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A B S T R A C T   

Chronic exposure to elevated levels of pro-oxidant factors may cause structural failings at the 
mitochondrial DNA level and alteration of antioxidant enzymes (glutathione peroxidase, catalase, 
and superoxide dismutase). Oxidative stress is an imbalance between the capacity of endogenous 
non-enzymatic antioxidants (glutathione, alpha-lipoic acid, uric acid, ferritin, metallothionein, 
melatonin, and bilirubin) and the occurrence of pro-oxidant factors which may lead to the 
pathogenesis of various diseases that affects the kidneys, pancreas, central nervous system, and 
cardiovascular system. Therefore, the utilization of medicinal plants with antioxidant activity, e. 
g., Angelica keiskei Koidzumi which contains chalcones, is interesting to be explored. Chalcones 
exhibit direct and indirect antioxidant activity and prevent oxidative stress by decreasing ROS, 
RNS, and superoxide production. In this review, we discuss the pharmacology activities of 
A. keiskei Koidzumi and its efficacy in humans. The articles were explored on PubMed and Google 
Scholar databases and based on the titles and abstracts related to the topic of interest, and 55 
articles were selected. Two main chalcones of this plant, 4-hydroxyderricin and xanthoangelol, 
have been reported for their various pharmacology activities. The efficacy of A. keiskei was 
confirmed in anti-obesity, hepatoprotective, anti-diabetes mellitus, and increasing plasma anti-
oxidants in patients with metabolic syndrome. A keiskei is safe as proven by only mild or no 
adverse events reported, thus it is prospective to be further developed as an antioxidant 
nutraceutical.   

1. Introduction 

Oxidative stress is a disturbance in the balance of pro-oxidants and antioxidants that is caused by the formation of reactive oxygen 
(ROS) and reactive nitrogen species (RNS) [1,2]. Excessive amounts of ROS and RNS may lead to the oxidation of biological molecules 
such as lipids, proteins, and deoxyribonucleic acid (DNA) [1]. The elevation of ROS production is induced by ultraviolet radiation, 
pollutants, or heavy metals exposure [3]. Oxidative stress may lead to the pathogenesis of various diseases, e.g., acute kidney injury, 
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atherosclerosis, obstructive pulmonary disease, Alzheimer’s, diabetes mellitus, neurodegenerative diseases, cancer, inflammation, and 
cardiovascular disease [4–7]. Endogenous antioxidants such as glutathione, alpha-lipoic acid, uric acid, ferritin, metallothionein, 
melatonin, and bilirubin are effective in blocking the harmful effects of ROS, however, their amounts are sometimes not sufficient 
[8–10]. Therefore, exogenous antioxidants, particularly those derived from medicinal plants, are needed [11,12]. 

The utilization of medicinal plants with antioxidant activity, e.g., Angelica keiskei Koidzumi which contains chalcones, is interesting 
to be explored. A. keiskei (family Apiaceae) has shown a strong antioxidant activity [13–15]. The fresh leaves of this plant can be 
devoured directly without prior processing [16], because of their sweet, slightly bitter astringent taste, combined with a fragrant 
aroma [17]. The stem of A. keiskei contains a yellow sap, with an abundant capacity of chalcones (e.g., xanthoangelol and 4-hydrox-
yderricin), that are not found in another genus of Angelica plants [18]. Xanthoangelol (XA) has been determined in the leaf extract 
A. keiskei with a concentration of 1.959 % [19]. The chalcones compounds of A. keiskei have been reported for their various phar-
macological activities, including nephroprotective effects, anti-obesity, anti-diabetic, anti-inflammatory, hepatosteatosis, antituber-
culosis, antitumor, and antimetastatic [20–31]. However, it is interesting to further explore the pharmacology activities by in silico, in 
vitro, and in vivo studies of A. keiskei and its efficacy to humans which support the potential of A. keiskei as herbal medicine. In this 
paper, we summarized the parts of the plant that have been tested for their pharmacological activities to combat diseases triggered by 
oxidative stress such as kidney disease, liver injury, obesity, diabetes mellitus, cardiovascular disease, inflammation, myopathy, and 
neurotoxicity damage. Through this review, readers will get insights about the benefits and safety of A. keiskei in humans, particularly 
from the pharmacology perspectives. 

2. Methods 

This review was based on the article published during 2012–2022 and included publications from PubMed and Google Scholar. 
Briefly, a literature search in (1) PubMed database using keywords ((“Antioxidants" [MeSH]) AND ″4-hydroxyderricin” [Supple-
mentary Concept]) OR “xanthoangelol” [Supplementary Concept]), resulted in n = 10; and using keywords ((“Chalcone" [MeSH]) OR 
″4-hydroxyderricin” [Supplementary Concept]) OR “xanthoangelol” [Supplementary Concept]) AND “Antioxidants" [MeSH]), resulted 
in n = 21; and (2) the Google Scholar database using keywords angelica keiskei AND chalcone AND antioxidant, resulted in n = 1340. 
The search was limited to publications in English. 

The articles obtained were further identified and screened based on the titles and abstracts related to the topic of interest, and 
finally 55 articles were selected to be reviewed as depicted in Fig. 1. 

3. Results 

Of 55 articles, 2 articles discussed the in silico study [21,32], 10 articles employed in vitro method [20,22,26,29,32–36], 6 articles 
used in vivo method [14,34,36–39], and 32 articles describe information about antioxidant activity. Studies in humans were reported 
in 6 articles [18,24,40–43] and of these studies, 5 articles had confirmed the efficacy of A. keiskei [18,24,40,42,43]. Efficacy was 
analyzed by measuring the decreased levels of alanine aminotransferase (ALT), γ-glutamyltransferase (GGT), visceral fat, ghrelin, 
blood glucose, and increased plasma antioxidants in patients with metabolic syndrome [18,24,40,42,43]. The safety of A. keiskei was 
only mentioned by 4 articles [18,24,40,44]. 

