matrixmatched calibration standards were used for quantification to compensate for the ME.

Fig. 4. Recoveries of ditalimfos with different amounts of PSA.

Fig. 5. The structure of (A) ditalimfos, (B) PSA and (C) NH₂.

Fig. 6. Recoveries of pesticides with different amounts of GCB.

3.5. Application to real samples

Once the analytical methodology was validated, it was used for monitoring pesticides in chenpi samples. The established method was used for the simultaneous determination of the pesticides in twenty real samples and the results are summarized in Table 3. Chlorpyrifos, isocarbophos, methidathion, profenofos and fenpropathrin were found in eight batches, most of which were insecticides and fungicides. Insecticide clorpyrifos and methidathion were frequently detected pesticides, but no pesticide exceeded the maximum residue limits (MRL, the values of MRL for orange were taken as reference) prescribed by Regulation (EC) no. 396/2005 [30]. Clorpyrifos and methidathion are low toxicity pesticides, but the others are moderately or highly toxic pesticides, which are

Table 2

Validation results of the developed method for determination of multiple pesticides in chenpi.

No.	Pesticide	Linear range (ng/mL)	r^2	Recovery (%RSD)(%, $n = 6$)		LOQ (mg/kg)	ME(%)	
				0.05 mg/kg	0.1 mg/kg	0.2 mg/kg		
1	Dichlorvos	1–200	0.9992	84.0(1.4)	90.3(2.3)	90.5(3.6)	0.005	4.3
2	Mevinphos	1-200	0.9988	85.6(2.3)	94.1(2.9)	97.2(2.3)	0.005	56.2
3	Methacrifos	1–200	0.9989	88.1(1.0)	98.9(3.0)	103.5(2.9)	0.005	21.7
4	Isoprocarb	1–200	0.9988	92.8(3.9)	92.6(1.8)	93.9(2.0)	0.005	2.5
5	Propoxur	1–200	0.9989	90.7(2.0)	93.3(2.2)	93.5(1.7)	0.005	18.8
6	Ethoprophos	1–200	0.9987	92.1(3.7)	86.5(2.0)	85.4(1.7)	0.005	14.5
7	Dicrotophos	1–200	0.9986	93.9(4.0)	87.6(3.3)	92.1(2.3)	0.005	44.0
8	Phorate	1–200	0.9981	86.6(1.2)	93.4(2.2)	93.0(1.7)	0.005	18.6
9	α-hexachlorocyclohexane	1–200	0.9989	93.4(6.4)	91.8(2.2)	94.1(2.3)	0.005	- 15.5
10	Hexachlorobenzene	1-200	0.9990	71.9(2.9)	73.0(2.2)	72.0(2.5)	0.005	- 19.9
11	2,6-dichloro-4-nitroaniline	2–200	0.9970	84.2(2.4)	93.0(3.8)	97.7(2.4)	0.01	62.1
12	Dimethoate	1-200	0.9984	90.7(1.6)	91.4(2.7)	91.9(1.4)	0.01	46.9
13	β -hexachlorocyclohexane	1-200	0.9988	95.5(5.2)	94.1(2.4)	95.3(2.0)	0.005	- 13.2
14	Pentachioroanisole	2-200	0.9974	85.4(4.9)	78.0(2.9)	69.8(3.2)	0.005	17.5
15	Quintozene	2-200	0.9977	79.9(1.3)	84.5(1.0)	85.5(2.0)	0.005	32.7
10	Fonofos	1 200	0.9995	92.5(7.0) 88.0(1.5)	90.0(3.3)	92.0(1.7)	0.01	- 7.8 11.0
17	Durimethanil	2 200	0.0088	776(15)	78 1(3 2)	30.4(2.0) 80 7(1.8)	0.005	01
10	Diazinon	1_200	0.9986	921(17)	897(14)	879(17)	0.005	_08
20	δ-hexachlorocyclohexane	1-200	0.9986	92.8(5.9)	92 2(2 3)	94 7(2 0)	0.005	_ 9 3
20	Isazofos	2-200	0.9982	898(04)	96 6(3 1)	99.8(2.0)	0.005	13
22	Etrimfos	1-200	0.9980	93.7(5.2)	89.9(2.0)	93.4(2.2)	0.01	- 18.3
23	Disulfoton	1–200	0.9976	88.1(2.4)	92.5(2.5)	95.0(2.1)	0.01	- 6.9
24	Tefluthrin	1–200	0.9982	87.3(0.8)	94.1(2.5)	97.1(1.8)	0.01	-4.2
25	Iprobenfos	1–200	0.9973	85.5(3.9)	98.9(3.2)	103.0(1.9)	0.01	26.9
26	Pirimicarb	1–200	0.9980	90.0(2.3)	94.4(2.8)	97.2(2.2)	0.01	- 10.5
27	Pentachloroaniline	1–200	0.9982	87.0(7.0)	71.4(3.2)	70.9(2.3)	0.005	- 19.9
28	Fenchlorphos-oxon	1–200	0.9978	93.4(3.5)	91.3(3.2)	96.4(2.6)	0.005	2.2
29	Dichlofenthion	1–200	0.9983	91.3(1.1)	88.1(1.5)	87.3(2.0)	0.005	0.9
30	Chlorpyrifos-methyl	1–200	0.9981	86.6(0.6)	90.3(2.0)	90.1(2.2)	0.005	2.0
31	Acetochlor	5–200	0.9980	89.6(1.6)	98.3(3.2)	102.0(1.8)	0.01	5.4
32	Vinclozolin	1–200	0.9984	93.8(4.0)	89.5(1.2)	88.4(1.7)	0.005	-4.9
33	Parathion-methyl	1–200	0.9953	85.8(5.5)	85.5(1.2)	86.8(1.6)	0.01	70.7
34	Tolclofos-methyl	1–200	0.9984	90.0(1.9)	98.5(3.0)	103.0(2.2)	0.005	- 11.3
35	Alachlor	2–200	0.9980	88.4(1.0)	97.7(2.6)	101.5(1.9)	0.01	2.2
36	Heptachlor	1–200	0.9980	83.2(1.5)	76.2(2.3)	74.5(1.8)	0.005	- 10.3
37	N-desethyl-pirimiphos-methyl	2–200	0.9981	86.9(1.9)	99.7(3.7)	104.4(1.9)	0.005	9.6
38	Metalaxyl	2-200	0.9978	93.5(5.4)	89.1(1.7)	89.2(1.3)	0.005	- 12.1
39	Fenchiorphos	I-200	0.9984	87.4(1.6)	92.5(2.0)	91.7(1.2)	0.005	- 4.0
40	Paraoxon	5-200	0.9934	91.1(3.8)	89.7(4.2)	92.9(3.2)	0.01	/9./
41	Prometryn	1-200	0.9984	91.3(1.0)	88.4(1.4) 74.0(2.2)	86.7(1.9) 76.4(4.4)	0.005	0.2
42	Fenitrothion	1 200	0.9988	77.3(7.8)	84 2(0.9)	70.4(4.4) 84 $4(1.5)$	0.005	- 20.1
45	Piriminhos-methyl	2_200	0.9980	916(22)	869(17)	86 5(1 9)	0.01	-65
45	Bromacil	2-200	0.9990	892(2.0)	93 7(2 3)	94 4(2.6)	0.01	28.7
46	Metolachlor	1-200	0.9986	89.4(1.1)	100.1(3.3)	104.6(2.1)	0.005	3.3
47	Aldrin	2–200	0.9984	92.7(6.1)	87.5(2.4)	89.7(3.0)	0.005	-20.7
48	Chlorpyrifos	1–200	0.9985	88.3(3.5)	105.5(4.9)	107.3(2.4)	0.005	1.8
49	Dacthal	1–200	0.9989	97.7(6.9)	92.0(2.1)	94.3(1.7)	0.005	-21.2
50	Fenthion	1–200	0.9986	89.8(0.8)	94.1(1.5)	92.6(1.5)	0.01	1.2
51	Parathion	2–200	0.9926	88.6(2.1)	96.2(5.0)	103.6(2.2)	0.01	69.3
52	Isocarbophos	2–200	0.9979	92.5(2.2)	96.6(3.8)	102.0(2.4)	0.005	18.5
53	Bromophos	1–200	0.9986	92.2(2.9)	90.6(1.6)	94.0(2.2)	0.005	0.3
54	Pirimiphos ethyl	1–200	0.9986	86.4(1.8)	99.4(3.8)	104.9(2.6)	0.005	6.1
55	Cyprodinil	1–200	0.9978	73.3(2.0)	70.0(5.6)	73.4(2.0)	0.005	- 2.1
56	E-chlorfenvinphos	5–200	0.9980	95.8(5.8)	92.8(3.1)	90.6(3.0)	0.01	24.8
57	trans-heptachlorepoxide	5–200	0.9974	99.2(12.0)	101.1(5.0)	97.2(3.1)	0.01	-8.7
58	Fipronil	2–200	0.9970	86.5(4.1)	96.1(2.1)	95.5(1.8)	0.01	49.1
59	Z-chlorienvinphos	1-200	0.9988	90.1(1.9)	88.5(1.3)	87.9(1.9)	0.01	17.3
60 C1	Mecarbam	2-200	0.9966	86.7(6.3)	102.4(3.3)	103.2(2.4)	0.01	24.8
61	Quinaphos	2-200	0.9966	80.4(3.8)	98.5(2.7)	101.5(1.3)	0.01	4.9
62	Procumidono	1 200	0.9970	015(15)	97.1(3.0)	102.0(2.4) 00 $4(1.2)$	0.01	-4.4
64	Triadimenol	1-200	0.3303	864(25)	95 2(2 5)	90.4(1.3) 90.5(7.4)	0.01	- 0.4 20 N
65	Methidathion	1-200	0.9977	913(2.4)	100 4(3 4)	102.6(1.6)	0.01	29.0
66	Bromophos-ethyl	1-200	0.9984	86.9(14)	85.3(19)	84.6(1.4)	0.01	- 10 1
67	Methoprene	1-200	0.9924	74.1(2.5)	96.5(4.2)	95.6(83)	0.01	13.0
68	o.p'-DDE	1-200	0.9984	87.7(2.6)	95.2(31)	97.2(17)	0.005	- 14 6
69	Paclobutrazol	1–200	0.9979	84.9(2.8)	96.9(2.1)	97.7(1.4)	0.01	28.6
70	Trans-chlordane	5–200	0.9960	100.4(7.3)	90.1(5.5)	88.4(4.0)	0.01	- 11.4
71	Fenothiocarb	1–200	0.9978	88.5(0.7)	94.1(1.9)	94.2(1.6)	0.01	51.7
72	Ditalimfos	1–200	0.9981	72.7(1.0)	83.5(4.0)	84.5(1.4)	0.005	2.5
73	Napropamid	1–200	0.9986	92.7(5.4)	92.9(2.5)	94.3(1.3)	0.005	3.6
74	Prothiofos	1–200	0.9989	90.3(2.8)	86.6(1.6)	86.1(1.7)	0.005	14.3

Table 2 (continued)

