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OBJECTIVE—Paracrine signaling via �-aminobutyric acid
(GABA) and GABAA receptors (GABAARs) has been documented
in rodent islets. Here we have studied the importance of GABAergic
signaling in human pancreatic islets.

RESEARCH DESIGN AND METHODS—Expression of
GABAARs in islet cells was investigated by quantitative PCR,
immunohistochemistry, and patch-clamp experiments. Hormone
release was measured from intact islets. GABA release was
monitored by whole-cell patch-clamp measurements after adeno-
viral expression of �1�1 GABAAR subunits. The subcellular
localization of GABA was explored by electron microscopy. The
effects of GABA on electrical activity were determined by
perforated patch whole-cell recordings.

RESULTS—PCR analysis detected relatively high levels of the
mRNAs encoding GABAAR �2, �3, �2, and � subunits in human
islets. Patch-clamp experiments revealed expression of GABAAR
Cl� channels in 52% of �-cells (current density 9 pA/pF), 91% of
�-cells (current density 148 pA/pF), and 6% of �-cells (current
density 2 pA/pF). Expression of GABAAR subunits in islet cells
was confirmed by immunohistochemistry. �-Cells secreted
GABA both by glucose-dependent exocytosis of insulin-contain-
ing granules and by a glucose-independent mechanism. The
GABAAR antagonist SR95531 inhibited insulin secretion elicited
by 6 mmol/l glucose. Application of GABA depolarized �-cells
and stimulated action potential firing in �-cells exposed to
glucose.

CONCLUSIONS—Signaling via GABA and GABAAR constitutes
an autocrine positive feedback loop in human �-cells. The
presence of GABAAR in non–�-cells suggests that GABA may
also be involved in the regulation of somatostatin and glucagon
secretion. Diabetes 59:1694–1701, 2010

P
ancreatic islets of Langerhans are endocrine mi-
cro-organs with a central role in plasma glucose
homeostasis. Islets consist of three main endo-
crine cell types: insulin-producing �-cells, gluca-

gon-secreting �-cells, and somatostatin-releasing �-cells.
Insulin release from �-cells is directly controlled by the
blood glucose level and modulated by circulating hor-

mones and the autonomous nervous system. In addition,
hormone release from �-cells, as well as from the other
islet cell types, is regulated by autocrine and paracrine
interactions.

The local signaling roles of the major islet hormones
have been extensively studied and are well established (1).
Islet cells also contain and release a variety of additional
factors with putative local signaling functions, including
ions (Zn2�, Ca2�) and neurotransmitters (GABA, gluta-
mate, ATP) (2–5). We and others have presented evidence
that GABA released from �-cells inhibits glucagon secre-
tion in rodent islets by activating GABAA receptors
(GABAAR) in �-cells (6–8).

The architecture of human islets, with non–�-cells dis-
tributed throughout the islet, rather than confined to the
islet periphery as in rodents, facilitates paracrine signaling
(9,10). Human �-cells contain high concentrations of
GABA (11,12), and expression of GABAAR subunits in
human islets has been detected by RT-PCR (8,13). We have
now studied the possible involvement of GABA/GABAAR-
mediated signaling in the regulation of hormone release
from human islets. Our results suggest that GABA plays a
more diverse role in human islets than suggested by
previous work in rodent islets (5–7).

RESEARCH DESIGN AND METHODS

Islet preparation and cell culture. Human pancreases were obtained with
ethical approval and clinical consent from nondiabetic donors. Islets were
isolated in the Diabetes Research and Wellness Foundation Human Islet
Isolation Facility by collagenase digestion (Serva, Heidelberg, Germany),
essentially as reported previously (14,15). For hormone release measure-
ments, the islets were cultured overnight in Connaught Medical Research
Laboratories (CMRL) medium containing 5 mmol/l glucose. The electrophys-
iological experiments were performed on single cells or cell clusters obtained
by dissociation of islets in Ca2�-free buffer (16). The resulting cell suspension
was then plated onto plastic Petri dishes and cultured in RPMI-1640 contain-
ing 10 mmol/l glucose and 2 mmol/l L-glutamine. For biophysical detection of
GABA release (Figs. 3–5), cells were infected with recombinant adenoviruses
encoding the GABAAR �1 and �1 subunits 24–48 h before the experiments
(17).
Electrophysiology. Patch pipettes were pulled from borosilicate glass and
heat-polished (tip resistance 4–8 M�). Petri dishes were mounted onto an
Axiovert 10 microscope (Zeiss, Jena, Germany) positioned on a vibration
isolation table with a Faraday cage (TMC, Peabody, MA). Experiments were
performed in the standard or perforated-patch whole-cell configuration using an
EPC9 amplifier and Pulse software (HEKA, Lambrecht, Germany). All electro-
physiological measurements were conducted at 32–33°C and cells were contin-
uously superfused with extracellular medium. For rapid application of GABA
(Figs. 1 and 7), a Nanoliter 2000 Oocyte Injector (WPI, Stevenage, U.K.) was used.

