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Abstract

The proteasome inhibitor MG132 had been shown to prevent galactose induction of the S. cerevisiae GAL1 gene,
demonstrating that ubiquitin proteasome-dependent degradation of transcription factors plays an important role in the
regulation of gene expression. The deletion of the gene encoding the F-box protein Mdm30 had been reported to stabilize
the transcriptional activator Gal4 under inducing conditions and to lead to defects in galactose utilization, suggesting that
recycling of Gal4 is required for its function. Subsequently, however, it was argued that Gal4 remains stably bound to the
enhancer under inducing conditions, suggesting that proteolytic turnover of Gal4 might not be required for its function. We
have performed an alanine-scanning mutagenesis of ubiquitin and isolated a galactose utilization-defective ubiquitin
mutant. We have used it for an unbiased suppressor screen and identified the inhibitor Gal80 as a suppressor of the
transcriptional defects of the ubiquitin mutant, indicating that the protein degradation of the inhibitor Gal80, and not of the
activator Gal4, is required for galactose induction of the GAL genes. We also show that in the absence of Gal80, Mdm30 is
not required for Gal4 function, strongly supporting this hypothesis. Furthermore, we have found that Mediator controls the
galactose-induced protein degradation of Gal80, which places Mediator genetically upstream of the activator Gal4. Mediator
had originally been isolated by its ability to respond to transcriptional activators, and here we have discovered a leading role
for Mediator in the process of transcription. The protein kinase Snf1 senses the inducing conditions and transduces the
signal to Mediator, which initiates the degradation of the inhibitor Gal80 with the help of the E3 ubiquitin ligase SCFMdm30.
The ability of Mediator to control the protein degradation of transcriptional inhibitors indicates that Mediator is actually able
to direct its own recruitment to gene promoters.
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Introduction

Cells regulate the expression of their genes according to

requirement [1]. Activators recruit chromatin-remodeling or

chromatin-modifying complexes that change the structure of

chromatin to promote transcription [2,3], while repressors recruit

chromatin-modifying complexes that change the structure of

chromatin to prevent transcription [4,5]. Repressors also bind

directly to activators and prevent the recruitment of the

transcription machinery [6]. According to the reverse recruitment

hypothesis [7], the transcription factors do not move to the highly

transcribed genes, but the highly transcribed genes move to the

gene expression machines (GEMs), which are protein complexes

with fixed locations in the nuclear periphery. GEMs, which host

all transcription factors that are required for gene expression from

RNA Polymerase to RNA capping, splicing, poly-adenylation, and

export factors [8], are associated with the nuclear pores, and the

mature mRNAs, once produced at the GEM, are immediately

exported out of the nucleus to be translated at the ribosomes of the

rough endoplasmic reticulum [7].

The Saccharomyces cerevisiae GAL genes are a paradigm for

transcriptional regulation in eukaryotes [9]. In cells grown with

glucose, Gal80 binds to Gal4 and blocks its activation function

[10], while Mig1 binds to an upstream silencer and recruits the

general repressor Tup1 to prevent gene expression [11]. Upon the

switch to galactose media, Snf1 phosphorylates Mig1, causing its

translocation from the nucleus to the cytoplasm [12], while Gal80

dissociates from Gal4 [13] and is sequestered in the cytoplasm by

Gal3 [14], leaving Gal4 free to activate the GAL genes, which are

required for galactose utilization [7].

Proteolytic stability of transcription factors offers an intriguing

possibility for the eukaryotic cell to control gene expression [15].

Ubiquitin proteasome-dependent degradation (UPD) of activators

and repressors plays an important role in gene regulation [16], and

treatment of S. cerevisiae cells with the proteasome inhibitor MG132

abolished galactose induction of the GAL1 gene [17]. Ubiquitin is a
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small protein of 76 amino acids that is transferred by E3 ubiquitin

ligases to proteins to be targeted for degradation by the 26S

proteasome [18]. F-box proteins confer substrate specificity to SCF

(Skip1-Cullin-F-box protein) E3 ubiquitin ligases [19]. When cells

are grown with galactose, an SCF E3 ubiquitin ligase containing

the F-box protein Mdm30, SCFMdm30, ubiquitinates Gal4 [20].