In clinical studies, A. keiskei was administered in the form of juice, capsules, and powder [18,24,40,44] and the plant parts used 
were the leaves, stems, stem sap, roots, and herbs. It was reported that 5 g of A. keiskei herbal powder contain 2.07 mg lutein, 1.08 mg 
ẞ-carotene, 5.75 mg quercetin, and 2.57 mg catechin [43]. The stem of A. keiskei excretes a yellow sap rich with chalcones such as XA 
A-G, 4-hydroxyderricin (4-HD), isobavachalcone, xanthokeismin A-C, and xanthokeistal A [45–48]. In 100 g of dried herb granules, 
198.7 mg chalcones (134.5 mg XA and 64.2 mg 4-HD) have been quantified [49]. The amount of chalcone calculated as XA in the 
ethanol extract of the leaves was 1.959 mg/100 g, in the ethanol extract of the stems was 2.63 mg/100 g, in the ethanol extract of the 
root bark was 10.51 mg/100 g, and in the root core was 1.44 mg/100 g [19,50]. The flavonoids calculated as quercetin in the aqueous 

Fig. 1. The flowchart of the article search.  
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Table 1 
The pharmacology activities of A. keiskei (reported using in silico, in vitro, and in vivo studies).  

Pharmacology 
Activity 

Part of 
Plant 

In silico In vitro In vivo Result Ref 

Nephroprotective Stems N/A NAPQI-induced HEK- 
293 cells 

N/A Not cytotoxic and protects HEK-293 cells 
against NAPQI damage (IC50 of 2322 μg/ 
mL) 

[20] 

Leaves N/A NAPQI-induced HEK- 
293 cells 

N/A Not cytotoxic but does not protect HEK- 
293 cells against NAPQI damage 

[20] 

Hepatoprotective Powder N/A Acetaminophen- 
induced HepG2 and 
HepaRG cells 

N/A Decreases apoptosis by reducing the 
resulting membrane permeability 
hepatotoxicity in HepG2 and HepaRG cells 

[35]  

Leaves N/A N/A carbohydrate and fat 
induced C57BL/6J 
mice 
(Dose: 2 g/kgBW 
and 4 g/kgBW for 18 
weeks) 

Prevent NAFLD by reducing intestinal 
damage, intestinal lipid absorption, and 
oxidative stress. 

[14] 

Anti-cancer Herbs N/A Hep3B cells and 
NIH3T3 cells 

N/A Reducing cytotoxicity by preventing 
oxidative stress in cell cultures (IC50 of 15 
μg/mL) 

[33]  

Roots N/A SK-MEL-28, SK-MEL- 
5, and SK-MEL 31 
cells 

BRAF V600E/PTEN- 
null mice (Dose: 10 
and 50 mg/kgBW) 

XA and 4-HD from roots stops the cell cycle 
in phase G1 and apoptosis in melanoma 
cells. 

[34]  

Roots N/A LM8 cells N/A XA and 4-HD from roots showed 32 ± 1 
and 33 ± 1 % cytoxicity at 50 μM, and 54 
± 2 and 45 ± 2 % cytotoxicity at 100 μM in 
LM8 cells 

[29]  

Roots N/A N/A Male C3H/He mice 
Dose: 25 and 50 mg/ 
kg BW 

Inhibits tumor growth, metastases to the 
lungs and liver, and tumor expression 
associated with macrophages in animals. 

[36] 

Anti-obesity Leaves 
and 
stems 

N/A N/A Mice C57BL/6 
Dose: 12.5 g/kg BW 
for 10 weeks 

Preventing obesity and metabolic disorders 
through metabolic genes and the 
composition of the gut microbiota 

[39] 

Anti-diabetes 
mellitus 

Saps N/A 3t3-l1 cells N/A XA and 4-HD from saps improves glucose 
absorption and improves GLUT4 
immunofluorescence in concentration 10 
μmol/L (4HD 48 % and XA 47 %) 

[26] 

Saps DPP-IV was used as 
the protein target 

N/A N/A 4-HD interacts with amino acids in DPP-IV 
binding pocket through a single hydrogen 
bond with Glu206 and Phe357 (docking 
score of 0.17 μM). 

[32]  

Saps N/A DPP-IV N/A 4-HD may inhibit DPP-IV (IC50 of 81.44 
μM) 

[32] 

Sap α-glukosidase and 
DPP-IV were used as 
the protein targets 

N/A N/A XA interacted with amino acid residues on 
α-glucosidase and important residues of 
Glu205 and Glu206 and Phe357 in the 
DPP-IV binding pocket (docking score of 
1.99 μM) 

[21]  

Saps N/A α-glucosidase and 
DPP-IV 

N/A XA has antidiabetic activity with 
mechanisms to inhibit α-glucosidase and 
DPP-IV (IC50 of 10.49 μM) 

[21] 

Anti- 
inflammatory 

Leaves 
and 
stems 

N/A RAW 264.7 cells N/A XA inhibits the production of nitric oxide 
(NO) and the expression of pro- 
inflammatory cytokines (IL-1b and IL-6) 
(IC50 of 2.7 μM) 

[22] 

Anti-myopati Roots N/A N/A Sprague-Dawley rats 
Dose: 250 and 500 
mg/kg BW 

Prevent muscle atrophy by reducing the 
mechanism of decreasing muscle protein 
degradation as well as activating myoblast 
differentiation. 

[38] 

Neuroprotective Herbs N/A HT-22 cells N/A XA has a neuroprotective effect on nerve 
cells. 
Neuroprotective in Alzheimer’s disease by 
lowering amyloid plaques. 