The extracellular solution for measuring glucose- or tolbutamide-induced
GABA release (Fig. 4) and membrane potential (Fig. 7) contained (in mmol/l)
138 NaCl, 5.6 KCl, 2.6 CaCl2, 1.2 MgCl2, 5 HEPES (pH 7.4, NaOH), and glucose
at the indicated concentration. For detecting expression of endogenous
GABA-activated currents (Fig. 1) and GABA-release elicited by Ca2� infusion
or voltage-clamp depolarizations in infected cells (Figs. 3 and 5), TEACl (20
mmol/l) was added and NaCl correspondingly reduced. In Fig. 1, the intracel-
lular solution was composed of (in mmol/l) 120 CsCl, 1 MgCl2, 10 EGTA, 1
CaCl2, 10 HEPES, and 3 MgATP (pH 7.2, CsOH). In Fig. 4, CsCl was replaced
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equimolarly with KCl. The Ca2� infusion experiments (Figs. 3A and 5A) were
performed with pipette solution consisting of (in mmol/l) 110 CsCl, 10 KCl, 10
NaCl, 1 MgCl2, 3 MgATP, 0.1 cAMP, 5 HEPES, 9 CaCl2, and 10 EGTA (pH 7.15
with CsOH; free Ca2� 	2 
mol/l). Depolarization-evoked GABA release was
recorded with intracellular medium containing (in mmol/l) 125 Cs-glutamate,
10 CsCl, 10 NaCl, 1 MgCl2, 5 HEPES, 50 
mol/l EGTA, 3 MgATP, and 0.1 cAMP
(pH 7.15 with CsOH). The membrane potential measurements were performed
with a pipette solution composed of (in mmol/l) 76 K2SO4, 10 KCl, 10 NaCl, 1
MgCl2, 5 HEPES, and 10–50 
g/ml gramicidin (pH adjusted to 7.35 with CsOH,
osmolarity adjusted to 	300 mOsm with sucrose). Biocytin (0.5 mg/ml) was
sometimes added to the pipette solution to facilitate subsequent immunocy-
tochemical identification.

Amperometry. Cells were preloaded with serotonin by addition of 0.5 mmol/l
5-hydroxytryptophan and 0.5 mmol/l serotonin to the culture medium �6 h
before the experiment. Serotonin release was detected using a carbon fiber
electrode (ProCFE, Dagan Corporation, Minneapolis, MN) connected to the
second head-stage of the EPC9/3 amplifier. The electrode was held at 650 mV
and positioned 	1 
m from the cell. Exocytosis was stimulated by infusion of
cells with solution containing 2 
mol/l free Ca2� via the patch electrode (see
above), and whole-cell GABA-activated currents were measured in parallel
from the same cell.
Immunocytochemistry. De-paraffinized human pancreatic tissue sections (4

m) were heated to 95°C in 10 mmol/l Tris � 1 mmol/l EDTA (pH 6) for 40
min, followed by incubation at 4°C for 10 min in the same buffer. Sections