Obs Outgoing 0.1 mg/kg 0.2 mg/kg 75 Cis-chlordane 5-200 0.9914 8.90(8.0) 972(13.1) 102.737 0.01 54.56 76 Profenofos 1-200 0.9986 8.88,11.6) 963(2.9) 993(2.00) 0.01 15.8 77 Myclobutznil 1-200 0.9986 8.87,11.9) 97,413.01 97.400.01 15.8 78 Fusikazole 1-200 0.9980 90.67.01 87.41.01 97.41.01 97.42.01 99.62.23 90.61.1.47 78 Dividicita 5-200 0.9990 90.67.01 88.41.41 97.62.23 0.01 -8.0 84 Nitrolen 2-200 0.9931 84.16.13 84.11.11 10.11 -8.0 75 Dividicazole 1-200 0.9897 78.21.41 97.41.51 81.11 0.01 4.50 76 Dividicazole 1-200 0.9977 82.41.11 10.11 78.21.15 0.01 4.50 78	No.	Pesticide	Linear range (ng/mL)	r^2	Recovery (%RSD)(%, $n = 6$)		LOQ (mg/kg)	ME(%)	
75 Cis-chlordane 5-200 0.991 88.93 97.9(131) 00.73.737 0.01 24.54 77 Mycloburanii 1-200 0.9984 82.83(1) 963.29) 968.4(20) 0.01 15.84 78 Carboxin 1-200 0.9984 82.83(1) 97.4(10) 0.01 7.54 79 Flusikazole 1-200 0.9985 88.7(1.9) 97.4(3.0) 97.4(3.0) 0.01 7.54 81 Papr.100 2.200 0.9981 84.4(2.1) 83.9(2.1) 0.01 -6.3 84 Nitrofen 2.200 0.99931 84.4(3.2) 91.1(4.4) 977.0(2.) 0.01 -7.8 85 Perthiso-sulfone 2.200 0.99971 83.4(1.1) 0.84.2(2.1) 83.3(1.4) 0.01 -7.8 86 Ferthiso-sulfone 1-200 0.9977 78.3(3.6) 97.4(2.1) 83.7(1.4) 0.01 -7.8 87 Dittoinsoulfone 1-200 0.9977 88.4(1.1) 97.7(2.1) 0.0					0.05 mg/kg	0.1 mg/kg	0.2 mg/kg		
76 Profemoles 1–200 0.9996 88.92,5) 102.1(1.9) 102.3(2.1) 0.005 14.58 78 Carboxin 1–200 0.9986 88.0(1.5) 93.9(2.3) 95.4(1.6) 0.011 2.54 78 Instanle 1–200 0.9882 88.0(2.1) 95.8(3.5) 99.7(3.0) 0.011 7.6 80 Buyrofecin 1–200 0.9880 94.0(7.6) 84.6(4.4) 97.7(2.7) 0.011 -8.3 81 Endrin 5–200 0.9933 84.0(7.6) 84.6(4.4) 97.7(2.7) 0.01 -4.43 85 Fernthionsulficatile 2–200 0.9331 84.1(1.4) 83.7(2.5) 84.1(1.4) 97.7(2.3) 0.01 -4.30 86 Fernthionsulficatile 2–200 0.9371 84.7(1.1) 87.7(1.5) 81.1(2.1) 0.01 14.33 87 Dinkonazole 1–200 0.9977 90.7(3.8.1) 97.7(3.8) 0.01 14.34 89 epi-DD 1–200 0.9977 90.7(3.8.1) 90.7(3.8.1) 0.01 14.39 90.7(3.8.1) 90.7(3.8.1)	75	Cis-chlordane	5–200	0.9914	89.9(8.9)	97.9(13.1)	102.7(3.7)	0.01	24.5
77 Myclobutanii 1-200 0.9884 92.03.5 95.2(2.9) 90.2(2.0) 0.01 1.5.8 79 Fusikazole 1-200 0.9882 88.7(1.8) 97.4(5.0) 97.4(3	76	Profenofos	1–200	0.9991	88.9(2.5)	102.1(3.9)	105.3(2.1)	0.005	34.6
178 Carboxin 1-200 0.9982 88.7(1) 97.4(16) 0.01 75. 80 Buyrofcein 1-200 0.9982 88.0(2.0) 96.8(5.5) 98.1(18) 0.001 -5. 810 Diedrin 5-200 0.9983 94.6(2.5) 86.0(1.7) 84.2(2.8) 0.01 -5.7 821 Diedrin 5-200 0.9933 94.6(2.3) 86.0(1.7) 84.2(2.8) 0.01 -4.57 843 Nirofen 2-200 0.9331 84.1(2.3) 84.1(2.3) 84.1(2.3) 84.1(2.3) 84.1(3.1) 84.3(1.5) 0.00 5.60 845 Fentilochain 1-200 0.9973 99.02.2 88.4(1.1) 83.1(1.5) 0.05 -17.3 848 Fention-sulfanc 1-200 0.9973 99.02.2 88.4(1.1) 0.01 16.3 94 Dimokano sulfanc 1-200 0.9979 84.4(1.9) 91.02.7 77.1(1.8) 0.00 98.3 94 Benaloxyi 1-200 0.9979	77	Myclobutanil	1–200	0.9986	88.8(1.6)	96.3(2.9)	99.6(2.0)	0.01	15.8
Pisulacole Fuelacole Parka	78	Carboxin	1–200	0.9984	92.0(3.5)	93.9(2.3)	95.4(1.6)	0.01	25.4
80 Buprofezin 1-200 0.9982 80.0(2.0) 95.8(3.5) 95.5(1.9) 0.005 1.4 81 p./DE 2-200 0.9992 0.001(2.3) 85.0(1.7) 85.2(2.5) 0.01 5.3 83 Endtin 5-200 0.9983 94.0(7.6) 84.6(3.4) 870.1(3) 0.01 -4.80 84 Nitrofen 2-200 0.9931 89.1(1.8) 81.1(2.1) 84.1(2.1) 84.1(2.1) 84.1(2.1) 84.1(2.1) 84.1(1.1) 0.005 74.83 85 rentinonation 1-200 0.9991 95.7(8.4) 110.8(5.1) 112.2(3.8) 0.01 64.83 90 o.p-DDT 1-200 0.9971 88.3(1.1) 91.0(2.7) 83.4(1.9) 0.01 64.93 91 Ethion 1-200 0.9977 83.4(3.1) 91.0(2.7) 93.4(1.9) 0.005 83.93 92 resultion sultar 1-200 0.9977 83.2(1.1) 91.02.1 93.1(1.9) 0.005 63.93 93	79	Flusilazole	1–200	0.9982	88.7(1.9)	97.4(3.0)	97.8(0.9)	0.01	7.6
st pp'-DDE 2-200 0.9980 92.6(3) 85.0(17) 85.2(3) 0.01 6.7 83 Endrin 5-200 0.9980 94.0(7.6) 84.6(4.4) 97.0(2.7) 0.01 -8.0 84 Ntrofen 2-200 0.9331 86.1(1.4) 97.0(2.7) 0.01 44.3 85 Fenthionsulfoxide 2-200 0.9391 89.4(1.3) 81.1(2.4) 81.4(2.2) 0.01 43.1 86 Fenthionsulfoxide 2-200 0.9997 99.2(3.6) 79.4(1.5) 81.1(2.1) 0.01 63.7 89 0.p ¹ .DD 1-200 0.9997 99.7(2.2) 97.1(2.0) 0.05 -53.3 94 0.p ¹ .DD 1-200 0.9977 97.12.0) 97.2.2) 0.01 63.8 95 Fordostrifts nulfate 1-200 0.9977 97.2.2) 97.2.0) 97.2.0 0.995 97.2.0) 97.2.0 97.2.0 97.2.0 97.2.0 97.2.0 97.2.0 97.2.0 97.2.0 97.2.0	80	Buprofezin	1–200	0.9985	89.0(2.0)	96.8(3.5)	98.5(1.9)	0.005	1.4
12 Dieldrin 5-200 0.9893 94.07(a) 84.67(4) 870(17) 0.01 -9.3 84 Nitrofen 2-200 0.9893 84.07(a) 84.67(4) 870(17) 0.01 -8.0 85 Fenthionsultoxide 2-200 0.98931 84.17(2) 84.17(2) 84.17(2) 0.01 7.37 86 Fenthionsultoxide 2-200 0.99931 96.7(2) 83.47(2) 83.57(2)	81	p,p'-DDE	2–200	0.9992	100.0(12.3)	83.9(3.4)	79.0(2.5)	0.01	-6.7
84 Endrin 5-200 0.9933 94.0(7.6) 94.6(3.2) 91.1(4.4) 97.0(1.3) 0.01 -8.0 85 Fenthionsulfoxide 2-200 0.9931 89.1(1.8) 84.1(2.4) 87.2(2.7) 0.01 7.18 86 Fenthionsulfoxide 2-200 0.9997 79.2(3.6) 79.4(1.5) 81.1(1.1) 0.01 7.37 87 Diniconazole 1-200 0.9997 80.4(2.1) 83.4(2.1) 83.4(3.1) 0.05 -1.73 88 rentinon-sulfone 1-200 0.9997 80.4(2.1) 83.4(2.1) 80.4(2.1	82	Dieldrin	5–200	0.9980	92.6(6.3)	86.0(1.7)	88.2(2.8)	0.01	-9.3
84 Nitrofen 2-200 0.9333 84.(32,2) 91.(4,4) 97.7(2,7) 0.01 44.3 85 Fenthionsulfoxide 1-200 0.9997 79.3(3,6) 79.4(1,5) 81.1(2,1) 0.01 79.8 87 Dinconzole 1-200 0.9997 90.3(2,2) 88.4(1,3) 86.3(1,4) 0.01 6.73.9 98 op-DDD 1-200 0.9997 90.67(3,4) 10.8(3,1) 11.22(3,8) 0.01 6.93.8 90 op-DDT 1-200 0.9977 88.8(1,6) 91.0(2,7) 92.2(1,6) 0.01 16.93 91 Ention 1-200 0.9977 83.4(2,1) 97.1(3,8) 0.005 93.3 93 Eandballin sulface 5-200 0.9978 80.4(2,6) 90.4(2,7) 92.4(1,6) 0.01 1.03 94 Bendavila 1-200 0.9978 83.4(2,6) 90.3(2,1) 93.4(1,6) 0.01 4.33 95 Propiconzole 1-200 0.9980 83.3(2,1) 90.3(2,	83	Endrin	5–200	0.9983	94.0(7.6)	84.6(4.4)	87.0(1.3)	0.01	-8.0
88 Fenthionsulfoxide 2-200 0.9391 8.9.(1.8) 8.4.(2.1.8) 8.4.(2.2.1) 0.01 1.21 87 Diniconazole 1-200 0.9391 9.73(3.6) 7.94(1.5) 8.11(2.1) 0.01 7.93 87 Diniconazole 1-200 0.9993 9.03(2.2) 8.8.4(2.1) 8.3.3(1.5) 0.005 5.9.0 88 renthions-sulform 1-200 0.9993 9.67.(8.4) 110.2(5.1) 7.77.(1.8) 0.01 6.9.3 90 a.p-DDT 1-200 0.9977 9.07.(2.9) 9.28.3(1.6) 9.10.(1.9) 0.01 1.43 91 Ethion 1-200 0.9977 9.07.(2.9) 9.28.3(3.0) 9.54.2(0) 0.005 9.39 92 Fondsulfan sulfare 5-200 0.9977 9.07.(2.9) 9.28.3(1.0) 9.017 0.01 4.93 94 Pendaxylfar 1-200 0.9980 85.3(1.2) 9.03(2.3) 0.02.2 9.12.19 0.01 4.93 97 p.pr-DDT 1-20	84	Nitrofen	2–200	0.9933	84.6(3.2)	91.1(4.4)	97.7(2.7)	0.01	44.3
88 Fensulfothion 1-200 0.9997 79.2(3.6) 79.4(1.5) 81.1(2.1) 0.01 79.8 89 p-DDD 2-200 0.99973 90.9(2.2) 88.4(3.1) 86.3(1.4) 0.01 64.98 90 p-DDD 1-200 0.9994 78.3(1.1) 72.2(2.8) 0.01 16.99 91 Ethion 1-200 0.99970 88.8(1.6) 91.0(2.7) 92.2(3.0) 95.4(2.0) 0.01 16.99 93 Famphur 1-200 0.9977 90.7(2.9) 92.8(3.0) 95.4(2.0) 0.005 89.93 94 Benalaxyl 1-200 0.9978 90.4(3.5) 90.4(3.5) 90.4(3.5) 90.4(3.5) 90.4(3.5) 90.4(3.5) 90.4(1.7) 0.01 4.93 95 Endoxulfan suffare 1-200 0.9948 83.3(3.1) 90.4(3.1) 96.7(1.8) 0.01 4.43 95 Picotonazole 1-200 0.9948 83.3(3.1) 90.4(3.3) 99.7(1.8) 0.01 4.53 1	85	Fenthionsulfoxide	2–200	0.9931	89.1(1.8)	84.1(2.3)	84.2(2.2)	0.01	21.6