[36]  

Herbs N/A N/A Male albino mice 
Dose: 1, 10, 20 mg/ 
kg BW 

Has a neuroprotective effect on nerve cells. 
Neuroprotective in Alzheimer’s disease by 
lowering amyloid plaques. 

[36] 

4-HD: 4-hydroxyderricin; DPP-IV: dipeptidyl peptidase; GLUT4: glucose transporter-4; HEK-293: human embryonic kidney-293 cells; HepaRG: 
human hepatic progenitor cells; Hep3B: human hepatocellular epithelial carcinoma cells; HepG2: human hepatocellular carcinoma cells; HT-22: 
mouse hippocampal neuronal cells; 3t3-l1: mice fibroblast cells; LM8: murine osteosarcoma cells; NAFLD: non-alcoholic fatty liver disease; 

I. Wahyuni et al.                                                                                                                                                                                                       



Heliyon 10 (2024) e24119

4

and the methanol extract of the herbs were 12.49 mg/100 g and 22.82 mg/100 g, respectively. Moreover, the phenolics calculated as 
gallic acid in the aqueous and the methanol extract of the herbs were 46.67 mg/100 g and 70.49 mg/100 g, respectively [13]. The 
pharmacology activities of A. keiskei resulted from in silico, in vitro, in vivo studies is tabulated in Table 1, whereas the human studies are 
summarized in Table 2. 

3.1. Nephro-hepatoprotective activity of A. keiskei 

An in vitro study of the stem and leaves extracts of A. keiskei on HEK-293 cells reported a nephroprotective activity against N-acetyl- 
p-benzoquinone imine (NAPQI) induction by the stem extract, while the leaves not [20]. A study reported that chalcone revealed a 
strong anti-necroptosis activity (IC50 = 1.08 μM) and a protective activity (EC50 = 1.49 μM) [51]. 

Chalcones contained in A. keiskei were reported for their protective activity, in term of survival growth rate, on acetaminophen- 
induced human hepatoma HepG2 and HeparG cells, by increasing cell growth [35]. The administration of A. keiskei juice on male 
obese C57BL/6J mice at dose 4 g/kg BW has reduced lipid levels in the liver (12.35 mg/g) and lipoprotein lipase mRNA expression in 
the gastrointestinal tract [14,52]. Hepatic steatosis is the amount of intrahepatic fat at least 5 % of the weight of the liver [53]. 

Interestingly, a clinical study conducted on 82 alcohol drinkers aged 20–75 years, who consumed 14 or more units/week for men 
and 7 or more units/week for women for 1 month, had shown abnormalities in the liver function [40,54]. The intervention group was 
given A. keiskei capsules containing A. keiskei extract 500 mg, D-sorbitol 100 mg, and glycerin 100 mg administered twice daily be-
tween meals for 12 weeks. The intervention group showed a significant reduction of ALT and GGT [40]. 

3.2. Anti-cancer activity of A. keiskei 

Two chalcones contained in A. keiskei, namely 4-HD and XA, showed a proliferative effect on the growth of fibroblast and prevented 
oxidative stress during cell culture. These compounds not only protect Hep3B cells but also NIH3T3 cells against oxidative stress, hence 

NAPQI: N-acetyl p-quinone imine; NIH3T3: mouse NIH/Swiss embryo fibroblast cells; RAW 264.7: macrophage-like, Abelson leukemia virus- 
transformed cell line derived from BALB/c mice; SK-MEL: human malignant melanoma cells; XA: Xanthoangelol. 

Table 2 
The efficacy safety of A. keiskei in humans.  

Pharmacology 
Activity 

Part of Plant or 
Pharmaceutical 
Dosage Form 

Participants and Sample 
Size (Dose) 

Result Safety Ref 

Baseline After Intervention 

Hepatoprotective Herbs 82 alcohol drinkers 
(Dose: 500 mg of extract 
twice daily for 12 weeks) 

Decrease levels of ALT and 
GGT 

↓ levels of ALT 13.4 % and 
GGT 6.5 % 

Decrease red 
blood cells 1.2 
% and 
hemoglobin 1.3 
% 

[40] 

Anti-obesity Capsule 
(Chalcurb®) 

60 adults (30 men and 30 
women) 
(Dose: capsule 
(Chalcurb®) 220 mg/ 
day) 

Reduces visceral fat in men 
11.0 ± 0.4 cm2 and ghrelin 
in both genders 525.6 ±
44.4 pg/dL. 

↓ visceral fat in men 8.72 % 
and ghrelin in both genders 
5.62 %. 

No AEs [18]  

Capsule 
(Chalcurb®) 

15 healthy men and 26 
obese adults (Dose: 220 
mg capsule of the 
supplement 200 mg/day 
A.keiskei chalcone 
powder 8 % for 8 weeks) 

Visceral fat 107.00 ±
43.56 cm2, total fat 330.27 

± 59.57 cm2, BW 73.86 ±
6.15 kg, BMI 26.92 ± 1.36, 
hip circumference 100.07 

± 3.2 cm. 

↓ visceral fat 7.94 %, total 
fat 5.99 %, BW 1.1 %, BMI 
1.0 %, hip circumference 
0.69 % 

No AEs [24] 

Anti-diabetes 
Mellitus 

Capsules 10 adults with type II 
diabetes mellitus 
(Dose: 500 mg A.keiskei 
capsules thrice daily for 
2 weeks) 

Fasting blood sugar 12.6 
± 5.14 mmol/L 

Did not exhibit any glucose- 
lowering effect. 

Increase in the 
systolic blood 
pressure 10.5 %. 

[41]  

Leaves and stems 
powder 

18 adults 
Dose: A.keiskei powder in 
the morning and evening 
for 7 days. 