A B C

δ-cell α-cellβ-cell
1 s

100
pA

10
pA 5

pA

1 s

FIG. 1. Functional detection of endogenous GABAAR Cl� channels in human islet cells. A: Patch-clamp recording of currents evoked by puffer
application of GABA (1 mmol/l, as indicated by the bars) to an identified �-cell in the absence (black trace) and presence (gray trace) of 50
�mol/l SR-95531 in the same cell. The cell was held at �70 mV throughout the experiment. B: As in A, showing a �-cell (note the difference in scale
bars). C: As in A, showing an �-cell. The cell had been incubated in the presence of 0.5 �mol/l insulin for 1 h before the experiment.
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FIG. 2. Expression of GABAAR subunits in human islets. A: Expression profiling of GABAAR subunits in islets by quantitative RT-PCR (n � 3
preparations from three donors). B–D: Co-labeling of pancreatic tissue sections with anti-insulin and anti-GABAAR �2/3 (B), anti-GABAAR �1–6

(C), or anti-GABAAR �2 (D). Insulin is shown in red and GABAAR subunits in green; co-localization results in yellow labeling (scale bars � 10 �m).
a.u., arbitrary units.
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were then incubated with antibodies directed against GABAAR subunits �1–6

(1:50, H-300; Santa Cruz Biotechnology, Santa Cruz, CA), �2/3 (1:100, MAB341,
Millipore, Hampshire, U.K.) or �2 (1:100, LS-C14, Life span, Seattle, WA)
dissolved in REAL antibody diluent (Dako, Cambridge, U.K.) at 4°C overnight.
Endogenous peroxidases were blocked using methanol containing 1% H2O2

(15 min). A peroxidase-conjugated secondary antibody (Dako) was added for
30 min, followed by Alexa 488–labeled tyramide (Invitrogen) for 20 min.
Co-staining for insulin, glucagon, somatostatin, or pancreatic polypeptide and
visualization of fluorescence were performed as previously described (18).

Identification of the cell type after patch-clamp experiments was per-
formed by immunodetection of insulin, glucagon, and somatostatin as de-
scribed previously (19,20) (see the online appendix available at http://
diabetes.diabetesjournals.org/cgi/content/full/db09-0797/DC1).
Hormone secretion measurements. Batches of 10–20 islets (in triplicates)
were preincubated in 1 ml Krebs-Ringer buffer containing 2 mg/ml BSA and
supplemented with 1 mmol/l glucose for 1 h followed by a 1-h test incubation

in 1 ml Krebs-Ringer buffer supplemented as indicated. The hormone content
of the supernatant was measured by radioimmunoassay (insulin, glucagon:
Millipore, Watford, U.K.; somatostatin: Euro-Diagnostica, Malmö, Sweden).
Quantitative RT-PCR. Gene expression profiling of GABAAR subunits was
performed by RT-qPCR on human islet total RNA as described previously (19)
(see the online appendix).
Electron microscopy. Isolated human islets were fixed in 2.5% glutaralde-
hyde in phosphate buffer, postfixed in 1% OsO4, dehydrated, and embedded in
Spurr’s resin. Ultrathin sections cut onto nickel grids were immunolabeled for
GABA using a rabbit polyclonal antibody (1:1,000 dilution, Sigma) and protein
A gold particles (15 nm, Biocell, Cardiff, U.K.). Sections were viewed with a
Joel 1010 microscope (accelerating voltage 80 kV).
Data analysis. All data are expressed as means � SEM. Statistical signifi-
cances were calculated using Student’s t test. GABA-induced transient inward
currents (TICs) and amperometric events were analyzed using MiniAnalysis
software (Synaptosoft, Decatur, GA).

RESULTS

Expression of endogenous GABAAR Cl� channels in
human islets. Functional expression of endogenous
GABAAR Cl� channels in human islet cells was investi-
gated in patch-clamp experiments. Figure 1A shows a
representative recording in which puffer application of
GABA to a �-cell triggered a rapidly activating and desen-
sitizing inward current that was sensitive to the GABAAR
antagonist SR-95531. GABA-activated currents were found
in 26 of 50 �-cells (52%), and the current amplitude in
receptor-positive cells averaged 64 � 20 pA (current
density 9.4 � 2.1 pA/pF). The GABA-evoked current was
decreased by 78 � 2% in the presence of SR-95531 (from
32 � 5 to 7 � 2 pA, P  0.01, n � 8). GABA application also
elicited inward currents in 31 out of 34 �-cells (91%), but
the responses were typically much larger than in �-cells
(Fig. 1B). On average, the GABA-evoked currents had an
amplitude of 668 � 188 pA (148 � 42 pA/pF, n � 31),
which was reduced by 75 � 6% (from 570 � 330 to 33 � 8
pA, P  0.01, n � 10) in the presence of SR-95531. By
contrast, GABA application triggered inward currents in
only 3 out of 48 �-cells (6%; Fig. 1C), with the current
amplitude in these cells averaging 7 � 3 pA (current
density 2 pA/pF). Insulin has been reported to translocate
GABAAR to the cell surface in �-cells (8). In �-cells that
had been preincubated with insulin (0.5 
mol/l for 1 h in
the culture medium), application of GABA in the contin-
ued presence of insulin (0.1 
mol/l) elicited inward cur-
rents in 3 out of 19 cells tested (16%), but the current
amplitude was not increased and averaged 4.3 � 0.6 pA/pF
in these three cells. As shown in Fig. 1C, SR95531 reduced
the GABA-activated current in �-cells by 70% (n � 2). Of
the 64 cells analyzed in which GABA evoked a measurable
current, only one cell did not contain insulin, glucagon, or
somatostatin, and this cell was not positive for pancreatic
polypeptide (not shown).