87 Entition-sulfore 1-200 0.981 84 (11) 83.7(1.2) 83.5(1.5) 0.005 50.0 88 Fentiton-sulfore 1-200 0.9993 90.7(2.4) 110.8(5.1) 112.2(3.8) 0.01 65.41 90 0.7-DT 1-200 0.9964 78.8(1.1) 97.7(3.8) 0.016(1.9) 0.01 14.34 91 Ethion 1-200 0.9977 90.7(2.9) 92.8(3.1) 90.4(3.5) 90.6(2.2) 91.3(1.9) 0.005 83.7(3.1) 94 Benalaxyl 1-200 0.9979 93.4(4.9) 91.7(2.0) 87.01(1.6) 0.01 1.03 95 Endosulfan suffate 5-200 0.9979 93.4(4.9) 91.7(2.0) 87.01(1.6) 0.01 1.03 96 Proptornazole 1-200 0.9978 84.3(2.6) 96.2(2.3) 91.3(1.9) 0.005 93.93 97 p.pr-DT 1-200 0.9980 85.3(1.2) 94.6(3.3) 95.2(2.1) 0.01 -4.36 98 Tebucnazole 1-200 0.9984 83.93.41 95.6(3.3) 95.2(2.1) 0.01	86	Fensulfothion	1–200	0.9997	79.2(3.6)	79.4(1.5)	81.1(2.1)	0.01	79.8
88 op-DD0 -2-200 0.9973 0.907.2.2 88.4(1.1) 86.3(1.4) 0.01 54.7 90 op-DD0 0.9990 67.8(8.1) 72.2(3.8) 0.001 69.8 91 Ethion 1-200 0.9971 88.9(1.6) 71.72(1.8) 0.005 -71.8 92 Fensulfothion sulfore 1-200 0.9971 88.9(1.6) 91.0(2.7) 92.2(1.6) 0.01 1.34 93 Famphur 1-200 0.9978 90.4(2.5) 95.4(2.0) 0.005 93.3 94 Benalaxyl 1-200 0.9975 83.4(2.6) 95.2(2.3) 95.4(1.0) 0.005 39.9 97 <i>pp-DDT</i> 1-200 0.9980 83.2(3.1) 95.2(3.3) 102.7 0.01 4.56.7 100 Pyridaphenthion 1-200 0.9980 85.1(2.3) 96.7(1.8) 0.01 4.53.7 101 Phosmet 1-200 0.9981 86.2(1.8) 99.1(1.8) 0.005 2.31.3 102 Bi	87	Diniconazole	1–200	0.9981	84.2(1.1)	83.7(2.0)	83.5(1.5)	0.005	50.0
89 ap ² -DDD 1-200 0.9993 967(8,4) 110.8(1) 112.2(13) 0.01 69.8 91 Ethion 1-200 0.9971 88.8(1,6) 91.0(2,7) 92.2(1,6) 0.01 15.9 92 Fensibition sulface 1-200 0.9977 90.7(2,9) 92.8(1,0) 0.016(1,9) 0.01 34.9 93 Famphur 1-200 0.9979 90.4(3,5) 90.6(2,2) 91.3(1,9) 0.005 83.9 94 Bendaxyl 1-200 0.9979 93.4(4,9) 91.7(2,0) 87.0(1,0) 0.005 39.9 95 Fobconazole 1-200 0.9948 75.3(4,7) 71.6(2,3) 74.6(1,7) 0.01 -9.6 97 <i>p</i> 1.70T 1-200 0.9960 85.3(1,2,6) 94.8(1,3) 0.005 43.1 98 Fobconazole 1-200 0.9962 85.2(1,3) 91.6(2,3) 0.01 -2.6 100 Priorant 1-200 0.9963 85.0(1,3) 95.1(1,8) 0.01	88	Fenthion-sulfone	2–200	0.9973	90.9(2.2)	88.4(2.1)	86.3(1.4)	0.01	54.7
90 cp-DDT 1-200 0.9964 78.8(1.1) 77.2(2.5) 77.7(18) 0.005 -17.8 91 Ethion 1-200 0.9970 88.8(1.1) 97.7(3.8) 101.6(1.9) 0.01 34.9 93 Famphur 1-200 0.9977 90.7(2.9) 92.8(3.0) 95.4(2.0) 0.005 93.3 94 Benalaxyl 1-200 0.9978 90.4(3.5) 90.6(2.2) 91.3(1.9) 0.005 93.9 97 p.PDT 1-200 0.9948 75.3(2.1) 71.6(2.3) 98.0(1.9) 0.005 93.9 97 p.PDT 1-200 0.9948 75.3(2.1) 91.6(3.6) 96.1(3.1) 96.7(3.1) 96.6(3.3) 102.7(2.0) 0.01 49.2 101 Pyridaphenthion 1-200 0.9983 85.3(1.1) 95.6(3.3) 102.7(2.0) 0.01 4.28 102 Brompropylate 1-200 0.9983 85.0(1.8) 96.8(3.8) 9.2.7(1.8) 0.01 5.3 1.42 103	89	o,p'-DDD	1–200	0.9993	96.7(8.4)	110.8(5.1)	112.2(3.8)	0.01	69.8
91 Ethion 1-200 0.9971 88.8(1.6) 91.02,27) 92.2(1.6) 0.01 16.9 92 Fensultoriun sultore 1-200 0.9977 90.7(2.9) 92.8(3.0) 95.4(2.0) 0.005 93.3 94 Benakayl 1-200 0.9977 90.4(3.5) 90.6(2.2) 91.3(1.9) 0.005 89.3 95 Endosulfan sulfate 5-200 0.9978 93.4(4.9) 91.7(2.0) 87.0(1.6) 0.01 1.03 96 Projconazole 1-200 0.9980 85.3(1.6) 94.2(3.9) 98.0(1.9) 0.005 4.93 97 <i>p</i> -DDT 1-200 0.9964 85.3(1.6) 94.8(3.1) 96.7(1.8) 0.01 4.56 100 Printaphenthion 1-200 0.9963 85.3(1.2) 94.6(3.6) 95.1(1.8) 0.005 2.51 102 Brompropylate 1-200 0.9963 85.0(1.8) 95.0(3.8) 92.1(1.8) 0.001 5.02 102 Brompropylate 1-200 0.99673 <td>90</td> <td>o,p'-DDT</td> <td>1–200</td> <td>0.9964</td> <td>78.8(1.1)</td> <td>72.6(2.5)</td> <td>77.7(1.8)</td> <td>0.005</td> <td>- 17.8</td>	90	o,p'-DDT	1–200	0.9964	78.8(1.1)	72.6(2.5)	77.7(1.8)	0.005	- 17.8
92 Fensulfachino sulfone 1–200 0.9970 88.8(1.1) 97.7(3.8) 101.6(1.9) 0.01 34.9 93 Famphur 1–200 0.9977 90.7(2.9) 92.8(3.0) 95.4(2.0) 0.0005 99.3 94 Benalaxyl 1–200 0.9977 93.4(4.9) 91.7(2.0) 870.1(6) 0.01 10.3 95 Endoculars sulfact 1–200 0.9948 85.3(2.1) 95.4(2.0) 870.1(6) 0.01 -9.6 97 p.PDT 1–200 0.9948 85.3(2.1) 96.4(3.3) 102.7(2.0) 0.01 49.2 90 Piperonyl batcoitic 1–200 0.9983 89.5(1.7) 90.8(1.8) 91.7(1.6) 0.005 2.23.1 101 Phosmet 1–200 0.9983 89.5(1.7) 90.8(1.8) 91.7(1.6) 0.005 2.3.3 103 Bitenthrin 1–200 0.99873 88.4(1.2) 91.12.6 92.4(1.8) 0.001 -5.2.7 104 Bitenzate 1–200 0.99973	91	Ethion	1–200	0.9971	88.9(1.6)	91.0(2.7)	92.2(1.6)	0.01	16.9
94 Famphur 1-200 0.9977 90.7(2.9) 92.8(3.0) 95.4(2.0) 0.005 93.7 95 Endosulfan sulfate 5-200 0.9979 93.4(4.9) 91.7(2.0) 87.0(1.6) 0.01 1.03 95 Projocnazole 1-200 0.9979 84.3(2.6) 96.2(3.9) 95.0(1.6) 0.01 4.63 98 Tebronzazole 1-200 0.9980 88.3(3.1) 90.5(2.4) 89.0(1.8) 0.01 4.56 100 Pyridaphemhion 1-200 0.9980 85.1(2.6) 94.3(3.1) 96.7(1.8) 0.01 4.52 101 Phomet 1-200 0.9982 85.2(1.3) 91.6(3.6) 50.1(2.2) 0.01 -2.8 102 Bromopropylate 1-200 0.9983 89.5(1.8) 99.8(3.8) 99.2(1.8) 0.005 2.6.3 103 Bifemazate 1-200 0.9973 93.3(2.4) 88.1(3.4) 89.8(2.0) 0.01 1.35 104 Tebrolehnyrad 1-200 0.9977	92	Fensulfothion sulfone	1–200	0.9970	88.8(1.1)	97.7(3.8)	101.6(1.9)	0.01	34.9
94 Benalaxyl 1-200 0.9978 90.4(3.5) 90.6(2.2) 91.3(1.9) 0.005 8.7 95 Endosulfan sulfar 5-200 0.9979 93.4(49) 91.7(2.0) 87.0(1.6) 0.01 1.03 96 Propiconazole 1-200 0.9980 83.3(3.1) 90.5(2.4) 89.9(1.4) 0.005 49.1 99 Piperonyl butoxide 1-200 0.9980 83.3(3.1) 99.5(2.4) 89.9(1.4) 0.005 49.1 100 Pridphenthion 1-200 0.9982 85.1(2.6) 98.4(3.3) 102.7(2.0) 0.01 49.2 101 Phosmet 1-200 0.9983 86.0(1.8) 99.4(1.8) 9.1(1.6) 0.005 2.7.1 103 Bifenthrin 1-200 0.9973 91.3(2.4) 88.1(3.4) 89.2(1.8) 0.01 5.03 105 Methoxychlor 1-200 0.9973 83.0(2.5) 91.4(2.6) 92.9(1.8) 0.01 6.33 106 Perporpathrin 1-200 0.9974 <td>93</td> <td>Famphur</td> <td>1–200</td> <td>0.9977</td> <td>90.7(2.9)</td> <td>92.8(3.0)</td> <td>95.4(2.0)</td> <td>0.005</td> <td>99.3</td>	93	Famphur	1–200	0.9977	90.7(2.9)	92.8(3.0)	95.4(2.0)	0.005	99.3
95 Endosulfan sulfate 5-200 0.9975 94.3(2.6) 95.(2.3) 98.0(1.9) 0.005 39.9 97 p.p-DDT 1-200 0.9948 75.3(4.7) 71.6(2.3) 74.6(1.7) 0.01 -9.6 98 Tebuconazole 1-200 0.9980 88.3(3.1) 90.5(2.4) 89.9(1.4) 0.005 49.1 99 Piperonyl butoxide 1-200 0.9964 83.9(4.7) 99.6(3.3) 0.027.00) 0.01 49.2 101 Phosmet 1-200 0.9982 85.2(1.3) 91.6(3.6) 96.1(2.2) 0.01 -2.8 102 Bifenzate 1-200 0.9982 83.2(3.3) 94.6(2.8) 95.9(1.8) 0.01 -5.3 104 Bifenzate 1-200 0.9975 84.1(2.3) 91.1(2.6) 92.9(1.9) 0.01 6.3 105 Methoxychlor 1-200 0.9979 83.0(2.5) 91.8(4.2) 95.3(2.9) 0.01 6.3 106 Fentroxychlor 1-200 0.9979 <	94	Benalaxyl	1–200	0.9978	90.4(3.5)	90.6(2.2)	91.3(1.9)	0.005	8.7