Blood glucose 134 mg/dL 
until 357 mg/dL and 
cholesterol 233.58 mg/dL 

↓ blood glucose 95.5 mg/dL 
until 270.8 mg/dL but does 
not lower cholesterol 
levels. 

N/A [42] 

Cardiovascular Herbs capsule 10 adults (>60 years old) 
5 g capsule gelatine A. 
keiskei. 

Plasma quercetin 0.0 
μmol/L, plasma lutein 
0.11 μmol/L, and 
antioxidant performance 
50 % protection 

↓ plasma antioxidants in 
metabolic syndrome such 
as plasma quercetin 20 %, 
plasma lutein 35.3 %, and 
antioxidant performance 
20 % protection. 

N/A [43] 

No AEs: No adverse events. 
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the cytoprotective activity of this compound is not limited to one cell type. At a concentration of 100 μM, 4-HD and XA produced 
cytoprotective (p < 0.01) by glucose oxidase induction (GOX) [33]. 

In this review we also report the studies of A. keiskei on several other cell lines, namely SK-Mel-28, SK-Mel-5, and SK-MEL-31 cells, 
which are human melanoma cell lines [55–57]. Melanoma is a disease in which malignant cells grow abnormally in melanocytes [58]. 
In vitro studies conducted on 4-HD and XA at doses of 5, 10, and 20 μM against SK-MEL-28, SK-MEL-5, and SK-MEL-31 cells indicated 
that 4-HD suppressed the proliferation of SK-MEL-31 cells significantly at a dose of 20 μM, while XA discontinued the proliferation of 
SK-MEL-31 cells at doses of 10 or 20 μM. In another study, 4-HD and XA subdued the growth of SK-MEL-5 and SEL-MEL-28 cells at a 
low dose of 5 μM [34]. 

The anticancer mechanism of 4-HD and XA was reported due to the arresting of BRAF/MEK/ERKs and phosphoinositide 3-kinase 
(PI3–K)/protein kinase-B (AKT) signaling pathways [34]. Both 4-HD and XA occupy the ATP binding site of BRAFV600E and PI3–K 
thus preventing the phosphorylation. Based on an in vivo study, 4-HD and XA at a dose of 10 mg/kg could reduce melanoma volume for 
about 43 and 72 % on BRAF V600E/PTEN-null mice, whereas the higher doses had decreased tumor volume for about 82 and 91 % 
[59]. Therefore, 4-HD and XA are predicted could attenuate the activation of BRAFV600E, PI3–K, and inhibit the phospholipase of 
ERK1/2 and AKT. Thus, these two chalcones may hinder tumor growth by reducing the expression of PCNA, cyclin D1, and Bcl-2 [34]. 

XA (10, 25, and 50 μM) prevented the production of IL-10 and MCP-1 in IL-4 and IL-13-induced macrophages M2 on highly 
metastatic osteosarcoma LM8 cells and human monocyte THP-1 cells [29]. 4-HD (25 and 50 μM) could inhibit the production of MCP-1 
in macrophages M2, while at 50 μM it inhibits the production of IL-10 only. Osteosarcoma LM8 cells are highly metastatic in the lungs. 
These cell lines are used to study pulmonary metastasis and osteosarcoma [60]. THP-1 cells were isolated from the peripheral blood 
cells of patients suffering from leukemia [61]. THP-1 cells are used to study the function, mechanism, and pathway of anti-cancer drug 
candidates [62]. 4-HD and XA at concentrations of 10–50 μM could inhibit phosphorylation of the Stat3 protein [29]. In vivo studies 
indicated that 4-HD and XA (25 or 50 mg/kg BW) administered orally 2 times a day for 30 days to mice with osteosarcoma, could 
inhibit the tumor growth. Immunohistochemistry observations revealed that XA at a dose of 25 or 50 mg/kg could reduce the 
expression of F4/80, a marker of solid tumor macrophages. 4-HD and XA (25 or 50 mg/kg BW) inhibit pulmonary metastasis, suppress 
the increased lung weight due to tumor metastases, and inhibit liver metastase [29]. 

3.3. Anti-obesity activity of A. keiskei 

A previous in vivo study disclosed the anti-obesity activity of A. keiskei juice. Daily dose of 12.5 g/kg BW of this plant for 10 weeks 
had reduced the body weight by 17.3 % [39] due to alteration in metabolic gene expression and the composition of the gut microbiota 
[24,39]. The chalcones of A. keiskei were predicted to play role in these activities [39]. 

Patients (n = 60) with metabolic syndrome and obesity who were given A. keiskei (Chalcurb®) 220 mg/capsule once a day with 
dinner for 12 weeks, demonstrated a reduction of BW on the 84th day although not significant compared to that of the placebo group 
(p = 0.069) in both females and males. Male participants in the intervention group experienced a significant decrease in ghrelin 
compared to the placebo group, and reduced levels of ghrelin were thought to correlate with reduced food intake during the study [18]. 
Visceral fat was measured on days 14, 56, and 84. Ghrelin is considered a hormone that controls hunger. The intervention group 
experienced a significant decrease in ghrelin compared to the placebo group, and reduced levels of ghrelin were thought to correlate 
with reduced food intake during the study [18]. 

Another clinical study in 26 obese adults (BMI of 25–30), age 40–65 years, and a waist circumference of >85 cm treated with 
A. keiskei chalcone powder dose of 200 mg/day for 8 weeks, indicated a significant visceral fat area (VFA) loss by 7.94 % (p < 0.05), a 
reduction of total amount of fat (TFA) by 5.99 % (p < 0.05), and weight loss (p < 0.01) in the intervention group compared to the 
control group (15 healthy men) at the end of the study. No adverse events (AEs) was observed until week-8, thus confirmed the safety 
of this drug [24]. 