Expression of GABAAR subunits in human islets was
investigated by quantitative RT-PCR. Among the �- and
�-subunits, �2 and �3 predominated. Fairly high levels of
the �2 and � were also observed. In addition, low levels of
�1, �3, �4, �1, �2, �1, and � were detected (Fig. 2A).

Expression of GABAAR subunits in human islets was
confirmed by immunohistochemistry. An antibody against
the �2/3 subunit labeled 	50% of the �-cells in pancreatic
tissue sections (Fig. 2B); no staining of �-cells, �-cells, or
PP-cells was observed (supplementary Fig. 1, available in
the online appendix). An �1–6–specific antibody stained
22% of the �-cells (Fig. 2C), 94% of the �-cells, and 14% of
the �-cells (supplementary Fig. 1). Finally, an antibody
directed against the �2 subunit labeled �-cells (Fig. 2D) as
well as �- and �-cells (supplementary Fig. 1). No specific
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FIG. 3. Quantal release of GABA from human �-cells. A: A �-cell
overexpressing �1/�1 GABAAR was held at �70 mV and infused with
intracellular solution containing 2 �mol/l free Ca2� (at 5 mmol/l
extracellular glucose). SR-95531 (10 �mol/l) was applied as indicated
by the bar. The inset shows a part of the trace (indicated by *) on an
expanded time scale. B: A train of 10 500-ms voltage-clamp depolariza-
tions from �70 to 0 mV was applied to a cell overexpressing �1/�1

GABAAR (with intracellular solution containing 50 �mol/l EGTA).
GABA-induced transient currents are indicated by arrows. The inset
shows a part of the trace (marked by the dotted rectangle) on an
expanded time base. Note that the direction of transient currents is
outward at 0 mV. The initial downward component represents the
opening of the voltage-gated Na� and Ca2� currents triggered by the
depolarization. The activation of the GABAAR accounts for the out-
ward current. The recording shown is representative of seven
experiments.
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labeling of human pancreatic sections was observed with
an antibody against �1 subunits (not shown).
GABA release from human �-cells. To determine if
GABA is released from human �-cells, a patch-clamp–
based assay was used (17). Briefly, GABAARs were over-
expressed in isolated �-cells using adenoviral vectors
encoding the GABAAR �1 and �1 subunits, respectively.
GABA released upon fusion of GABA-containing secretory
vesicles activates these receptors in the same cell, giving
rise to transient inward currents (TICs). Figure 3A shows
a recording from a cell held at �70 mV, in which exocy-
tosis was stimulated by inclusion of 2 
mol/l free Ca2� in
the intracellular solution. The trace displays numerous
TICs that were sensitive to the GABAAR blockers SR-95531
(10 
mol/l; n � 4) and bicuculline (100 
mol/l; n � 2; not
shown), demonstrating that they reflect activation of
GABAAR. The TICs had an average rise time (10–90%) of
14 � 1 ms and a half-width of 40 � 2 ms (n � 274 events

from four cells). These values are comparable to those
reported in rat �-cells (17).