96 Propiconazole 1-200 0.9975 84.3(2.6) 96.2(3.3) 98.0(1.9) 0.005 39.9 97 p.POT 1-200 0.9980 85.3(3.1) 90.5(2.3) 78.0(7.1) 0.01 45.6 98 Pipronyh butxxide 1-200 0.9980 85.3(3.1) 90.5(2.3) 102.7(2.0) 0.01 45.6 100 Pyridaphenthion 1-200 0.9952 85.2(1.3) 91.6(3.6) 96.1(2.2) 0.01 -2.8 101 Bifenthrin 1-200 0.9983 85.0(1.8) 91.7(1.6) 0.005 22.1 103 Bifenthrin 1-200 0.9973 91.3(2.4) 88.1(2.8) 95.1(1.8) 0.01 -10.3 105 Methoxychlor 1-200 0.9974 92.5(4.8) 90.1(2.8) 94.5(1.6) 0.005 -3.9 106 Fenpropathrin 1-200 0.9975 88.4(1.2) 91.1(2.6) 92.3(1.9) 0.01 -4.8 107 Tebufenpyrad 1-200 0.9995 83.0(2.5)	95	Endosulfan sulfate	5–200	0.9979	93.4(4.9)	91.7(2.0)	87.0(1.6)	0.01	10.3
97 pp-DDT 1-200 0.9948 75.3(4.7) 71.6(2.3) 74.6(1.7) 0.01 -9.6 98 Tebuconazole 1-200 0.9980 88.3(31) 90.5(2.4) 89.9(1.4) 0.005 49.1 99 Piperonyl butoxide 1-200 0.9964 83.9(4.7) 99.6(3.3) 102.7(2.0) 0.01 49.2 101 Phosmet 1-200 0.9983 85.2(1.3) 91.6(2.8) 99.2(1.8) 0.005 25.3 102 Bifenthrin 1-200 0.9983 85.2(1.3) 91.6(2.8) 95.9(1.8) 0.01 50.3 105 Methoxychlor 1-200 0.9971 81.3(2.4) 81.1(2.6) 92.9(1.8) 0.01 6.7 106 Fenpropathrin 1-200 0.9975 84.1(2.9 91.1(2.6) 92.9(1.9) 0.01 4.8 107 Tebufenpyrad 1-200 0.9979 83.0(2.5) 91.6(2.4) 93.2(2.5) 93.7(2.1) 0.01 4.8 108 Tetradifon 1-200 <td< td=""><td>96</td><td>Propiconazole</td><td>1–200</td><td>0.9975</td><td>84.3(2.6)</td><td>96.2(3.9)</td><td>98.0(1.9)</td><td>0.005</td><td>39.9</td></td<>	96	Propiconazole	1–200	0.9975	84.3(2.6)	96.2(3.9)	98.0(1.9)	0.005	39.9
98 Tebuconazole 1-200 0.9980 88.3(3.1) 90.5(2.4) 8.99(1,4) 0.005 4.91 99 Pipronyl butcovide 1-200 0.9980 85.12(.6) 94.8(31) 96.7(1.8) 0.01 45.6 100 Pinsmet 1-200 0.9962 85.2(1.3) 916(3.6) 96.1(2.2) 0.01 -2.8 101 Bifenthrin 1-200 0.9983 85.0(1.7) 90.8(1.8) 91.7(1.6) 0.005 22.1 103 Bifenthrin 1-200 0.9914 78.0(3.8) 95.2(1.8) 0.011 50.3 105 Methoxychior 1-200 0.9973 91.3(2.4) 88.1(3.4) 89.8(2.0) 0.011 6.7 106 Fenpropathrin 1-200 0.9974 83.2(2.5) 91.8(4.2) 95.3(2.8) 0.011 45.8 1010 Pheosohne 1-200 0.9975 83.4(2.2) 94.3(3.5) 88.7(1.2) 0.01 -2.87 1111 Airaphos-methyl 1-200 0.9995 83.0(4.9)	97	p,p'-DDT	1–200	0.9948	75.3(4.7)	71.6(2.3)	74.6(1.7)	0.01	-9.6
99 Piperonyl butoxide 1-200 0.9964 85.12.6. 94.8(3.1) 95.7(1.8) 0.01 45.6 100 Pytoaphenthion 1-200 0.9964 85.9(4.7) 99.6(3.6) 96.1(2.2) 0.01 -2.8 101 Biromopropylate 1-200 0.9983 85.0(1.8) 91.6(3.6) 95.2(1.8) 0.005 27.1 103 Birenthrin 1-200 0.9983 85.0(1.8) 95.8(1.8) 99.2(1.8) 0.005 26.3 104 Birenazate 1-200 0.9991 78.0(3.3) 77.4(2.5) 75.2(1.7) 0.01 -1.63 105 Methoxychlor 1-200 0.9973 88.4(1.2) 91.1(2.6) 92.9(1.9) 0.01 18.5 108 Patradifon 2-200 0.9979 83.0(2.5) 91.8(2.2) 95.3(2.9) 0.01 48.3 110 Pheostini 1-200 0.9959 85.0(4.8) 80.5(1.8) 82.4(1.8) 0.01 -2.83 111 Azinphos-menethyl 1-200 0.99	98	Tebuconazole	1–200	0.9980	88.3(3.1)	90.5(2.4)	89.9(1.4)	0.005	49.1
100 Pyridaphenthion 1-200 0.9952 85.2(1.3) 916(3.6) 96.1(2.2) 0.01 -4.2.8 101 Phosmet 1-200 0.9983 85.2(1.3) 916(3.6) 96.1(2.2) 0.01 -2.8 102 Birenthrin 1-200 0.9983 86.0(1.8) 95.8(1.8) 9.2(1.8) 0.005 25.3 104 Bifenthrin 1-200 0.9941 78.0(3.3) 72.4(2.5) 75.2(1.7) 0.01 -6.7 105 Methoxychlor 1-200 0.9975 88.1(1.2) 91.1(2.6) 92.9(1.9) 0.01 -6.7 106 Fenpropathrin 1-200 0.9974 92.5(4.8) 90.1(2.8) 94.5(1.6) 0.005 -3.9 108 Phenothrin 1-200 0.9975 88.4(1.8) 95.3(2.9) 0.01 -2.87 110 Phosalone 1-200 0.9976 84.9(2.8) 94.3(3.5) 98.7(2.1) 0.01 -2.87 111 Azinphos-methyl 1-200 0.9985 85.0(4.9)	99	Piperonyl butoxide	1–200	0.9980	85.1(2.6)	94.8(3.1)	96.7(1.8)	0.01	45.6
101 Phosmet 1-200 0.9952 85.2(1.3) 91.6(3.6) 96.1(2.2) 0.01 2.8 102 Bromopropylate 1-200 0.9983 86.0(1.8) 99.2(1.8) 0.005 27.1 104 Bifentarin 1-200 0.9962 83.3(2.9) 94.6(2.8) 95.9(1.8) 0.01 -50.3 105 Mchoxychlor 1-200 0.9973 91.3(2.4) 88.1(3.4) 89.8(2.0) 0.01 6.5.3 106 Fenpropathrin 1-200 0.9974 82.5(1.8) 90.1(2.8) 94.5(1.6) 0.005 -3.9 108 Tetradifon 2-200 0.9974 82.5(2.5) 98.4(2.1) 94.3(3.5) 98.7(2.1) 0.01 43.3 101 Phosalone 1-200 0.9975 84.9(2.2) 94.3(3.5) 98.7(2.1) 0.01 43.3 111 Azinphos-methyl 1-200 0.9985 85.0(4.9) 88.2(9.4) 86.6(4.1) 0.005 7.2.8 113 Mirex 1-200 0.9976	100	Pyridaphenthion	1–200	0.9964	83.9(4.7)	99.6(3.3)	102.7(2.0)	0.01	49.2
102 Bromopropylate 1-200 0.9983 88.5(17) 90.8(1.8) 91.7(1.6) 0.005 27.1 103 Bifenthrin 1-200 0.9963 86.0(1.8) 95.2(1.8) 0.005 26.3 104 Bifenzate 1-200 0.9962 83.3(2.9) 94.6(2.8) 95.9(1.8) 0.01 -50.3 105 Methoxychlor 1-200 0.9975 88.4(1.2) 91.1(2.6) 92.9(1.9) 0.01 -13.9 106 Fenpropathrin 1-200 0.9975 88.4(2.2) 94.3(2.5) 98.7(2.1) 0.01 -43.3 100 Phenothrin 1-200 0.9948 84.9(2.5) 94.3(3.5) 98.7(2.1) 0.01 -28.7 111 Axinphos-methyl 1-200 0.9948 84.9(1.8) 80.5(1.9) 82.7(2.4) 0.01 -28.4 113 Mirex 1-200 0.9945 85.2(0.2) 88.3(3.7) 93.2(1.5) 0.01 26.4 114 Cyhalothrin 1-200 0.9979 84.7(0.8)	101	Phosmet	1–200	0.9952	85.2(1.3)	91.6(3.6)	96.1(2.2)	0.01	-2.8
103 Bifenthrin 1-200 0.9933 86.01.8) 96.8(.3.8) 99.2(1.8) 0.005 25.3 104 Bifenazare 1-200 0.9962 83.3(2.9) 94.6(2.8) 95.9(1.8) 0.01 50.3 105 Methoxychlor 1-200 0.9973 91.3(2.4) 88.1(3.4) 89.8(2.0) 0.01 67.3 106 Fenpropathrin 1-200 0.9973 83.4(1.2) 91.1(2.6) 92.9(1.6) 0.01 63.3 108 Petradifon 2-200 0.9979 83.6(2.5) 91.8(4.2) 95.3(2.9) 0.01 48.3 110 Phosalone 1-200 0.9958 84.9(2.2) 94.3(3.5) 98.7(2.1) 0.01 -28.7 111 Azinphos-methyl 1-200 0.9985 85.0(4.9) 88.2(9.4) 86.6(4.1) 0.005 -16.1 114 Cyhalothrin 1-200 0.9995 85.7(0.2) 88.8(3.7) 93.2(1.5) 0.01 63.6 115 A-Cyhalothrin 1-200 0.9997	102	Bromopropylate	1–200	0.9983	89.5(1.7)	90.8(1.8)	91.7(1.6)	0.005	27.1
104 Bifenazate 1-200 0.9962 83.2(.9) 94.6(2.8) 95.9(1.8) 0.01 50.3 105 Methoxychlor 1-200 0.9941 78.0(3.3) 72.4(2.5) 75.2(1.7) 0.01 -1.09 106 Fenpropathrin 1-200 0.9975 84.1(2) 91.1(2.6) 92.5(1.8) 0.010 6.7.3 107 Tebufenpyrad 1-200 0.9974 83.0(2.5) 91.8(4.2) 95.3(2.9) 0.01 48.3 110 Phosalone 1-200 0.9959 84.9(2.2) 94.3(3.5) 98.7(2.1) 0.01 51.8 111 Azinphos-methyl 1-200 0.9985 85.0(4.9) 88.2(1.9) 0.01 28.5 113 Mirex 1-200 0.9985 85.0(4.9) 88.2(9.4) 86.6(4.1) 0.005 -16.1 114 Cyhalothrin 1-200 0.9943 81.8(2.3) 86.8(3.6) 91.2(2.3) 0.01 23.8 117 Pyrazophos 1-200 0.9974 83.7(2.3) <t< td=""><td>103</td><td>Bifenthrin</td><td>1–200</td><td>0.9983</td><td>86.0(1.8)</td><td>96.8(3.8)</td><td>99.2(1.8)</td><td>0.005</td><td>26.3</td></t<>	103	Bifenthrin	1–200	0.9983	86.0(1.8)	96.8(3.8)	99.2(1.8)	0.005	26.3
105 Methoxychlor 1–200 0.9941 7.8.0(3.3) 7.2.4(2.5) 7.5.2(1.7) 0.01 -10.9 106 Fenpropathrin 1–200 0.9975 88.4(1.2) 91.1(2.6) 92.9(1.8) 0.011 6.7. 108 Tetradifon 2–200 0.9974 83.0(2.5) 91.8(4.2) 95.3(2.9) 0.01 48.3 109 Phenothrin 1–200 0.9975 84.9(2.2) 94.3(3.5) 98.7(2.1) 0.01 58.3 110 Phosalone 1–200 0.9945 84.9(2.2) 94.3(3.5) 98.7(2.1) 0.01 -28.7 112 Mefenacet 1–200 0.9945 85.0(4.9) 88.2(9.4) 86.6(4.1) 0.005 -16.1 114 Cyhalothrin 1–200 0.9943 81.8(2.3) 86.8(3.6) 912(2.3) 0.01 25.6 115 λ -Cyhalothrin 1–200 0.9965 81.7(2.3) 86.4(4.6) 92.1(2.3) 0.01 63.3 116 Fenarimol 1–200 0.9976	104	Bifenazate	1–200	0.9962	83.3(2.9)	94.6(2.8)	95.9(1.8)	0.01	50.3