A clinical study towards 9 adults (30–65 years) with metabolic syndrome treated with 6.2 g/day (at breakfast and dinner) of 
A. keiskei leaves and stems powder for 8 weeks resulted in the significant decrease of the VFA and TFA at week-8 compared to week- 
0 (p < 0.01). Moreover, the participants’ BW and BMI also reduced (p < 0.05) [49]. Treatment with A. keiskei (Chalcurb®) 220 
mg/capsule revealed no significant effect in total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and 
overall glucose levels (fasting glucose and HBA1c) [18]. 

Similarly, another study reported that A. keiskei may prevent metabolic syndrome by reducing visceral fat. LDL cholesterol levels at 
week-4 and week-8 were lower than in week-0 (p = 0.090 and p = 0.086, respectively). The chalcones of A. keiskei were predicted 
could inhibit β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase [24]. 

3.4. Anti-diabetes mellitus activity of A. keiskei 

A previous in silico study of XA isolated from the yellow sap of A. keiskei reported that this chalcone interacts with Glu205 and 
Glu206 in ɑ-glucosidase and with Phe357 in DPP-IV similarly to that of known inhibitors of the enzymes [21] Moreover, in vitro study 
disclosed that the other chalcone, 4-HD, inhibits DPP-IV (IC50 of 81.44 μM). 4-HD could attach to the DPP-IV with similar binding 
mode to sitagliptin, an inhibitor of DPP-IV [32]. 4-HD and XA were reported could increase glucose absorption in 3T3-L1 cells by 8 % 
and 47 %, respectively. At a dose of 20 μmol/L, 4-HD and XA showed an increase in glucose transporter-4 (GLUT4) through immu-
nofluorescence [26]. 

A clinical trial study on female patients with type 2 diabetes (T2DM) (18–59 years) treated with 500 mg A. keiskei capsules thrice 
daily (1.5 g/day) for two weeks as an add-on therapy, resulted in no glucose reduction effect. In monitoring the AEs, there was a 
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significant increase in systolic pressure (p = 0.014) on the intervention group, but not in the placebo group [41]. 
Another report of patients with hyperglycemic (blood glucose 130–169 mg/dL) and hypercholesterolemic (200–239 mg/dL) aged 

30–70 years, the treatment with A. keiskei powder twice per day for 7 days indicated an increase of the average cholesterol and a 
decrease in the average fasting glucose levels [42]. 

3.5. The effect of A. keiskei on cardiovascular 

A clinical study on 10 adults (>60 years) with metabolic syndrome administered with 5 g of A. keiskei powder in capsules once a 
day, resulted in a significant increase of total plasma values of antioxidants at 60 and 180 min about 44 and 47 % (p < 0.05), but the 
level of these antioxidants decreased slightly after lunch, and increased again at 360 and 420 min (p < 0.05) [43]. 

In vitro study revealed that 4-HD and XA effectively inhibit platelet aggregation at a dose of 42.3 μM (IC50 of 46.1 μM) [28]. Platelet 
aggregation is formed due to the presence of atherosclerotic plaques resulting in ischemic tissue injury and organ dysfunction [63]. 

3.6. Anti-inflammatory activity of A. keiskei 

The effect of leaves and stem extracts of A. keiskei 10 μg/mL in lipopolysaccharide-induced RAW 264.7 cells revealed an inhibition 
of nitric oxide (NO) production and IL-1B and IL-6 expression [22]. In addition, isobavachalcone of A. keiskei also inhibits the 
expression of nitric oxide synthase (iNOS) in macrophages-induced toll-like receptors (TLR) [64]. 

3.7. Anti-myopathy activity of A. keiskei 

Oral administration of A. keiskei in dexamethasone-induced rats reduced muscle atrophy damage through mitogen activated 
protein kinase (MAPK) at a dose of 500 mg/kg. In vitro study performed on colon cancer cells induced by dexamethasone 20 μM showed 
that 4-HD dose of 100 μM protected the myosin heavy chain (MHC) degradation through suppressing the expressions of MAFbx, MuRF- 
1, and myostatin [38]. 

3.8. Neuroprotective activity of A. keiskei 

The neuroprotective effect of XA on HT-22 cells against oxidative stress resulted that at a dose of 40 μM, XA increased GSH and SOD 
[36]. HT-22 are cell lines derived from hippocampal nerve cultures of mice and used for in vitro testing in neurodegenerative [36]. 

Furthermore, XA at a dose of 20 mg/kgBW in scopolamine induced-mice can improve the symptoms of Alzheimer’s disease. XA 
showed significant results (p < 0.001) of memory improvement observed in the Y-maze test and reduced beta amyloid (p < 0.001) 
[36]. 

4. Discussion 

The antioxidant activity of chalcones is thought due to the presence of free hydroxyl groups and the α,β-double bond (Fig. 2). 
Chalcones exhibit antioxidant activity either directly or indirectly [65,66]. Chalcones prevent oxidative stress by lessening the pro-
duction of ROS, RNS, and superoxide [67]. The ethanol extract of A. keiskei leaves has shown antioxidant activity with an IC50 value of 
7.73 μg/mL [68]. The chalcone content in this plant plays a role in scavenging the free radical of 1,1-diphenyl-2-picrylhydrazyl (DPPH) 

Fig. 2. 2D Structure of the Xanthoangelol (blue box indicates the prenyl group, red box indicates the α, β-double bond). (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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by donating the hydrogen of the hydroxyl group, and chalcones act as substrates for free radicals such as superoxide and hydroxide 
[69]. Antioxidants exert their activity by transferring their hydrogen to DPPH molecule which possesses a lonely radical electron [70]. 
When the free radical of DPPH molecule is combined with the single electron of the hydrogen of an antioxidant, the purple color of 
DPPH shifts to yellow [71]. 