Quantal release of GABA could be elicited by voltage-
clamp depolarizations from �70 to 0 mV (Fig. 3B). Depo-
larization-evoked transient currents were outward because
the experiments were conducted at low [Cl�]i (22 mmol/l).
Thus, the Cl� equilibrium potential (ECl) is approximately
�50 mV, resulting in a net inward driving force at 0 mV for
Cl� ions.

GABA release was also observed in �-cells stimulated by
Ca2� infusion or voltage-clamp depolarizations (supple-
mentary Fig. 2A). As �-cells express high levels of endog-
enous GABAAR, GABA-induced TICs were sometimes
(three cells) seen even in noninfected cells (supplemen-
tary Fig. 2B).
Glucose-induced GABA release. Figure 3B demon-
strated that GABA is released from �-cells in response to
depolarization-induced Ca2� influx via voltage-gated Ca2�
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FIG. 4. Glucose- and tolbutamide-induced GABA release from human �-cells. Experiments were performed in small clusters of islet cells
overexpressing �1/�1 GABAAR. The patch-clamped cell was held at �70 mV and infused with pipette solution containing 10 mmol/l EGTA. A: The
glucose concentration in the bath was increased from 1 to 6 mmol/l as indicated. B (upper): The extracellular glucose concentration was increased
from 1 to 20 mmol/l. SR-95531 (10 �mol/l) was included as indicated. B (lower): Sections of top trace (as indicated by letters i and ii) shown on
an expanded time base. C: Summary of observed frequencies of GABA release (TICs/min) at the indicated glucose concentrations (*P < 0.05).
The measurements were made at steady state (1–5 min after addition of glucose). D: Tolbutamide (100 �mol/l) was applied as indicated
(extracellular glucose concentration 4 mmol/l). E: SR-95531 (10 �mol/l) was applied as indicated at 1 mmol/l extracellular glucose.
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channels. We went on to investigate whether glucose, via
membrane depolarization, can evoke GABA release. These
experiments were performed on clusters of islet cells
overexpressing �1/�1 GABAAR. The membrane potential of
the patch-clamped cell was held at �70 mV and its
cytoplasm infused with a buffer containing 10 mmol/l
EGTA. These steps prevent exocytosis in the patch-
clamped cell, and it will therefore serve as a sensor
(“sniffer-cell”) for GABA released from neighboring cells
within the cluster. TICs evoked by GABA release were
rarely observed at 1 mmol/l extracellular glucose, but
increasing the glucose concentration to 6 or 20 mmol/l
increased the frequency of TICs after a delay of 1–2 min
(Fig. 4A–C). The glucose-induced TICs were sensitive to
SR-95531 (Fig. 4B), confirming that they reflect GABA
release and activation of GABAAR. When they occurred,
the TICs tended to occur in bursts (Fig. 4B, ii).

GABA release was likewise stimulated by addition of the
ATP-sensitive K� (KATP) channel blocker tolbutamide (100

mol/l) to the extracellular solution (Fig. 4D; n � 4) and
inhibited by the KATP channel opener diazoxide (n � 4,
supplementary Fig. 3). The change in holding current in
Fig. 4D probably reflects closure of KATP channels that

remain active in the patch-clamped cells despite the
presence of 3 mmol/l ATP in the intracellular solution. By
contrast, glucose stimulation did not consistently affect
the holding current.
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FIG. 5. Storage and secretion of GABA by insulin-containing LDCVs in
human �-cells. A: GABA release was detected by patch-clamping in an
identified �-cell overexpressing �1/�1 GABAAR (upper trace). The cell
was held at �70 mV and infused with intracellular solution containing
2 �mol/l free Ca2�. Serotonin release was measured simultaneously in
the same cell by carbon fiber amperometry (lower trace). The dashed
lines indicate simultaneous occurrence of GABA-induced TICs and
amperometric currents. B: Immunogold labeling of GABA in a human
�-cell. Scale bar: 250 nm.
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FIG. 6. Effect of GABAAR blockade on insulin secretion from isolated
human islets. Insulin secretion was measured at 1, 3, 6, 10, or 20 mmol/l
extracellular glucose in the absence (E) or presence (F) of SR-95531
(10 �mol/l) as indicated (n � 9–12 from four donors; ‡P < 0.001 for the
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mmol/l glucose were repeated with islets from seven different donors
with the same results.