106 Fenpropathrin 1–200 0.9973 913(2.4) 88.1(3.4) 89.8(2.0) 0.01 6.7 107 Tebufenpyrad 1–200 0.9974 92.5(4.8) 91.1(2.6) 92.9(1.9) 0.01 13.5 108 Tetradifon 2–200 0.9974 92.5(4.8) 91.1(2.8) 94.5(1.6) 0.005 -3.9 109 Phosalone 1–200 0.9978 83.0(2.5) 91.8(4.2) 95.3(2.9) 0.01 48.3 111 Azinphos-methyl 1–200 0.9945 84.9(1.8) 80.5(1.9) 82.4(1.9) 0.01 -28.7 113 Mirex 1–200 0.9945 85.0(4.9) 88.2(3.6) 91.2(2.3) 0.01 26.4 115 λ -Cyhalothrin 1–200 0.9943 81.8(2.3) 86.6(4.1) 0.01 23.8 117 Pyrazophos 1–200 0.9977 84.7(0.8) 94.0(2.5) 94.6(1.8) 0.01 53.8 118 Arinathrin 1–200 0.9977 85.6(1.7) <t< td=""><td>105</td><td>Methoxychlor</td><td>1–200</td><td>0.9941</td><td>78.0(3.3)</td><td>72.4(2.5)</td><td>75.2(1.7)</td><td>0.01</td><td>- 10.9</td></t<>	105	Methoxychlor	1–200	0.9941	78.0(3.3)	72.4(2.5)	75.2(1.7)	0.01	- 10.9
107 Tebufenpyrad 1-200 0.9975 88.4(1.2) 91.1(2.6) 92.9(1.9) 0.01 13.5 108 Tetradifon 2-200 0.9974 92.5(4.8) 90.1(2.8) 94.5(1.6) 0.005 -3.9 109 Phenothrin 1-200 0.9979 83.0(2.5) 91.8(4.2) 95.3(2.9) 0.01 45.3 110 Phosalone 1-200 0.9945 84.9(1.8) 80.5(1.9) 82.4(1.9) 0.01 -28.7 112 Mefenacet 1-200 0.9982 85.6(1.4) 97.2(3.8) 101(1.7) 0.005 -72.8 113 Mirex 1-200 0.9985 85.0(4.9) 88.2(9.4) 86.6(4.1) 0.005 -16.1 114 Cyhalothrin 1-200 0.9976 82.70.2 88.4(3.5) 91.2(2.3) 0.01 25.6 116 Fenarimol 1-200 0.9978 84.7(2.8) 94.0(2.5) 94.6(1.8) 0.01 25.6 117 Pyrazophos 1-200 0.9978 84.7(2.8) 94.0(2.5) 94.6(1.8) 0.01 -50.9 118 <td< td=""><td>106</td><td>Fenpropathrin</td><td>1–200</td><td>0.9973</td><td>91.3(2.4)</td><td>88.1(3.4)</td><td>89.8(2.0)</td><td>0.01</td><td>6.7</td></td<>	106	Fenpropathrin	1–200	0.9973	91.3(2.4)	88.1(3.4)	89.8(2.0)	0.01	6.7
108 Tetradifon 2-200 0.9974 92.5(4.8) 90.1(2.8) 94.5(1.6) 0.005 -3.9 109 Phenothrin 1-200 0.9979 83.0(2.5) 91.8(4.2) 95.3(2.9) 0.01 48.3 110 Phosalone 1-200 0.9945 84.9(2.8) 80.5(1.9) 82.4(1.9) 0.01 -28.7 111 Azinphos-methyl 1-200 0.9982 85.6(1.4) 97.2(3.8) 101(1.7) 0.005 -7.8.8 113 Mirex 1-200 0.9985 85.0(4.9) 88.2(9.4) 86.6(4.1) 0.005 -16.1 114 Cyhalothrin 1-200 0.9985 85.0(4.9) 88.2(9.4) 86.6(1.8) 0.01 23.6 115 λ -Cyhalothrin 1-200 0.9979 84.7(0.8) 94.0(2.5) 94.6(1.8) 0.01 -50.9 118 Acrinathrin 2-200 0.9977 85.6(1.7) 90.0(3.3) 93.1(1.8) 0.01 -50.9 120 Permethrin 1-200 0.9976	107	Tebufenpyrad	1–200	0.9975	88.4(1.2)	91.1(2.6)	92.9(1.9)	0.01	13.5
109Phenothrin1-2000.997983.0(2.5)91.8(4.2)95.3(2.9)0.0148.3110Phosalone1-2000.995984.9(2.2)94.3(3.5)98.7(2.1)0.01-28.7111Azinphos-methyl1-2000.998285.6(1.4)97.2(3.8)101(1.7)0.005-72.8113Mirex1-2000.998585.0(4.9)88.2(9.4)86.6(4.1)0.005-16.1114Cyhalothrin1-2000.994381.8(2.3)86.8(3.6)91.2(2.3)0.0125.6115λ-Cyhalothrin1-2000.994381.8(2.3)86.8(3.6)91.2(2.3)0.0125.6116Fenarimol1-2000.997984.7(0.8)94.0(2.5)94.6(1.8)0.0123.8117Pyrazophos1-2000.997283.0(2.7)83.0(2.4)88.0(1.3)0.01-50.9119Bitertanol1-2000.997785.6(1.7)90.0(3.3)93.1(1.8)0.01-50.9119Bitertanol1-2000.997483.8(2.1)79.4(3.6)80.8(1.8)0.0159.4120Permethrin1-2000.997483.8(2.1)94.3(4.5)97.7(3.3)0.00524.4121Coumaphos1-2000.997683.0(1.8)91.6(3.2)94.1(1.9)0.00528.4122Fluquinconazole1-2000.997683.0(1.8)91.6(3.2)94.1(1.9)0.00528.4123Pyridabern1-2000.997683.0(1.8)	108	Tetradifon	2–200	0.9974	92.5(4.8)	90.1(2.8)	94.5(1.6)	0.005	- 3.9
110Phosalone1-2000.994584.9(2.2)94.3(3.5)98.7(2.1)0.0151.8111Azinphos-methyl1-2000.994584.9(1.8)80.5(1.9)82.4(1.9)0.01-28.7113Mirex1-2000.998585.0(4.9)88.2(9.4)86.6(4.1)0.005-16.1114Cyhalothrin1-2000.9998585.0(2.2)88.3(7)93.2(1.5)0.0126.4115 λ -Cyhalothrin1-2000.997984.7(0.8)94.0(2.5)94.6(1.8)0.0123.8116Fenarimol1-2000.997984.7(0.8)94.0(2.5)94.6(1.8)0.0123.8117Pyrazophos1-2000.996581.7(2.3)86.4(4.6)92.1(2.3)0.0160.3118Acrinathrin2-2000.997785.6(1.7)90.0(3.3)93.1(1.8)0.0188.7120Permethrin1-2000.997483.8(2.1)79.4(3.6)80.8(1.3)0.0159.4121Coumaphos1-2000.997683.0(1.8)91.6(3.2)94.1(1.9)0.00528.4122Fluquinconazole1-2000.997683.0(1.8)91.6(3.2)94.1(1.9)0.00528.4124Cyfluthrin2-2000.997683.0(1.8)91.6(3.2)94.1(1.9)0.00528.4124Cyfluthrin2-2000.997683.0(1.8)91.6(3.2)94.1(1.9)0.00528.4125Boscalid1-2000.997888.6(1.8)92	109	Phenothrin	1–200	0.9979	83.0(2.5)	91.8(4.2)	95.3(2.9)	0.01	48.3
111 Azinphos-methyl 1-200 0.9982 84.9(1.8) 80.5(1.9) 82.4(1.9) 0.01 -28.7 112 Mirex 1-200 0.9985 85.6(1.4) 97.2(3.8) 101(1.7) 0.005 72.8 113 Mirex 1-200 0.9985 85.0(4.9) 88.2(9.4) 86.6(4.1) 0.005 -16.1 114 Cyhalothrin 1-200 0.9943 81.8(2.3) 86.8(3.6) 91.2(2.3) 0.01 25.6 116 Fenarimol 1-200 0.9979 84.7(0.8) 94.0(2.5) 94.6(1.8) 0.01 23.8 117 Pyrazophos 1-200 0.9965 81.7(2.3) 86.4(4.6) 92.1(2.3) 0.01 60.3 118 Acrinathrin 2-200 0.9977 85.6(1.7) 90.0(3.3) 931.1(1.8) 0.01 88.7 120 Permethrin 1-200 0.9984 86.8(2.1) 90.5(2.1) 90.2(2.0) 0.005 29.3 121 Coumaphos 1-200 0.9976 83.0(1.8) 91.6(3.2) 94.1(1.9) 0.005 29.3 122 <	110	Phosalone	1–200	0.9959	84.9(2.2)	94.3(3.5)	98.7(2.1)	0.01	51.8
112Mefenacet1-2000.998285.6(1.4)97.2(3.8)101(1.7)0.00572.8113Mirex1-2000.998585.0(4.9)88.2(9.4)86.6(4.1)0.005-16.1114Cyhalothrin1-2000.994381.8(2.3)86.8(3.6)91.2(2.3)0.0126.4115 λ -Cyhalothrin1-2000.994381.8(2.3)86.8(3.6)91.2(2.3)0.0123.8117Pyrazophos1-2000.996581.7(2.3)86.4(4.6)92.1(2.3)0.0165.9118Acrinathrin2-2000.992283.0(2.7)83.0(2.4)88.0(1.3)0.01-50.9119Bitertanol1-2000.997785.6(1.7)90.0(3.3)93.1(1.8)0.0188.7120Permethrin1-2000.997483.8(2.1)79.4(3.6)80.8(1.8)0.0159.4121Coumaphos1-2000.997683.0(1.8)90.19.439.4 <td< td=""><td>111</td><td>Azinphos-methyl</td><td>1–200</td><td>0.9945</td><td>84.9(1.8)</td><td>80.5(1.9)</td><td>82.4(1.9)</td><td>0.01</td><td>-28.7</td></td<>	111	Azinphos-methyl	1–200	0.9945	84.9(1.8)	80.5(1.9)	82.4(1.9)	0.01	-28.7
113Mirex1-2000.998585.0(4.9)88.2(9.4)86.6(4.1)0.005-16.1114Cyhalothrin1-2000.994381.8(2.3)86.8(3.6)91.2(.3)0.0126.4115λ-Cyhalothrin1-2000.997984.7(0.8)94.0(2.5)94.6(1.8)0.0123.8117Pyrazophos1-2000.996581.7(2.3)86.4(4.6)92.1(2.3)0.0160.3118Acrinathrin2-2000.996581.7(2.3)86.4(4.6)92.1(2.3)0.0160.3119Bitertanol1-2000.997785.6(1.7)90.0(3.3)93.1(1.8)0.0188.7120Permethrin1-2000.997483.8(2.1)79.4(3.6)80.8(1.8)0.0159.4121Coumaphos1-2000.997483.8(2.1)94.3(4.5)97.7(3.3)0.00528.4122Fluquinconazole1-2000.997683.0(1.8)91.6(3.2)94.1(1.9)0.0528.4123Pyridaben1-2000.997382.9(1.3)92.3(2.2)89.0(1.0)0.00564.4124Cyfluthrin2-2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.01-49.4125Boscalid1-2000.997481.3(1.4)90.6(4.0)96.4(2.0)0.01-49.4126Cypermethrin1-2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.01-56.4126Ethofenprox1-2000.994874.4(14.4)85.	112	Mefenacet	1–200	0.9982	85.6(1.4)	97.2(3.8)	101(1.7)	0.005	72.8