Nephrotoxicity is marked by an abnormal elevation of blood urea nitrogen (BUN) and serum creatinine (sCr), along with a decrease 
in glomerular filtration rate (GFR) [36,72,73]. Drug-induced nephrotoxicity mechanisms include tubular cells damage, glomerular 
hemodynamic changes, crystal nephropathy, thrombotic microangiopathy, and inflammation [70,74]. Nephrotoxicity may lead to 
acute kidney injury (AKI). AKI occurs when there is an imbalance between oxygen and nutrients induced by impaired circulation to the 
nephron and increased energy needs due to oxidative stress [75]. Nephrotoxicity can be initiated by exposure to chemical compounds 
and drugs such as cadmium, mercury, arsenic, lead, glycolic acid, and ethylene glycol [76,77], whereas drugs triggering kidney 
damage include cisplatin, angiotensin-converting enzyme (ACE) inhibitors, aminoglycosides, non-steroid anti-inflammatory drugs 
(NSAIDs), and acetaminophen [78–82]. 

Acetaminophen is an antipyretic-analgesic drug that is widely used because it does not inhibit the catalytic work of COX-1 in the 
stomach, thus the production of prostaglandin is not altered [83]. However, acetaminophen is biotransformed via the oxidative re-
action of cytochrome P450 to its toxic metabolite namely NAPQI by CYP2E1 and CYP2A6 [84], and its long term use may initiate 
nephrotoxicity due to the depletion of glutathione in the liver [85,86]. When excessive NAPQI metabolite enters the mitochondria, it 
induces oxidative stress, mitochondrial dysfunction, and necrotic cell death [87,88]. 

Chalcones have been reported for their pro-inflammatory activity by reducing the expression of inflammatory cytokines, lowering 
ROS levels, preventing mitochondrial damage and cell apoptosis via the inhibition of mitogen-activated protein kinase (MAPK) 
pathway, inhibition of nuclear factor-kappaB (NF-κB), and activation nuclear factor-erythroid-2 related factor 2 (Nrf2) [85]. Chalcones 
has shown their nephroprotective activity against cisplatin-induced kidney cells, by blocking MAPK signaling [89]. 

Chalcones have conveyed their necroptosis signaling blockade activity, which is the main mechanism for the occurrence of the 
kidney proximal tubule cell injury [51]. Chalcones can inhibit the expression of pro-inflammatory cytokines such as tumor necrosis 
factor-α (TNF-α), IL-1β, IL-6, and miR-146a [90]. Mechanism of chalcone as nephroprotector in kidney toxicity induced by NAPQI 

Fig. 3. Mechanism of chalcone as nephroprotector in kidney toxicity induced by NAPQI. Adapted and modified from Refs. [75,91,92].  
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Fig. 3. 
Hepatoxicity occurs due to cell death due to oxidative stress and drugs [93,94]. ROS is pathophysiologic for acute liver injury, 

produced in the mitochondria and endoplasmic reticulum of hepatocytes through the cytochrome P450 enzyme [95]. When there is an 
excessive of ROS production, an increase serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) will 
eventually occur [96,97]. A long-term consumption of alcohol may lead to hepatoxicity [98]. Moreover, certain medications, e.g., 
paracetamol, sodium diclofenac, diethyldithiocarbamate, ketoconazole, and anti-tuberculosis, may also initiate liver damage [94, 
99–101]. 

HepG2 and HepaRG cells are human hepatoma cell lines [102]. HepG2 cells were used in studies of the metabolism and hepa-
totoxicity of drugs [103]. HepaRG cells exhibit the activity of the cytochrome enzyme [102]. HepaRG cells are used for biological 
interpretation of the effects of chemical exposure on the liver [104]. GGT is a hepatocyte plasma membrane enzyme that plays a role in 
the antioxidant mechanism by catalyzing gamma-glutamyl glutathione to the acceptor peptide [40,105,106]. 

Hep3B cell is derived from hepatocellular carcinoma cell lines and NIH3T3 cell line was derived from mouse embryonic fibroblasts 
and progressed until pre-birth [107,108]. Hep3B cells and NIH3T3 cells were used in in vitro anti-cancer assays [109,110]. GOX 
catalyzes glucose oxidation in the presence of oxygen for the production of gluconic acid, resulting in oxidative damage to cells [111, 
112]. 

Cancer is an uncontrolled and multistage change in mutants and cell proliferation [113]. ROS can influence the occurrence of 
cancer by stimulating tumorigenesis, and cell transformation/proliferation, to cause cell death [114]. Compounds used to reduce 
ROS-induced cell mutation and delay the initiation of cancer are commonly called antioxidants [115]. Chalcones have been known for 
their antioxidant activity [116]. 

Obesity is the accumulation of excessive fat in the body [117]. Obesity is characterized by chronic inflammation that causes a 
permanent increase in oxidative stress [118]. In the body, an increase in ROS and fat accumulation can lead to obesity and result in 
metabolic syndrome [117]. Foods rich in oxidants can be used to prevent an increase in oxidative stress to overcome obesity [119]. The 
juice is made from fresh vegetables in the form herbs of A. keiskei. In addition, fasting blood glucose insulin, and serum lipid levels are 
significantly reduced [39]. 

4-HD isolated from stem sap A. keiskei has been reported for its antidiabetic activity with a mechanism of inhibiting DPP-IV, 
wherein 4-HD interacts with Glu 206 and Phe357 [32]. Thus 4-HD and XA may increase glucose uptake by increasing GLUT4 
through the signaling pathway of liver kinase B1 (LKB1)/adenosine monophosphate-activated protein kinase (AMPK) in adipocyte 
3T3-L1 [26]. It was announced that A. keiskei powder is effective in lowering blood glucose levels, but not effective in lowering blood 
cholesterol levels [42]. 