-80

-70

-60

-50

-40

-30

-20

m
em

br
an

e 
po

te
nt

ia
l (

m
V)

SR-95531
GABA GABA

2.5 s

A

-60

-50

-40

-30

-20

-10

m
em

br
an

e 
po

te
nt

ia
l (

m
V)

5 s

GABAB

FIG. 7. Effects of GABA on the membrane potential of human �-cells.
Membrane potential was recorded in noninfected cells in the perforat-
ed-patch configuration, using the Cl�-impermeable antibiotic gramici-
din as the perforating agent. Recordings were made at 6 mmol/l
extracellular glucose. A: Application of GABA (100 �mol/l, indicated by
bars) to a �-cell in the absence (left) or presence (right) of 50 �mol/l
SR-95531. B: Application of 10 �mol/l GABA (bar) to an electrically
active �-cell.
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In cell clusters overexpressing �1/�1 GABAAR, addition
of SR-95531 reduced both the holding current and current
noise even at low (1 mmol/l) extracellular glucose, in the
absence of observable TICs (Fig. 4E). In a series of seven
experiments, SR-95531 decreased the holding current from
�47 � 15 to �36 � 15 pA (P  0.05) and the current
variance from 9.8 � 2.7 � 10�24 A2 to 4.1 � 1.8 � 10�24 A2

(P  0.05). From the excess noise (sensitive to SR-95531),
we estimate the size of the unitary event as 	0.5 pA,
corresponding to a single-channel conductance of 7 pS.
This is in reasonable agreement with the 10–15 pS re-
ported for recombinant �1�1 GABAAR Cl� channels (21).
Subcellular localization of GABA in human �-cells.
GABA and GAD65 have been reported to be associated
with synaptic-like microvesicles in rodent �-cells (22).
However, we have recently presented evidence for release
of GABA from insulin-containing large dense-core vesicles
(LDCV) in rat �-cells (23). To determine whether vesicular
GABA secretion from human �-cells reflects exocytosis of
insulin-containing granules, we combined the patch-
clamp–based assay for GABA release with amperometric
detection of serotonin, assumed to accumulate in LDCVs
(24–27). As shown in Fig. 5A, the transient currents
induced by vesicular release of GABA (top) and serotonin
(bottom) occurred simultaneously in most cases. In this
experiment, 90 out of 165 GABAergic TICs were accom-
panied by a simultaneous amperometric spike. In a series
of four experiments, co-release of serotonin was detected
for 44 � 9% of the GABA-release events. This suggests that
GABA and serotonin are released by exocytosis of the
same vesicles; the correlation is 100% because amper-
ometry only detects exocytotic events occurring in the
vicinity of the carbon fiber (usually 50%), whereas GABA
release is detectable over the entire cell surface (23).
Close inspection of the records indicated that GABA may
also be released during the “pedestals” that precede full
fusion and during kiss-and-run exocytosis (supplementary
Fig. 4).

Not all amperometric events were accompanied by
simultaneous release of GABA (Fig. 5A). Indeed, only 13 �
3% (n � 4) of the amperometric events were associated
with GABA-evoked TICs, suggesting that GABA is only
present in a subpopulation of insulin granules. This was
verified by immunogold electron microscopy using a
GABA-specific antibody. Some insulin granules were
strongly labeled with gold particles, whereas other gran-
ules were not stained at all (Fig. 5B). This finding is in
agreement with previous results from rat �-cells (23).
Immunogold electron micrographs confirmed that non–�-
cells (including �-cells) contain GABA at levels 50–70% of
those detected in �-cells (supplementary Fig. 5).
Effect of GABAAR blockade on insulin secretion. In
intact human islets, glucose at a concentration as low as 3
mmol/l stimulated insulin secretion above that seen at 1
mmol/l glucose. At higher glucose concentrations, there
was a concentration-dependent further stimulation of in-
sulin release (Fig. 6). The GABAAR antagonist SR-95531
had no effect on basal insulin release but inhibited insulin
release at 6 mmol/l glucose. No (statistically) significant
inhibition of insulin secretion was observed at 3, 10, or 20
mmol/l glucose.