The deletion of MDM30 stabilizes Gal4 under inducing conditions

and leads to defects in galactose utilization, suggesting that

recycling of Gal4 is required for its transcriptional activator

function [20]. Subsequently, however, it was argued that Gal4

remains stably bound to the enhancer under inducing conditions,

suggesting that proteolytic turnover of Gal4 might not be required

for its function [21–23]. Previously, it had been shown that mono-

ubiquitination protected Gal4 from the promoter-stripping activity

of proteasomal ATPases [24–26], suggesting a role for ubiquitin in

transcriptional activation other than protein degradation. Recent-

ly, it has been reported that the proteolytic stability of Mediator

subunits is inversely correlated with their ability to activate

transcription when fused to a DNA-binding domain [27].

Mediator is a complex of more than 20 proteins that is

conserved from yeast to man [28]. It was discovered by its ability

to respond to transcriptional activators in vivo and in vitro [29].

Genome-wide gene expression studies with temperature-sensitive

alleles have shown that Mediator is required for the transcription

of nearly all RNA Polymerase II–dependent genes in yeast [30].

Mediator interacts directly with activators, General Transcription

Factors, and RNA Polymerase II [31]. In higher eukaryotes,

Mediator facilitates a DNA loop between enhancer and basal

promoter via its interaction with cohesin [32]. In addition,

Mediator affects steps that are downstream of the recruitment of

RNA Polymerase II to the core promoter, as Med26-containing

metazoan Mediator switches RNA Polymerase into the productive

transcription elongation mode by an interaction of Med26 with

TBP (TATA-binding protein) and the CTD (C-terminal domain

of RNA Polymerase II) kinase P-TEFb [33]. Mediator also

modifies chromatin via its own CDK8 subunit, which phosphor-

ylates histone H3S10, and by its interaction with histone acetyl-

and methyltransferases [34,35]. Metazoan Mediator plays impor-

tant roles in neurogenesis, cancer formation, and stem cell

proliferation [31]. All of these reported functions of Mediator

are genetically downstream of transcriptional activators. Here, we

have found that Mediator additionally is able to act upstream of

the transcriptional activator Gal4 by controlling the ubiquitin-

mediated protein degradation of the inhibitor Gal80. In the

absence of Gal80, Gal4 is free to recruit Mediator to the promoter

of the GAL genes. Therefore, Mediator actually orchestrates its

own recruitment to the GAL promoters upon galactose induction.

Results

Gal80 Is Stable in a gal2 Ubiquitin Mutant Strain
The role of ubiquitin proteasome-dependent protein degrada-

tion in the transcriptional regulation of the GAL genes has been

controversial [19–22]. We performed an alanine-scanning muta-

genesis of ubiquitin in order to isolate galactose-utilization

defective (gal2) mutant strains and use these for unbiased multi-

copy suppressor screens. However, no ubiquitin single point

mutant displaying the gal2 phenotype was isolated (Figure S1,

even lanes; Figure S2). The addition of an N-terminal tag can

sometimes enhance the phenotype of point mutants, and so we

fused a stretch of 10 N-terminal histidines to all ubiquitin mutant

proteins. S. cerevisiae cells expressing H10UbF4A, H10UbK6A,

H10UbI13A, H10UbR42A, H10UbF45A, H10UbD58A, and

H10UbT66A in the place of endogenous ubiquitin displayed

growth defects on galactose plates containing the respiration

inhibitor Antimycin A (AA; Figure S1, lanes 5, 11, 23, 85, 87, 105,

119; Figure S2). The presence of the respiration inhibitor AA

requires the cells to metabolize more galactose molecules in order

to form colonies, which serves to translate defects in the

transcriptional activation of the GAL genes into stronger growth

defects on galactose plates. The H10UbD58A mutant strain was

also unable to grow on galactose plates in the absence of AA

(Figure 1A, line 5), and it was transformed with a multi-copy

library of S. cerevisiae genomic DNA fragments [36]. Gal3 was

isolated by its ability to confer growth to the H10UbD58A mutant

strain on galactose plates upon over-expression (Figure 1A, line 6).