Excess glucose metabolites will cause damage to ẞ-pancreatic cells and result in diabetes mellitus [120]. Oxidative stress causes an 
imbalance in the production of free radicals and antioxidant systems resulting in a decrease in insulin sensitivity [121,122]. ROS 
production will lead to the breakdown of insulin and increased apoptosis [120]. The main chalcones of 4-HD and XA extracted from the 
roots of A. keiskei have antiplatelet [28,123]. In the presence of compounds that enhance endothelial function and inhibit platelet 
aggregation, it will reduce the formation of platelet aggregation [124]. 

Chalcones have an inflammatory response by inhibiting the secretion of tumor necrosis factor-alpha (TNF-ɑ) and the expression of 
nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) induced lipopolysaccharides [125]. Chalcone derivative compounds have 
antioxidant properties by preventing structural damage in acute LPS-induced lung injury [126]. Myopathy is muscle weakness without 
sensory loss [37]. Drug induced myopathy include statin, proton pump inhibitor, gabapentin, and dexamethasone [127–130]. 

5. Conclusions 

Chalcones have been reported to exhibit direct and indirect antioxidant activity and prevent oxidative stress by decreasing ROS, 
RNS, and superoxide production. In this paper, we summarized the parts of Angelica keiskei Koidzumi, a plant that contains chalcones, 
for their pharmacological activities to combat diseases triggered by oxidative stress such as kidney disease, liver injury, obesity, 
diabetes mellitus, cardiovascular disease, inflammation, myopathy, and neurotoxicity damage. Chalcones in A. keiskei have been 
extensively studied by in silico, in vitro, in vivo, and its efficacy to humans and had proven their activity in preventing several diseases 
caused by oxidative stress, including nephroprotective, hepatoprotective, anti-cancer, anti-obesity, anti-diabetic, cardiovascular, anti- 
inflammatory, anti-myopathy, and neuroprotective. Most studies concerned on the anti-obesity activity due to the capability of this 
plant in decreasing visceral fat, ghrelin, total fat, body weight, body mass index, and hip circumference. Efficacy of A. keiskei was 
confirmed in anti-obesity, hepatoprotective, anti-diabetes mellitus, and increasing plasma antioxidants in patients with metabolic 
syndrome. A keiskei is safe as proven by only mild or no adverse events reported, thus it is prospective to be further developed for a safe 
antioxidant nutraceutical. 
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acid and glucose oxidase: successful tales of cascade reactions, Catal. Sci. Technol. 10 (2020) 5740–5771, https://doi.org/10.1039/d0cy00819b. 
[113] J.E. Klaunig, Oxidative stress and cancer, Curr. Pharm. Des. 24 (2019) 4771–4778, https://doi.org/10.2174/1381612825666190215121712. 
[114] J.D. Hayes, A.T. Dinkova-Kostova, K.D. Tew, Oxidative stress in cancer, Cancer Cell 38 (2020) 167–197, https://doi.org/10.1016/j.ccell.2020.06.001. 
[115] J.G. Gill, E. Piskounova, S.J. Morrison, Cancer, oxidative stress, and metastasis, Cold Spring Harb. Symp. Quant. Biol. 81 (2016) 163–175, https://doi.org/ 

10.1101/sqb.2016.81.030791. 
[116] I. Kostopoulou, A. Tzani, N.I. Polyzos, M.A. Karadendrou, E. Kritsi, E. Pontiki, T. Liargkova, D. Hadjipavlou-Litina, P. Zoumpoulakis, A. Detsi, Exploring the 2′- 

hydroxy-chalcone framework for the development of dual antioxidant and soybean lipoxygenase inhibitory agents, Molecules 26 (2021), https://doi.org/ 
10.3390/molecules26092777. 

[117] S. Furukawa, T. Fujita, M. Shimabukuro, M. Iwaki, Y. Yamada, Y. Nakajima, O. Nakayama, M. Makishima, M. Matsuda, I. Shimomura, Increased oxidative 
stress in obesity and its impact on metabolic syndrome, J. Clin. Invest. 114 (2004) 1752–1761, https://doi.org/10.1172/JCI21625. 

[118] L. Marseglia, S. Manti, G. D’Angelo, A. Nicotera, E. Parisi, G. Di Rosa, E. Gitto, T. Arrigo, Oxidative stress in obesity: a critical component in human diseases, 
Int. J. Mol. Sci. 16 (2015) 378–400, https://doi.org/10.3390/ijms16010378. 

[119] D. Abdali, S.E. Samson, A.K. Grover, How effective are antioxidant supplements in obesity and diabetes? Med. Princ. Pract. 24 (2015) 201–215, https://doi. 
org/10.1159/000375305. 

[120] H. Yang, X. Jin, C.W.K. Lam, S.K. Yan, Oxidative stress and diabetes mellitus, Clin. Chem. Lab. Med. 49 (2011) 1773–1782, https://doi.org/10.1515/ 
CCLM.2011.250. 

[121] A.N. Lucchesi, N.T. de Freitas, L.L. Cassettari, S.F.G. Marques, C.T. Spadella, Diabetes mellitus triggers oxidative stress in the liver of alloxan-treated rats: a 
mechanism for diabetic chronic liver disease, Acta Cir. Bras. 28 (2013) 502–508, https://doi.org/10.1590/S0102-86502013000700005. 

[122] H. Yaribeygi, T. Sathyapalan, S.L. Atkin, A. Sahebkar, Molecular mechanisms linking oxidative stress and diabetes mellitus, Oxid. Med. Cell. Longev. 2020 
(2020), https://doi.org/10.1155/2020/8609213. 