Somatostatin secretion was stimulated by elevation of
the glucose concentration to �3 mmol/l (supplementary
Fig. 6A). Glucagon secretion was suppressed when the
glucose level in the medium was raised from 1 to �3
mmol/l (supplementary Fig. 6B). Inhibition was maximal

at 6 mmol/l glucose and gradually reduced at higher
concentrations (28). SR95531 had complex and glucose-
dependent effects on glucagon and somatostatin secretion.
Effect of endogenous GABAAR activation on islet cell
membrane potential. The effect of activation of endoge-
nous GABAARs on the membrane potential of islet cells
was studied in noninfected cells using the perforated-
patch whole-cell configuration. To maintain normal [Cl�]i,
the Cl�-impermeable antibiotic gramicidin was used as the
perforating agent (29). Figure 7A shows a �-cell exposed
to 6 mmol/l glucose that was not electrically active. We
point out that insulin secretion at 6 mmol/l is only 	40% of
that evoked by 20 mmol/l glucose. The finding that some
�-cells are not electrically active at the lower glucose
concentration indicates that the concentration-dependent
stimulation of insulin secretion involves recruitment of
�-cells that were previously not active. Application of
GABA depolarized the cell to approximately �55 mV. This
effect was blocked by the GABAAR antagonist SR-95531.
On average, puffer application of GABA depolarized
�-cells from �64 � 7 to �43 � 4 mV (n � 4). Assuming
that the membrane potential in the presence of GABA
approximates ECl, [Cl�]i can be estimated to be 32 � 5
mmol/l (ECl � �60 � log[Cl�]o/[Cl�]i). GABA, when applied
at the high concentration used in Fig. 7A (100 
mol/l),
typically triggered single action potentials. This we at-
tribute to the large Cl� conductance, which effectively
clamps the membrane potential to ECl and thus prevents
regenerative electrical activity. When a lower GABA con-
centration (10 
mol/l) was applied to a �-cell that was
electrically active at 6 mmol/l glucose (Fig. 7B), a smaller
membrane depolarization accompanied by increased ac-
tion potential firing was observed. In a series of five
experiments, 10 
mol/l GABA increased �-cell action
potential frequency approximately fivefold, from 0.6 � 0.2
to 2.9 � 0.4 Hz (P  0.05).

Puffer application of GABA also depolarized the mem-
brane potential of �-cells (supplementary Fig. 7). In a
series of four experiments, the �-cell membrane potential
averaged �28 � 5 mV after application of 100 
mol/l
GABA, corresponding to a [Cl�]i of 54 � 9 mmol/l. The
membrane potential of �-cells was not affected by GABA,
reflecting the low GABAAR density in these cells (not
shown).

DISCUSSION

Human pancreatic islets contain concentrations of GABA
similar to those found in the brain (30), but the physiolog-
ical function of pancreatic islet GABA in humans remains
poorly defined. Here we have investigated the role of
GABA and GABAAR Cl� channels in paracrine and auto-
crine signaling in human pancreatic islets.

Blocking GABAARs inhibited insulin secretion from
human islets induced by 6 mmol/l glucose, i.e., close to the
concentration at half-maximal stimulation (EC50) for glu-
cose-stimulated insulin secretion (31). These findings im-
ply that GABA, by activating GABAAR, stimulates �-cell
secretion. This may seem paradoxical, since GABA is best
known as an “inhibitory neurotransmitter.” GABAARs are
ligand-gated Cl� channels, and opening of these channels
shifts the cell’s membrane potential toward ECl. The effect
of GABA will accordingly depend on the membrane poten-
tial of the cell and [Cl�]i. Our measurements of ECl
indicate that [Cl�]i in human �-cells is 	32 mmol/l. This
value is in close agreement with that measured in mouse
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�-cells using a Cl�-sensitive fluorescent indicator (34
mmol/l [32]). Assuming a plasma Cl� concentration of 110
mmol/l, ECl in �-cells is greater than �40 mV and thereby
positive to the threshold for action potential firing in
human �-cells (�55 mV [19]). For comparison, [Cl�]i in
neurons is 10 mmol/l, resulting in an ECl more negative
than �60 mV (33), whereas it will produce depolarization
in �-cells exposed to nonstimulatory glucose concentra-
tions. A stimulatory role for Cl� conductances in �-cells is
also supported by the observation that a reduction of
[Cl�]i below physiological levels suppresses glucose-in-
duced electrical activity in mouse �-cells (34). A positive
GABAergic feedback loop may account for bursts of TICs
observed during glucose stimulation (Fig. 4B, ii): the
release of one GABA-containing vesicle will depolarize the
�-cell and this in turn (via stimulation of electrical activity)
triggers the release of further vesicles. Desensitization of
GABAARs eventually terminates the burst.