114Cyhlaothrin1-2000.995082.5(0.2)88.8(3.7)93.2(1.5)0.01264115λ-Cyhlaothrin1-2000.994381.8(2.3)86.8(3.6)91.2(2.3)0.0135.6116Fenarimol1-2000.997984.7(0.8)94.0(2.5)94.6(1.8)0.0123.8117Pyrazophos1-2000.996581.7(2.3)86.4(4.6)92.1(2.3)0.0160.3118Acrinathrin2-2000.992283.0(2.7)83.0(2.4)88.0(1.3)0.01-50.9120Permethrin1-2000.997885.6(1.7)90.0(3.3)93.1(1.8)0.0188.7121Coumaphos1-2000.998486.8(2.1)94.3(4.5)97.7(3.3)0.005-47.8122Fluquinconazole1-2000.997683.0(1.8)91.6(3.2)94.1(1.9)0.00528.4123Pyridaben1-2000.997683.0(1.8)91.6(3.2)94.1(1.9)0.00528.4124Cyfluthrin2-2000.996080.4(2.0)92.0(4.7)98.6(2.6)0.01-49.4125Boscalid1-2000.997382.9(1.3)92.3(2.2)89.0(1.0)0.00564.4126Cypermethrin1-2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.01-36.4126Cypermethrin1-2000.996481.3(1.4)90.6(4.0)96.4(2.0)0.01-36.4127Quizalofop-ethyl1-2000.996481.3(1.4)	113	Mirex	1–200	0.9985	85.0(4.9)	88.2(9.4)	86.6(4.1)	0.005	- 16.1
115 λ -Cyhalothrin1-2000.994381.8(2.3)86.8(3.6)91.2(2.3)0.0135.6116Fenarimol1-2000.997984.7(0.8)94.0(2.5)94.6(1.8)0.0123.8117Pyrazophos1-2000.996581.7(2.3)86.4(4.6)92.1(2.3)0.0160.3118Acrinathrin2-2000.992283.0(2.7)83.0(2.4)88.0(1.3)0.01-50.9119Bitertanol1-2000.997785.6(1.7)90.0(3.3)93.1(1.8)0.0188.7120Permethrin1-2000.998886.7(3.4)94.3(4.5)97.7(3.3)0.005-47.8121Coumaphos1-2000.998486.8(2.1)90.5(2.1)90.2(2.0)0.00529.3122Fluquinconazole1-2000.997683.0(1.8)91.6(3.2)94.1(1.9)0.00528.4124Cyfluthrin2-2000.996080.4(2.0)92.0(4.7)98.6(2.6)0.01-49.4125Boscalid1-2000.997382.9(1.3)92.3(2.2)89.0(1.0)0.00564.4126Cypermethrin1-2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.01-22.7127Quizalofop-ethyl1-2000.994581.3(1.4)90.6(4.0)96.4(2.0)0.01-36.4128Flucythrinate1-2000.994874.4(14.4)85.2(10.8)93.9(3.4)0.01-39.5129Ethofenprox1-2000.99487	114	Cyhalothrin	1–200	0.9950	82.5(0.2)	88.8(3.7)	93.2(1.5)	0.01	26.4
116Fenarimol1-2000.997984.7(0.8)94.0(2.5)94.6(1.8)0.0123.8117Pyrazophos1-2000.996581.7(2.3)86.4(4.6)92.1(2.3)0.0160.3118Acrinathrin2-2000.992283.0(2.7)83.0(2.4)88.0(1.3)0.01-50.9119Bitertanol1-2000.997785.6(1.7)90.0(3.3)93.1(1.8)0.0188.7120Permethrin1-2000.997483.8(2.1)79.4(3.6)80.8(1.8)0.0159.4121Coumaphos1-2000.997483.8(2.1)90.5(2.1)90.2(2.0)0.00529.3123Pyridaben1-2000.996683.0(1.8)91.6(3.2)94.1(1.9)0.00528.4124Cyfluthrin2-2000.996080.4(2.0)92.0(4.7)98.6(2.6)0.01-49.4125Boscalid1-2000.997382.9(1.3)92.3(2.2)89.0(1.0)0.00564.4126Cypermethrin1-2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.01-22.7127Quizalofop-ethyl1-2000.994581.3(1.4)90.6(4.0)96.4(2.0)0.01-39.5129Ethofenprox1-2000.993579.0(2.6)82.8(2.7)80.9(2.0)0.01-46.7130Phenvalerate2-2000.993579.0(2.6)82.8(2.7)80.9(2.0)0.01-36.4130Phenvalerate2-2000.993579.0(2.6)<	115	λ-Cyhalothrin	1–200	0.9943	81.8(2.3)	86.8(3.6)	91.2(2.3)	0.01	35.6
117Pyrazophos1-2000.996581.7(2.3)86.4(4.6)92.1(2.3)0.0160.3118Acrinathrin2-2000.992283.0(2.7)83.0(2.4)88.0(1.3)0.01-50.9119Bitertanol1-2000.997785.6(1.7)90.0(3.3)93.1(1.8)0.0188.7120Permethrin1-2000.998886.7(3.4)94.3(4.5)97.7(3.3)0.005-47.8121Coumaphos1-2000.997483.8(2.1)79.4(3.6)80.8(1.8)0.0159.4122Fluquinconazole1-2000.997683.0(1.8)91.6(3.2)94.1(1.9)0.00528.4124Cyfluthrin2-2000.996080.4(2.0)92.0(4.7)98.6(2.6)0.01-49.4125Boscalid1-2000.997382.9(1.3)92.3(2.2)89.0(1.0)0.00564.4126Cypermethrin1-2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.01-22.7127Quizalofop-ethyl1-2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.01-36.4128Flucythrinate1-2000.994581.3(1.4)90.6(4.0)96.4(2.0)0.01-39.5129Ethofenprox1-2000.994579.0(2.6)82.8(2.7)80.9(2.0)0.01-46.7130Phenvalerate2-2000.993579.0(2.6)82.8(2.7)80.9(2.0)0.01-46.7131Tua-Fluvalinate1-2000.9949	116	Fenarimol	1–200	0.9979	84.7(0.8)	94.0(2.5)	94.6(1.8)	0.01	23.8
118Acrinathrin2-2000.992283.0(2.7)83.0(2.4)88.0(1.3)0.01-50.9119Bitertanol1-2000.997785.6(1.7)90.0(3.3)93.1(1.8)0.0188.7120Permethrin1-2000.998886.7(3.4)94.3(4.5)97.7(3.3)0.005-47.8121Coumaphos1-2000.997483.8(2.1)79.4(3.6)80.8(1.8)0.0159.4122Fluquinconazole1-2000.997683.0(1.8)91.6(3.2)94.1(1.9)0.00528.4124Cyfluthrin2-2000.996080.4(2.0)92.0(4.7)98.6(2.6)0.01-49.4125Boscalid1-2000.997382.9(1.3)92.3(2.2)89.0(1.0)0.00564.4126Cypermethrin1-2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.01-39.5128Flucythrinate1-2000.994581.3(1.4)90.6(4.0)96.4(2.0)0.01-39.5129Ethofenprox1-2000.994574.4(14.4)85.2(10.8)93.9(3.4)0.011.3130Phenvalerate2-2000.993579.0(2.6)82.8(2.7)80.9(1.0)0.01-36.4131Tua-Fluvalinate1-2000.991179.5(0.9)78.8(2.2)80.1(1.4)0.01-36.4132Difenconazole1-2000.997972.2(10.5)90.2(7.2)85.2(2.0)0.01-36.5133Deltamethrin1-2000.9979 <td< td=""><td>117</td><td>Pyrazophos</td><td>1–200</td><td>0.9965</td><td>81.7(2.3)</td><td>86.4(4.6)</td><td>92.1(2.3)</td><td>0.01</td><td>60.3</td></td<>	117	Pyrazophos	1–200	0.9965	81.7(2.3)	86.4(4.6)	92.1(2.3)	0.01	60.3
119Bitertanol1-2000.997785.6(1.7)90.0(3.3)93.1(1.8)0.0188.7120Permethrin1-2000.998886.7(3.4)94.3(4.5)97.7(3.3)0.005-47.8121Coumaphos1-2000.997483.8(2.1)79.4(3.6)80.8(1.8)0.0159.4122Fluquinconazole1-2000.997483.0(1.8)90.5(2.1)90.2(2.0)0.00528.4123Pyridaben1-2000.996080.4(2.0)92.0(4.7)98.6(2.6)0.01-49.4125Boscalid1-2000.997382.9(1.3)92.3(2.2)89.0(1.0)0.00564.4126Cypermethrin1-2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.01-22.7127Quizalofop-ethyl1-2000.994581.3(1.4)90.6(4.0)96.4(2.0)0.01-36.4128Flucythrinate1-2000.994874.4(1.4)85.2(10.8)93.9(3.4)0.011.3130Phenvalerate2-2000.993579.0(2.6)82.8(2.7)80.9(2.0)0.01-46.7131Tua-Fluvalinate1-2000.991179.5(0.9)78.8(2.2)80.1(1.4)0.01-36.4132Difenoconazole1-2000.997972.2(10.5)90.2(7.2)85.2(2.0)0.01-36.4133Deltamethrin1-2000.997975.5(3.8)82.6(2.8)86.6(2.2)0.01-34.3	118	Acrinathrin	2–200	0.9922	83.0(2.7)	83.0(2.4)	88.0(1.3)	0.01	- 50.9
120Permethrin1-2000.998886.7(3.4)94.3(4.5)97.7(3.3)0.005-47.8121Coumaphos1-2000.997483.8(2.1)79.4(3.6)80.8(1.8)0.0159.4122Fluquinconazole1-2000.998486.8(2.1)90.5(2.1)90.2(2.0)0.00529.3123Pyridaben1-2000.997683.0(1.8)91.6(3.2)94.1(1.9)0.00528.4124Cyfluthrin2-2000.996080.4(2.0)92.0(4.7)98.6(2.6)0.01-49.4125Boscalid1-2000.997382.9(1.3)92.3(2.2)89.0(1.0)0.00564.4126Cypermethrin1-2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.01-22.7127Quizalofop-ethyl1-2000.994581.3(1.4)90.6(4.0)96.4(2.0)0.01-36.4128Flucythrinate1-2000.994874.4(14.4)85.2(10.8)93.9(3.4)0.01-39.5129Ethofenprox1-2000.994874.4(14.4)85.2(10.8)93.9(3.4)0.01-46.7130Phenvalerate2-2000.993779.0(2.6)82.8(2.7)80.9(2.0)0.01-46.7131Tua-Fluvalinate1-2000.991179.5(0.9)78.8(2.2)80.1(1.4)0.01-36.4132Difenconazole1-2000.997972.2(10.5)90.2(7.2)85.2(2.0)0.01-68.5133Deltamethrin1-2000.997	119	Bitertanol	1–200	0.9977	85.6(1.7)	90.0(3.3)	93.1(1.8)	0.01	88.7