[123] N. Ohkura, K. Ohnishi, M. Taniguchi, A. Nakayama, Y. Usuba, M. Fujita, A. Fujii, K. Ishibashi, K. Baba, G. Atsumi, Anti-platelet effects of chalcones from 
Angelica keiskei Koidzumi (Ashitaba) in vivo, Pharmazie 71 (2016) 651–654, https://doi.org/10.1691/ph.2016.6678. 

[124] M. Michalska, A. Gluba, D.P. Mikhailidis, P. Nowak, A. Bielecka-Dabrowa, J. Rysz, M. Banach, The role of polyphenols in cardiovascular disease, Med. Sci. 
Monit. 16 (2010) 110–119. 

[125] M. Yasuda, K. Kawabata, M. Miyashita, M. Okumura, N. Yamamoto, M. Takahashi, H. Ashida, H. Ohigashi, Inhibitory effects of 4-hydroxyderricin and 
xanthoangelol on lipopolysaccharide-induced inflammatory responses in RAW264 macrophages, J. Agric. Food Chem. 62 (2014) 462–467, https://doi.org/ 
10.1021/jf404175t. 

[126] Y. Lin, M. Zhang, Q. Lu, J. Xie, J. Wu, C. Chen, A novel chalcone derivative exerts anti-inflammatory and anti-oxidant effects after acute lung injury, Anging-Us 
11 (2019) 7805–7816. www.aging-us.com. 

[127] P. Vinci, E. Panizon, L.M. Tosoni, C. Cerrato, F. Pellicori, F. Mearelli, C. Biasinutto, N. Fiotti, F.G. Di Girolamo, G. Biolo, Statin-associated myopathy: emphasis 
on mechanisms and targeted therapy, Int. J. Mol. Sci. 22 (2021), https://doi.org/10.3390/ijms222111687. 

[128] E.W. Colmenares, A.L. Pappas, Proton pump inhibitors: risk for myopathy? Ann. Pharmacother. 51 (2017) 66–71, https://doi.org/10.1177/ 
1060028016665641. 

[129] W.J. Inder, C. Jang, V.R. Obeyesekere, F.P. Alford, Dexamethasone administration inhibits skeletal muscle expression of the androgen receptor and IGF-1 - 
implications for steroid-induced myopathy, Clin. Endocrinol. 73 (2010) 126–132, https://doi.org/10.1111/j.1365-2265.2009.03683.x. 

[130] M. Tuccori, G. Lombardo, F. Lapi, A. Vannacci, C. Blandizzi, M. Del Tacca, Gabapentin-induced severe myopathy, Ann. Pharmacother. 41 (2007) 1301–1305, 
https://doi.org/10.1345/aph.1K077. 

I. Wahyuni et al.                                                                                                                                                                                                       

https://doi.org/10.3390/foods10102381
https://doi.org/10.1016/j.tox.2004.11.039
https://doi.org/10.4254/wjh.v12.i4.125
https://doi.org/10.1016/j.redox.2016.10.001
https://doi.org/10.1080/15287394.2020.1822972
https://doi.org/10.1080/15287394.2020.1822972
https://doi.org/10.1007/978-1-4939-2074-7
https://doi.org/10.1007/978-1-4939-2074-7
https://doi.org/10.1093/toxsci/kfq026
https://doi.org/10.1016/B978-0-12-420117-0.00003-7
https://doi.org/10.3390/antiox7050062
http://refhub.elsevier.com/S2405-8440(24)00150-6/sref107
https://doi.org/10.3390/cells10071608
https://doi.org/10.1080/02841860701403038
https://doi.org/10.1016/j.bbamcr.2010.10.009
https://doi.org/10.3390/biom12030472
https://doi.org/10.1039/d0cy00819b
https://doi.org/10.2174/1381612825666190215121712
https://doi.org/10.1016/j.ccell.2020.06.001
https://doi.org/10.1101/sqb.2016.81.030791
https://doi.org/10.1101/sqb.2016.81.030791
https://doi.org/10.3390/molecules26092777
https://doi.org/10.3390/molecules26092777
https://doi.org/10.1172/JCI21625
https://doi.org/10.3390/ijms16010378
https://doi.org/10.1159/000375305
https://doi.org/10.1159/000375305
https://doi.org/10.1515/CCLM.2011.250
https://doi.org/10.1515/CCLM.2011.250
https://doi.org/10.1590/S0102-86502013000700005
https://doi.org/10.1155/2020/8609213
https://doi.org/10.1691/ph.2016.6678
http://refhub.elsevier.com/S2405-8440(24)00150-6/sref124
http://refhub.elsevier.com/S2405-8440(24)00150-6/sref124
https://doi.org/10.1021/jf404175t
https://doi.org/10.1021/jf404175t
http://www.aging-us.com
https://doi.org/10.3390/ijms222111687
https://doi.org/10.1177/1060028016665641
https://doi.org/10.1177/1060028016665641
https://doi.org/10.1111/j.1365-2265.2009.03683.x
https://doi.org/10.1345/aph.1K077

	The pharmacology activities of Angelica keiskei Koidzumi and its efficacy and safety in humans
	1 Introduction
	2 Methods
	3 Results
	3.1 Nephro-hepatoprotective activity of A. keiskei
	3.2 Anti-cancer activity of A. keiskei
	3.3 Anti-obesity activity of A. keiskei
	3.4 Anti-diabetes mellitus activity of A. keiskei
	3.5 The effect of A. keiskei on cardiovascular
	3.6 Anti-inflammatory activity of A. keiskei
	3.7 Anti-myopathy activity of A. keiskei
	3.8 Neuroprotective activity of A. keiskei

	4 Discussion
	5 Conclusions
	Funding
	Institutional review board statement
	Informed consent statement
	Data availability statement
	Additional information
	CRediT authorship contribution statement
	Declaration of competing interest
	References