The over-expression of Gal3 also dosage-compensated the gal2

phenotype of the other H10Ub mutant strains (Figure S3, compare

odd and even lanes; the H10UbF4A mutant strain was barely viable

and was excluded from further studies). Gal3 sequesters Gal80 in

the cytoplasm upon galactose induction [10], and our finding that

the over-expression of Gal3 suppressed the gal2 phenotype of the

H10Ub mutant strains indicated that ubiquitin-mediated protein

degradation of Gal80 could be required for galactose induction of

the GAL genes and that the gal2 phenotype of these H10Ub mutant

strains might have been caused by excess Gal80. Consistently, the

additional gene deletion of GAL80 suppressed the gal2 phenotype

of the H10UbD58A mutant (Figure 1A, line 7) and of the other

H10Ub mutant strains (Figure S4, compare odd and even lanes).

Reverse transcription coupled with real-time PCR quantification

revealed that galactose induction of GAL1 mRNA relative to ACT1

mRNA was abolished in the H10UbD58A strain and that the over-

expression of Gal3 and the additional gene deletion of GAL80

(partially) restored galactose induction (Figure 1B). We performed

chase assays with the protein biosynthesis inhibitor cycloheximide

and found that HA-Gal80 was indeed degraded in galactose-

induced H10Ub cells (Figure 1C, lanes 5 to 8; Figure 1D, white

bars). Importantly, HA-Gal80 had become stable in galactose-

induced H10UbD58A mutant cells (Figure 1C, lanes 13 to 16;

Figure 1D, black bars) as well as in the other gal2 H10Ub mutants

strains (Figure S5), suggesting that the galactose-stimulated protein

degradation of Gal80 is necessary for transcriptional activation of

Author Summary

The expression levels of proteins are tightly regulated, not
only via their production but also via their degradation.
Genes are transcribed only if their encoded proteins are
required by the environmental or developmental condi-
tions of a cell, and once a certain protein is no longer
needed, it is rapidly degraded by the ubiquitin proteasome
system (UPS). Transcriptional activators appeared to
contradict this simple economic principle, as it had been
claimed that they had to be degraded in order to function.
The claim was based upon a correlation: if the degradation
of an activator was prevented by drugs or mutations in the
UPS, the activator became stable but also nonfunctional.
We have now shown that it is not the activator itself but its
inhibitor that is the functionally relevant target of the UPS.
Furthermore, we have found that the degradation of the
inhibitor is controlled by a protein complex called
Mediator. The activator is known to recruit Mediator to
gene promoters, where Mediator assists RNA polymerase
in initiating transcription. Mediator was always considered
to be completely under the control of the activator;
however, we observe that by regulating the degradation
of the inhibitor, Mediator is also able to control the
activator and thereby to orchestrate its own recruitment to
gene promoters.

Mediator Acts Upstream of Activator
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the GAL genes. Our finding that the additional gene deletion of

GAL80 suppressed the gal2 phenotype of the H10Ub mutant strains

provides genetic evidence that the failure to degrade Gal80 had

been the cause (and not the consequence) of the gal2 phenotype of

the H10Ub mutant strains.

Galactose Induction Requires Gal80 Degradation
E3 ubiquitin ligases add ubiquitin to proteins that are targeted

for degradation by the 26S proteasome [18], and Skp1 is an

essential component of all SCF E3 ubiquitin ligases [19].