GABAAR inhibition reduced insulin secretion at 6 but
not 10 and 20 mmol/l glucose. This is similar to results
obtained in INS-1 cells where GABA stimulates insulin
secretion at 2.8 mmol/l glucose but is inhibitory at 28
mmol/l glucose (35). These divergent effects of GABA can
be explained if increasing glucose concentrations lead to a
progressive depolarization of the �-cell membrane poten-
tial (36,37). At high glucose levels, when the membrane
potential approaches ECl, opening of Cl� channels may
have no further depolarizing effect and even reduce excit-
ability (by clamping the membrane potential to ECl).

It has previously been demonstrated that glucose regu-
lates GABAergic signaling in islets by increasing GABAAR
subunit expression (6) and via insulin-induced trafficking
of GABAARs to the cell surface (8). Here we provide the
important additional observation that glucose stimulates
vesicular release of GABA from �-cells (Fig. 4C). GABA
was co-released with the LDCV marker serotonin, and
electron microscopy demonstrated accumulation of GABA
in a subpopulation of insulin granules. This is in agreement
with similar observations in rat �-cells (23). The findings
suggest that vesicular GABA release in human �-cells is
principally due to exocytosis of insulin-containing LDCVs,
although a contribution of synaptic-like microvesicle exo-
cytosis cannot be excluded (22).

Rat �-cells release 25% of their GABA content per hour
independently of the glucose concentration (38). This
cannot be explained by release of GABA solely by exocy-
tosis of LDCVs. Indeed, in cell clusters overexpressing
GABAAR, SR-95531 blocked a component of the holding
current at 1 mmol/l glucose, indicating extracellular accu-
mulation of GABA in the absence of detectable vesicular
GABA release (23). Here we demonstrate that this also
occurs in human �-cells. These data suggest that in
addition to the glucose-dependent vesicular route of
GABA release, a tonic glucose-independent background
release mechanism exists in �-cells. Analysis of the excess
noise (blockable by SR-95531) suggests that background
release of GABA is only sufficient to activate individual
channels. This indicates that background release of GABA
is of a nonvesicular nature, the details of which remain to
be elucidated but may involve GABA transporters operat-
ing in reverse or other nonvesicular routes (39).

Patch-clamp experiments revealed that human �-cells
express high levels of GABAAR and that activation of these
receptors—similar to what was observed in �-cells—
depolarizes �-cell membrane potential. In line with an
excitatory effect of GABAAR activation, blocking GABAAR

reduced somatostatin secretion at 3 and 20 mmol/l but not
at 10 mmol/l glucose. In agreement with the study of Xu et
al. (8), the GABAAR antagonist SR95531 also modulated
glucagon secretion from human islets. The fact that so few
isolated �-cells exhibited GABA-activated currents may
suggest that the effects on glucagon secretion are princi-
pally mediated by paracrine effects. It should be noted,
however, that 14% of the �-cells in intact islets contained
detectable �1–6 subunit immunoreactivity. This is similar
to the 16% obtained by electrophysiological analysis of
�-cells preincubated in the presence of insulin and only
slightly lower than the 22% observed in �-cells. Thus, it is
possible that the expression of GABAARs in isolated
�-cells is artifactually low because of the loss of intra-islet
insulin signaling. In control experiments, we did not find
any evidence that SR-95531 interferes nonspecifically with
voltage-gated channels and electrical activity in islet cells.
More work is needed to explain the effects of SR-95531 on
glucagon and somatostatin secretion.

In summary, our data suggest that signaling via GABA
and GABAAR stimulates insulin secretion by a positive
autocrine feedback loop in human �-cells. Many important
pharmacological agents target GABAAR, and it is possible
that they, given the presence of GABAAR in �-cells, also
affect insulin secretion from pancreatic islets. Indeed,
treatment of epileptic patients with the anticonvulsant
valproic acid (which blocks the degradation of GABA) has
been reported to result in increased postprandial insulin
levels (40).
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