121Coumaphos1–2000.997483.8(2.1)79.4(3.6)80.8(1.8)0.0159.4122Fluquinconazole1–2000.998486.8(2.1)90.5(2.1)90.2(2.0)0.00529.3123Pyridaben1–2000.997683.0(1.8)91.6(3.2)94.1(1.9)0.00528.4124Cyfluthrin2–2000.996080.4(2.0)92.0(4.7)98.6(2.6)0.01-49.4125Boscalid1–2000.997382.9(1.3)92.3(2.2)89.0(1.0)0.00564.4126Cypermethrin1–2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.01-22.7127Quizalofop-ethyl1–2000.994581.3(1.4)90.6(4.0)96.4(2.0)0.01-39.5129Ethofenprox1–2000.994874.4(14.4)85.2(10.8)93.9(3.4)0.01-46.7130Phenvalerate2–2000.991179.5(0.9)78.8(2.2)80.1(1.4)0.01-36.4132Difenoconazole1–2000.991179.5(0.9)78.8(2.2)80.1(1.4)0.01-36.4133Deltamethrin1–2000.997972.2(10.5)90.2(7.2)85.2(2.0)0.01-68.5	120	Permethrin	1–200	0.9988	86.7(3.4)	94.3(4.5)	97.7(3.3)	0.005	-47.8
122Fluquinconazole1–2000.9984 $86.8(2.1)$ $90.5(2.1)$ $90.2(2.0)$ 0.005 29.3 123Pyridaben1–2000.9976 $83.0(1.8)$ $91.6(3.2)$ $94.1(1.9)$ 0.005 28.4 124Cyfluthrin2–2000.9960 $80.4(2.0)$ $92.0(4.7)$ $98.6(2.6)$ 0.01 -49.4 125Boscalid1–2000.9973 $82.9(1.3)$ $92.3(2.2)$ $89.0(1.0)$ 0.005 64.4 126Cypermethrin1–2000.9938 $88.6(1.8)$ $92.8(5.0)$ $97.7(1.7)$ 0.01 -22.7 127Quizalofop-ethyl1–2000.9964 $82.7(0.9)$ $91.3(4.9)$ $95.4(2.6)$ 0.01 -56.4 128Flucythrinate1–2000.9945 $81.3(1.4)$ $90.6(4.0)$ $96.4(2.0)$ 0.01 -39.5 129Ethofenprox1–2000.9948 $74.4(14.4)$ $85.2(10.8)$ $93.9(3.4)$ 0.01 -46.7 130Phenvalerate2–2000.9935 $79.0(2.6)$ $82.8(2.7)$ $80.9(2.0)$ 0.01 -36.4 132Difenconazole1–2000.9979 $72.2(10.5)$ $90.2(7.2)$ $85.2(2.0)$ 0.01 -68.5 133Deltamethrin1–2000.9905 $75.5(3.8)$ $82.6(2.8)$ $86.6(2.2)$ 0.01 -34.3	121	Coumaphos	1–200	0.9974	83.8(2.1)	79.4(3.6)	80.8(1.8)	0.01	59.4
123Pyridaben1-2000.997683.0(1.8)91.6(3.2)94.1(1.9)0.00528.4124Cyfluthrin2-2000.996080.4(2.0)92.0(4.7)98.6(2.6)0.01-49.4125Boscalid1-2000.997382.9(1.3)92.3(2.2)89.0(1.0)0.00564.4126Cypermethrin1-2000.993888.6(1.8)92.8(5.0)97.7(1.7)0.01-22.7127Quizalofop-ethyl1-2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.01-39.5128Flucythrinate1-2000.994581.3(1.4)90.6(4.0)96.4(2.0)0.01-39.5129Ethofenprox1-2000.994874.4(14.4)85.2(10.8)93.9(3.4)0.011.3130Phenvalerate2-2000.993579.0(2.6)82.8(2.7)80.9(2.0)0.01-46.7131Tua-Fluvalinate1-2000.991179.5(0.9)78.8(2.2)80.1(1.4)0.01-36.4132Difenoconazole1-2000.997972.2(10.5)90.2(7.2)85.2(2.0)0.01-68.5133Deltamethrin1-2000.990575.5(3.8)82.6(2.8)86.6(2.2)0.01-34.3	122	Fluquinconazole	1–200	0.9984	86.8(2.1)	90.5(2.1)	90.2(2.0)	0.005	29.3
124Cyfluthrin2-2000.996080.4(2.0)92.0(4.7)98.6(2.6)0.01-49.4125Boscalid1-2000.997382.9(1.3)92.3(2.2)89.0(1.0)0.00564.4126Cypermethrin1-2000.993888.6(1.8)92.8(5.0)97.7(1.7)0.01-22.7127Quizalofop-ethyl1-2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.01-39.5128Flucythrinate1-2000.994581.3(1.4)90.6(4.0)96.4(2.0)0.01-39.5129Ethofenprox1-2000.994574.4(14.4)85.2(10.8)93.9(3.4)0.011.3130Phenvalerate2-2000.993579.0(2.6)82.8(2.7)80.9(2.0)0.01-46.7131Tua-Fluvalinate1-2000.991179.5(0.9)78.8(2.2)80.1(1.4)0.01-36.4132Difenoconazole1-2000.997972.2(10.5)90.2(7.2)85.2(2.0)0.01-68.5133Deltamethrin1-2000.990575.5(3.8)82.6(2.8)86.6(2.2)0.01-34.3	123	Pyridaben	1–200	0.9976	83.0(1.8)	91.6(3.2)	94.1(1.9)	0.005	28.4
125Boscalid1-2000.997382.9(1.3)92.3(2.2)89.0(1.0)0.00564.4126Cypermethrin1-2000.993888.6(1.8)92.8(5.0)97.7(1.7)0.01-22.7127Quizalofop-ethyl1-2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.01-36.4128Flucythrinate1-2000.994581.3(1.4)90.6(4.0)96.4(2.0)0.01-39.5129Ethofenprox1-2000.994874.4(14.4)85.2(10.8)93.9(3.4)0.011.3130Phenvalerate2-2000.993579.0(2.6)82.8(2.7)80.9(2.0)0.01-46.7131Tua-Fluvalinate1-2000.991179.5(0.9)78.8(2.2)80.1(1.4)0.01-36.4132Difenoconazole1-2000.997972.2(10.5)90.2(7.2)85.2(2.0)0.01-68.5133Deltamethrin1-2000.990575.5(3.8)82.6(2.8)86.6(2.2)0.01-34.3	124	Cyfluthrin	2–200	0.9960	80.4(2.0)	92.0(4.7)	98.6(2.6)	0.01	-49.4
126Cypermethrin1–2000.993888.6(1.8)92.8(5.0)97.7(1.7)0.01-22.7127Quizalofop-ethyl1–2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.0156.4128Flucythrinate1–2000.994581.3(1.4)90.6(4.0)96.4(2.0)0.01-39.5129Ethofenprox1–2000.994874.4(14.4)85.2(10.8)93.9(3.4)0.01-46.7130Phenvalerate2–2000.991179.5(0.9)78.8(2.2)80.1(1.4)0.01-36.4132Difenoconazole1–2000.997972.2(10.5)90.2(7.2)85.2(2.0)0.01-68.5133Deltamethrin1–2000.990575.5(3.8)82.6(2.8)86.6(2.2)0.01-34.3	125	Boscalid	1–200	0.9973	82.9(1.3)	92.3(2.2)	89.0(1.0)	0.005	64.4
127Quizalofop-ethyl1-2000.996482.7(0.9)91.3(4.9)95.4(2.6)0.0156.4128Flucythrinate1-2000.994581.3(1.4)90.6(4.0)96.4(2.0)0.01-39.5129Ethofenprox1-2000.994874.4(14.4)85.2(10.8)93.9(3.4)0.01-13.130Phenvalerate2-2000.993579.0(2.6)82.8(2.7)80.9(2.0)0.01-46.7131Tua-Fluvalinate1-2000.991179.5(0.9)78.8(2.2)80.1(1.4)0.01-36.4132Difenoconazole1-2000.997972.2(10.5)90.2(7.2)85.2(2.0)0.01-68.5133Deltamethrin1-2000.990575.5(3.8)82.6(2.8)86.6(2.2)0.01-34.3	126	Cypermethrin	1–200	0.9938	88.6(1.8)	92.8(5.0)	97.7(1.7)	0.01	-22.7
128Flucythrinate1-2000.994581.3(1.4)90.6(4.0)96.4(2.0)0.01-39.5129Ethofenprox1-2000.994874.4(14.4)85.2(10.8)93.9(3.4)0.011.3130Phenvalerate2-2000.993579.0(2.6)82.8(2.7)80.9(2.0)0.01-46.7131Tua-Fluvalinate1-2000.991179.5(0.9)78.8(2.2)80.1(1.4)0.01-36.4132Difenoconazole1-2000.997972.2(10.5)90.2(7.2)85.2(2.0)0.01-68.5133Deltamethrin1-2000.990575.5(3.8)82.6(2.8)86.6(2.2)0.01-34.3	127	Quizalofop-ethyl	1–200	0.9964	82.7(0.9)	91.3(4.9)	95.4(2.6)	0.01	56.4
129Ethofenprox1-2000.994874.4(14.4)85.2(10.8)93.9(3.4)0.011.3130Phenvalerate2-2000.993579.0(2.6)82.8(2.7)80.9(2.0)0.01-46.7131Tua-Fluvalinate1-2000.991179.5(0.9)78.8(2.2)80.1(1.4)0.01-36.4132Difenoconazole1-2000.997972.2(10.5)90.2(7.2)85.2(2.0)0.01-68.5133Deltamethrin1-2000.990575.5(3.8)82.6(2.8)86.6(2.2)0.01-34.3	128	Flucythrinate	1–200	0.9945	81.3(1.4)	90.6(4.0)	96.4(2.0)	0.01	- 39.5
130Phenvalerate2-2000.993579.0(2.6)82.8(2.7)80.9(2.0)0.01-46.7131Tua-Fluvalinate1-2000.991179.5(0.9)78.8(2.2)80.1(1.4)0.01-36.4132Difenoconazole1-2000.997972.2(10.5)90.2(7.2)85.2(2.0)0.01-68.5133Deltamethrin1-2000.990575.5(3.8)82.6(2.8)86.6(2.2)0.01-34.3	129	Ethofenprox	1–200	0.9948	74.4(14.4)	85.2(10.8)	93.9(3.4)	0.01	1.3
131Tua-Fluvalinate1-2000.991179.5(0.9)78.8(2.2)80.1(1.4)0.01-36.4132Difenoconazole1-2000.997972.2(10.5)90.2(7.2)85.2(2.0)0.01-68.5133Deltamethrin1-2000.990575.5(3.8)82.6(2.8)86.6(2.2)0.01-34.3	130	Phenvalerate	2–200	0.9935	79.0(2.6)	82.8(2.7)	80.9(2.0)	0.01	-46.7
132 Difenoconazole 1–200 0.9979 72.2(10.5) 90.2(7.2) 85.2(2.0) 0.01 -68.5 133 Deltamethrin 1–200 0.9905 75.5(3.8) 82.6(2.8) 86.6(2.2) 0.01 -34.3	131	Tua-Fluvalinate	1–200	0.9911	79.5(0.9)	78.8(2.2)	80.1(1.4)	0.01	- 36.4
133 Deltamethrin 1–200 0.9905 75.5(3.8) 82.6(2.8) 86.6(2.2) 0.01 –34.3	132	Difenoconazole	1–200	0.9979	72.2(10.5)	90.2(7.2)	85.2(2.0)	0.01	-68.5
	133	Deltamethrin	1–200	0.9905	75.5(3.8)	82.6(2.8)	86.6(2.2)	0.01	- 34.3