Previously, we had found that the Skp1 derivative Nub-HA-

Skp1V90A,E129A (Skp1dM) causes the gal2 phenotype when

expressed in place of endogenous Skp1 [37]. We had isolated a2 as

a multi-copy suppressor and shown that galactose-induced protein

degradation of the repressor Mig2, which—like a2 [38]—uses the

co-repressor Tup1, was abolished in the skp1dM strain [37]. The

most likely explanation was that over-expression of a2 had titrated

Tup1 away from GAL1 promoter-bound Mig2, which—like Mig1

[39]—activated transcription in the absence of Tup1. The

additional gene deletion of MIG2, however, had only partially

suppressed the gal2 phenotype of the skp1dM strain [37],

suggesting that Skp1 mediated the galactose-induced protein

degradation of additional transcription factors. Therefore, we

wanted to see if Gal80 was a functionally relevant target of SCF E3

ubiquitin ligases. HA-Gal80 protein was degraded in galactose-

induced SKP1 wild-type cells (Figure 2A, lanes 5 to 8; Figure 2B,

white bars), while it was stable in galactose-induced skp1dM cells

(Figure 2A, lanes 13 to 16; Figure 2B, black bars), indicating that

wild-type Skp1 was required for the galactose-induced protein

degradation of Gal80. We transformed the skp1dM mutant strain

with multi-copy plasmids expressing Sgt1 (which is required for

Skp1-dependent cyclin degradation [40]), a2, Ubp3 (which

dosage-compensates the gal2 phenotype of cells expressing the

proteolytically instable Tbp1E186D [41]), and Gal3. The over-

expression of Sgt1 suppressed the temperature sensitivity of the

skp1dM strain (Figure 2C, line 3). The over-expression of Gal3 and

Figure 1. Gal80 is stable in galactose-induced H10UbD58A cells. (A) SUB288GAL3DWL cells expressing the indicated ubiquitin derivative in
place of endogenous ubiquitin were 10-fold serially diluted, titrated onto glucose and onto galactose plates, and incubated at 28uC for 6 d. Cells in
lines 3 and 6 over-expressed Gal3 from the ACT1 promoter, while cells in lines 4 and 7 lacked GAL80. (B) SUB288GAL3DL cells expressing H10Ub and
H10UbD58A in place of endogenous ubiquitin as indicated were grown in glucose liquid media to OD600 nm = 1 (Glu) and induced with galactose
liquid media for 6 h (Gal). Cells over-expressed Gal3 from the ACT1 promoter or lacked GAL80 as indicated. Total RNA was isolated and the amount of
GAL1 mRNA relative to ACT1 mRNA was determined with reverse transcription-coupled real-time PCR. The value determined for cells expressing
H10Ub grown with glucose was set as 1, and the error bars indicate the standard deviations between three replicates. (C) SUB288GAL3DL cells
expressing H10Ub (lanes 1 to 8) or H10UbD58A (lanes 9 to 16) in place of endogenous ubiquitin were transformed with the single-copy vector RS316
expressing HA-Gal80 under the control of the ACT1 promoter. Cells were grown in glucose liquid media to OD600 nm = 1 and induced with galactose
liquid media for 1 h. Cycloheximide was added at time = 0 and the amount of Gal80 protein remaining in the cells after the indicated number of
hours was determined by Western blot with the help of an anti-hemagglutinin (HA) antibody (upper panels). The membranes were stripped and
reprobed with an anti-carboxypeptidase Y (CPY) antibody (middle panels), followed by a second stripping and staining with Coomassie Blue as
loading controls (lower panels). (D) The ratio of the amount of HA-Gal80 protein to CPY protein in H10-Ub cells (white bars) and H10-UbD58A cells
(black bars) for each time point in part C was determined with Image J. The ratio of the band intensities before the addition of cycloheximide
(time = 0) was set as 1, and the error bars indicate the deviations between duplicates.
doi:10.1371/journal.pbio.1001290.g001
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a2 suppressed the gal2 phenotype, but not the temperature

sensitivity, of the skp1dM mutant strain (Figure 2C, lines 4 and 6),

while the over-expression of Ubp3 had no effect (Figure 2C, line

5). Real-time PCR quantification revealed that galactose induction

of GAL1 mRNA relative to ACT1 mRNA was abolished in the

skp1dM mutant strain (Figure 2D) and that it was restored to some

550-fold in the presence of excess Gal3 and almost fully in the

absence of Gal80 (Figure 2D), providing genetic evidence that

galactose-stable Gal80 had been the main cause for the gal2

phenotype of the skp1dM strain.

SCFMdm30 Targets Gal80
F-box proteins provide the substrate specificity to SCF E3

ubiquitin ligases [19], and the deletion of the gene encoding the F-

box protein Mdm30 causes a gal2 phenotype [20]. Cycloheximide

chase assays demonstrated that HA-Gal80 was degraded in

galactose-induced BY4741DW wild-type cells (Figure 3A, lines 5

to 8; Figure 3B, white bars), while it was stable in galactose-

induced DMDM30 cells (Figure 3A, lines 13 to 16; Figure 3B,

black bars), suggesting that SCFMdm30 targets Gal80 for galactose-

induced protein degradation. Importantly, and consistent with a

recent report [42], the additional gene deletion of GAL80

suppressed the gal2 phenotype of the DMDM30 strain

(Figure 3C, line 4). Gal80 was still degraded in galactose-induced

DGAL11 cells (Figure 3A, lanes 21 to 24; Figure 3B, grey bars) and

the additional gene deletion of GAL80 did not suppress the gal2

phenotype of cells lacking Gal11 (Figure 3C, line 6), confirming

that the suppression of the gal2 phenotype of the DMDM30 strain

by the additional gene deletion of GAL80 was gene-specific and

that the F-box protein Mdm30 acts genetically upstream of the

repressor Gal80, while the Mediator component Gal11 (Med15;

which is a target of Gal4 [43]) acts genetically downstream of the

repressor Gal80. Real-time PCR quantification of GAL1 mRNA

relative to ACT1 mRNA confirmed that the additional gene

deletion of GAL80 fully suppressed the transcriptional defect of the

DMDM30 strain (Figure 3D), suggesting that Mdm30 targets

Figure 2. Galactose induction requires SCF-mediated Gal80 degradation. (A) JD52 cells whose chromosomal SKP1 gene had been replaced
by HIS3 and that expressed Nub-Skp1 (SKP1wt) or Nub-Skp1V90A,E129A (skp1dM) under the control of its own promoter from the single-copy vector
PSCNX were transformed with the single-copy vector RS316 expressing HA-tagged Gal80 under the control of the ACT1 promoter. Cells were grown in
glucose liquid media to OD600 nm = 1 and induced with galactose liquid media for 1 h. Cycloheximide was added at time = 0 and the amount of Gal80
protein remaining in the cells after the indicated number of minutes was determined by Western blot with the help of an anti-HA antibody (upper
panels). The membranes were stripped and stained with Coomassie Blue as loading controls (lower panels). (B) The ratio of the amount of HA-Gal80
protein to total protein (Coomassie) in SKP1wt cells (white bars) and skp1dM cells (black bars) for each time point in part A was determined with
Image J. The ratio of the band intensities before the addition of cycloheximide (time = 0) was set as 1 and the error bars indicate the deviations
between duplicates. (C) JD52 cells expressing Nub-Skp1wt (line 1) and Nub-Skp1dM (lines 2 to 7) in place of endogenous Skp1 were 10-fold serially
diluted, titrated onto the indicated plates, and incubated for 3 d on glucose plates and for 6 d on galactose plates containing 0.1 mg/l of the
respiration inhibitor Antimycin A (AA). Cells over-expressed the indicated proteins from the multi-copy vector YEplac112 under the control of their
own respective promoters. Cells in line 7 expressed Skp1 from the single-copy vector YCplac22 under the control of its own promoter. (D) JD52 cells
of the indicated genotype were grown in glucose liquid media to OD600 nm = 1 and induced with galactose liquid media for 8 h. Cells over-expressed
Gal3 from RS314 under the control of the ACT1 promoter or lacked GAL80 as indicated. Total RNA was isolated and GAL1 mRNA was determined
relative to ACT1 mRNA by quantitative real-time PCR. The value determined for SKP1wt cells grown with glucose liquid media was set as 1 and the
error bars indicate the standard deviations between three replicates.
doi:10.1371/journal.pbio.1001290.g002
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Figure 3. Gal80 is the main target of Mdm30. (A) HA-tagged Gal80 was expressed in BY4741DW cells of the indicated genotype. Cells were
grown in glucose liquid media to OD600 nm = 1 and induced with galactose liquid media for 1 h. Cycloheximide was added at time = 0 and the amount
of Gal80 protein remaining in the cells after the indicated number of hours was determined by Western blot with the help of an anti-HA antibody
(upper panels). The membranes were stripped and stained with Coomassie Blue as loading controls (lower panels). (B) The ratio of the amount of HA-
Gal80 protein to total protein (Coomassie) in BY4741DW cells (white bars), BY4741DWDMDM30 cells (black bars), and BY4741DWDGAL11 cells (grey
bars) for each time point in part A was determined with Image J. The ratio of the band intensities before the addition of cycloheximide (time = 0) was
set as 1 and the error bars indicate the deviations between duplicates. (C) BY4741DW cells of the indicated genotype were 10-fold serially diluted,
titrated onto the indicated plates, and incubated for 3 d on the glucose plate and for 6 d on the galactose plate. (D) BY4741DW cells of the indicated
genotype were grown in glucose liquid media to OD600 nm = 1 (Glu) and induced with galactose liquid media for 8 h (Gal). Total RNA was isolated and
GAL1 mRNA was determined relative to ACT1 mRNA by quantitative real-time PCR. The value determined for BY4741DW wild-type cells grown with
glucose liquid media was set as 1 and the error bars indicate the standard deviations between three replicates. (E) HA3-tagged Mdm30 and GST or
GST-Gal80 were co-expressed in BY4741DW cells under the control of the ACT1 promoter from the multi-copy vectors RS423 and RS424, respectively.
Cells were grown with glucose liquid media to OD600 nm = 1 (odd lanes) and induced in galactose liquid media for 1 h (even lanes). GST and GST-
Gal80 were pulled down from cell extracts with the help of glutathione beads, and Inputs and GST Pulldowns were analyzed by Western blots with
the help of an anti-HA antibody (upper panel) and an anti-GST antibody (middle panel). The membrane was stripped and stained with Coomassie in
order to compare the amount of protein loaded for Input and GST Pulldown (bottom panel). (F) Histidine-tagged ubiquitinated proteins were
precipitated with Ni-beads from extracts of glucose-grown (Glu) and galactose-induced (Gal) SUB288DWL (lanes 1, 2, 5, 6, 7) and SUB288DWLDMDM30
(lanes 3, 4, 8, 9) cells expressing HA-Gal80 and ubiquitin (lane 5) or histidine-tagged ubiquitin (lanes 1 to 4 and 6 to 9) in place of endogenous
ubiquitin. Inputs (lanes 1 to 4) and precipitates (lanes 5 to 9) were analyzed by Western blot with the help of an anti-HA antibody. The ubiquitinated
bands appear as doublets, indicating that more than one lysine in Gal80 is subject to ubiquitination.
doi:10.1371/journal.pbio.1001290.g003
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mainly Gal80 for galactose-induced protein degradation. Consis-