Fig. 7. Matrix effect of pesticides in chenpi.

harmful to human health. Therefore, it is important to pay attention to the appropriate use of pesticides.

4. Conclusions

A modified QuEChERS method for the determination of multiple pesticides by GC-MS/MS was developed. Several sorbents were evaluated in order to reduce the ME as much as possible. C18 and PSA were mainly used in the Original QuEChERS method. In our

Table 3 Pesticide residues found in different batches of chenpi samples and their concentrations (mg/kg).

No.	Pesticide found (mg/kg)								
	Chlorpyrifos	Isocarbophos	Methidathion	Profenofos	Fenpropathrin				
2	< LOQ	n.d.	0.016	n.d.	n.d.				
5	n.d.	n.d.	0.014	n.d.	n.d.				
10	< LOQ	n.d.	0.016	n.d.	< LOQ				
14	0.007	< LOQ	n.d.	n.d.	n.d.				
16	0.008	< LOQ	< LOQ	0.007	0.221				
17	0.007	0.009	0.017	0.006	0.025				
18	< LOQ	< LOQ	0.013	< LOQ	0.117				
20	< LOQ	< LOQ	< LOQ	n.d.	0.042				
MRL	0.01	0.01	0.02	0.01	2				

Note: n.d.: no residues detected. MRL: maximum residue limit.

study, PSA had an effect on the pesticide ditalimfos, which showed an unsatisfactory recovery on increasing the amount of PSA. NH₂, with a similar adsorption performance to PSA, is a substitute product of PSA for base-sensitive pesticides or pesticides which could be affected by PSA. The addition of GCB can remove pigment extracted with acetonitrile. A validation procedure was performed, which showed good results for suitability, recovery and repeatability. The developed method was applied to the determination of real samples, and some pesticides were detected, which demonstrated that it is essential to constantly monitor pesticide residues in chenpi.

Acknowledgments

The authors wish to thank the management of Tasly Academy for supporting this research.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

- Chinese Pharmacopoeia Commission, Pharmacopoeia of the People's Republic of China, China Medical Science Press, Beijing, China, 2015.
- [2] Z.B. Yi, Y. Yu, Y. Liang, et al., In vitro antioxidant and antimicrobial activities of the extract of pericarpium citri reticulate of a new citrus cultivar and its main flavonoids, LWT-Food Sci. Technol. 41 (2018) 597–603.
- [3] X.J. Peng, W.H. Liang, M. Peng, et al., Determination of 8 organophosphorus pesticides in pericarpium citri Reticulatae and its products by solid phase extraction/gase hermatography. J. J. Retrum, April 10 (2016) 1267, 1272.
- extraction/gas chromatography, J. Instrum. Anal. 10 (2016) 1267–1272.
 [4] M. Ma, C. Chen, G. Yang, et al., Combined cytotoxic effects of pesticide mixtures present in the Chinese diet on human hepatocarcinoma cell line, Chemosphere 159 (2016) 256–266.
- [5] G. Bapayeva, R. Issayeva, A. Zhumadilova, et al., Organochlorine pesticides and female puberty in South Kazakhstan, Reprod. Toxicol. 65 (2016) 67–75.
- [6] X.J. Peng, H. Qin, Q.J. Wen, et al., Application of homemade double solid phase extraction column for determination of 11 organophosphorus pesticides in Xinhui dried orange peel and its pdroducts, Chin. J. Chromatogr. 34 (2016) 817–822.
- [7] M. Pelajic, G. Pecek, D.M. Pavlovic, et al., Novel multiresidue method for determination of pesticides in red wine using gas chromatography–mass spectrometry and solid phase extraction, Food Chem. 200 (2016) 98–106.
- [8] X. Yang, H. Zhang, Y. Liu, et al., Multiresidue method for determination of 88 pesticides in berry fruits using solid-phase extraction and gas chromatography-mass spectrometry: determination of 88 pesticides in berries using SPE and GC-MS, Food Chem. 127 (2011) 855-865.
- [9] I. Machado, N. Gerez, M. Piston, et al., Determination of pesticide residues in globe artichoke leaves and fruits by GC-MS and LC-MS/MS using the same QuEChERS procedure, Food Chem. 227 (2017) 227–236.
- [10] M. Sajid, C. Basheer, M. Daud, et al., Evaluation of layered double hydroxide/

graphene hybrid as a sorbent in membrane-protected stir-bar supported micro-solid-phase extraction for determination of organochlorine pesticides in urine samples, J. Chromatogr. A 1489 (2017) 1–8.

- [11] N. Zhang, J. Gao, C. Huang, et al., In situ hydrothermal growth of ZnO/gC₃N₄ nanoflowers coated solid-phase microextraction fibers coupled with GC-MS for determination of pesticides residues, Anal. Chim. Acta 934 (2016) 122–131.
- [12] F. David, C. Devos, E. Dumont, et al., Determination of pesticides in fatty matrices using gel permeation clean-up followed by GC-MS/MS and LC-MS/MS analysis: a comparison of low-and high-pressure gel permeation columns, Talanta 165 (2017) 201–210.
- [13] W. Lian, F. Ren, L. Tang, et al., Analysis of polycyclic aromatic hydrocarbons in cigarette samples using gel permeation chromatography clean-up by gas chromatography-tandem mass spectrometry, Microchem. J. 129 (2016) 194–199.
- [14] G. Wu, X. Bao, S. Zhao, et al., Analysis of multi-pesticide residues in the foods of animal origin by GC–MS coupled with accelerated solvent extraction and gel permeation chromatography cleanup, Food Chem. 126 (2011) 646–654.
- [15] M. Anastassiades, S.J. Lehotay, D. Stajnbaher, et al., Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solidphase extraction" for the determination of pesticide residues in produce, J. AOAC Int. 86 (2003) 412–431.
- [16] Z. He, L. Wang, Y. Peng, et al., Multiresidue analysis of over 200 pesticides in cereals using a QuEChERS and gas chromatography-tandem mass spectrometry-based method, Food Chem. 169 (2015) 372–380.
- [17] Y. Yang, W. Kong, L. Zhao, et al., A multiresidue method for simultaneous determination of 44 organophosphorous pesticides in Pogostemon cablin and related products using modified QuEChERS sample preparation procedure and GC-FPD, J. Chromatogr. B 974 (2015) 118–125.
- [18] P. Georgakopoulos, R. Zachari, M. Mataragas, et al., Optimisation of octadecyl (C18) sorbent amount in QuEChERS analytical method for the accurate organophosphorus pesticide residues determination in low-fatty baby foods with response surface methodology, Food Chem. 128 (2011) 536–542.
- [19] O. Golge, B. Kabak, Evaluation of QuEChERS sample preparation and liquid chromatography-triple-quadrupole mass spectrometry method for the determination of 109 pesticide residues in tomatoes, Food Chem. 176 (2015) 319–332.
- [20] E. Boes, R.T. Rosmalina, Y.S. Ridwan, et al., Pesticide residues in vegetable, Procedia Chem. 16 (2015) 229–236.
- [21] R.P. Carneiro, F.A.S. Oliveira, Madureira, et al., Development and method validation for determination of 128 pesticides in bananas by modified QuEChERS and UHPLC–MS/MS analysis, Food Control. 33 (2013) 413–423.
- [22] G. Martinez-Dominguez, A.J. Nieto-García, R. Romero-González, et al., Application of QuEChERS based method for the determination of pesticides in nutraceutical products (Camellia sinensis) by liquid chromatography coupled to triple quadrupole tandem mass spectrometry, Food Chem. 177 (2015) 182–190.
- [23] S.J. Lehotay, Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study, J. AOAC Int. 90 (2007) 485–520.
- [24] P.S. Tette, F.A. da Silva Oliveira, E.N. Pereira, et al., Multiclass method for pesticides quantification in honey by means of modified QuEChERS and UHPLC–MS/MS, Food Chem. 211 (2016) 130–139.
- [25] A. Palenikova, G. Martinez-Dominguez, F.J. Arrebola, et al., Multifamily determination of pesticide residues in soya-based nutraceutical products by GC/ MS–MS, Food Chem. 173 (2015) 796–807.
- [26] X. Liu, Y. Li, W. Meng, et al., A multi-residue method for simultaneous determination of 74 pesticides in Chinese material medica using modified QuEChERS sample preparation procedure and gas chromatography tandem mass spectrometry, J. Chromatogr. B. 1015 (2016) 1–12.
- [27] E.P. Costa, S.S. Caldas, E.G. Primel, Comparison of QuEChERS sample

preparation methods for the analysis of pesticide residues in canned and fresh peach, Food Chem. 165 (2014) 587–593.[28] EC-European Comission, Guidance document on analytical quality control and

- [28] EC-European Comission, Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. SANTE/11945/2015.
- [29] B. Lozowicka, G. Ilyasova, P. Kaczynski, et al., Multi-residue methods for the determination of over four hundred pesticides in solid and liquid high sucrose

content matrices by tandem mass spectrometry coupled with gas and liquid chromatograph, Talanta 151 (2016) 51–61.[30] EC-European Comission, Regulation (EC) No 396/2005 of the European Par-

[30] EC-European Comission, Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC, Official Journal of the European Union, L70, 2005, 1–16.