tently, GST-Gal80, but not GST, pulled down HA-tagged

Mdm30 and Skp1 from yeast extracts (Figure 3E, lanes 8 and 9;

Figure S6). Coomassie staining demonstrated that Gal80 and

Mdm30 interacted at approximately equal amounts (Figure 3E,

lanes 8 and 9). However, Gal80 interacted with Mdm30 (and

Skp1) not only in galactose-induced but also in glucose-grown cells

(Figure 3D, compare lanes 8 and 9; Figure S6), possibly reflecting

the (slower) protein degradation of Gal80 in cells grown with

glucose (Figure 3A, lane 4; Figure 3B, white bars). The half-life of

Gal80 was calculated to be approximately 3 h in glucose-grown

BY4741DW cells and approximately 1 h in galactose-induced

BY4741DW cells. Gal80 had been completely stable in glucose-

grown H10Ub cells (Figure 1, lines 1 to 4), indicating that the N-

terminal tail of 10 histidines might have interfered with the slow

protein degradation of Gal80 in glucose-grown cells. In agreement

with the hypothesis that Gal80 is not just degraded in galactose-

induced but also in glucose-grown cells (albeit with slower kinetics),

Gal80 was poly-ubiquitinated in cells grown with glucose and in

cells induced with galactose (Figure 3F, lanes 6 and 7). The

amount of poly-ubiquitinated species of Gal80 was only slightly

higher in galactose-induced cells as compared to in glucose-grown

cells, suggesting that the generation of the poly-ubiquitinated

species of Gal80 is rate-limiting, and once generated, poly-

ubiquitinated Gal80 is immediately degraded. The ubiquitinated

forms of HA-Gal80 are not visible in the input lanes, indicating

that only a very small fraction of the Gal80 inside the cell is

ubiquitinated at any point in time. The figure further shows that

Gal80 was poly-ubiquitinated in wild-type cells as well as in cells

lacking Mdm30 (Figure 3F, compare lanes 7 and 9), indicating

that Mdm30 is not the only F-box protein targeting Gal80. In

order to identify additional SCF E3 ubiquitin ligases targeting

Gal80, we tested galactose utilization defective F-box protein gene

deletion mutant strains [37] and found that Gal80 was also stable

in galactose-induced cells lacking the F-box proteins Das1 and

Ufo1 (Figure S7A,B). Importantly, the gal2 phenotype of cells

lacking Das1 and Ufo1 was suppressed by the additional gene

deletion of GAL80 (Figure S7C) and GST-Gal80, but not GST,

pulled down Das1, and Ufo1 from yeast extracts (Figure S7D,E),

indicating that targeting of Gal80 by at least these three F-box

proteins is required for the efficient galactose-induced protein

degradation of Gal80. Gal80 interacted with all three F-box

proteins in cells grown with glucose and in cells grown with

galactose. Consistently, the deletion of MDM30, DAS1, and UFO1

stabilized Gal80 also in glucose-grown cells (Figures 3B and S7B).

The signal observed for the pulldown of the F-box proteins with

GST-Gal80 was higher in glucose-grown cells than in galactose-

induced cells (compare lanes 8 and 9 in Figures 3E and S7D,E). A

possible explanation is that in galactose-induced cells, more than

in glucose-grown cells, the protein-protein interaction between the

F-box proteins and Gal80 resulted in the protein degradation of

Gal80, which means that the amount of the F-box protein pulled

by GST-Gal80 does not necessarily reflect the strength of the

protein-protein interaction. The over-expression of Mdm30 and

Ufo1 suppressed the gal2 phenotype of cells lacking Das1 (Figure

S7F, lanes 3 and 4), indicating that galactose induction requires a

critical threshold of Gal80-targeting SCF E3 ubiquitin ligases.

Stable Derivatives of Gal80 Inhibit Galactose Induction
SCF E3 ubiquitin ligases are enzymes that not only target Gal80

for ubiquitin proteasome-mediated protein degradation but also

other proteins like Gal4 [20] and Mig2 [37]. It could be argued

that defects in the protein degradation of some protein other than

Gal80 had caused the gal2 phenotype of the H10UbD58A, skp1dM,

and DMDM30 mutant strains. We have shown that the additional

gene deletion of GAL80 suppressed the transcriptional defects of all

of these mutants, indicating that Gal80 is the only functionally

relevant target, but in order to gain independent evidence that the

galactose-induced protein degradation of Gal80 is required for the

galactose induction of the GAL genes, we sought to generate a

galactose-stable Gal80 derivative that would interfere with

transcriptional activation of the GAL genes. Some degraded

proteins contain an N-terminal degron, and we performed a series

of small N-terminal deletions of Gal80 and tested them for causing

defects in galactose utilization. The over-expression of wild-type

HA-Gal80 reduced growth on a galactose plate in the presence of

the respiration inhibitor Antimycin A (Figure 4A, line 2). The

successive deletion of two amino acids increased the growth

inhibition, with the deletion derivative lacking the 12 N-terminal

amino acids of Gal80 showing the biggest growth inhibition

(Figure 4A, line 6). N-terminal deletions of more than 12 amino

acids resulted in less inhibition, with the Gal80 deletion derivative

lacking the N-terminal 20 amino acids (which removes the first

four residues of the Rossmann-fold [44]) having lost the ability to

inhibit growth on the galactose plate (Figure 4A, line 10). Real-

time PCR quantification of GAL1 mRNA relative to ACT1 mRNA

showed that the over-expression of the HA-Gal80 derivative

lacking the N-terminal 12 amino acids reduced galactose induction

of the GAL1 gene 5- to 3-fold more than the over-expression of

wild-type HA-Gal80 (Figure 4B). Cycloheximide chase assays

demonstrated that the HA-Gal80 deletion derivative lacking the

N-terminal 12 amino acids was indeed stable in galactose-grown

cells (Figure 4C, lanes 19 to 24; Figure 4D, black bars), confirming

our hypothesis that galactose induction of the GAL1 gene requires

protein degradation of the repressor Gal80.

Mediator Interacts with SCF E3 Ubiquitin Ligases
The essential Mediator subunit Srb7 (Med21) plays a pivotal

role in the regulation of transcription [45,46]. In order to identify

human proteins interacting with the human Mediator component

hSrb7, we fused it to the C-terminal half of ubiquitin that was

extended by the RUra3 reporter (Cub-RUra3) and performed a

Split-Ubiquitin screen [47,48] with an expression library of human

cDNAs fused to the N-terminal half of ubiquitin (Nub; Figure

S8A). The Nub fusion of the human SCF E3 ubiquitin ligase

component hSkp1 was isolated by its ability to confer FOA

resistance to S. cerevisiae cells expressing hSrb7-Cub-RUra3 (Figure

S8B), indicating that both proteins interacted inside the yeast cells.

E. coli–expressed GST-hSrb7, but not GST, pulled down Nub-

HA-hSkp1 from yeast extract (Figure S8C, lane 6), and E. coli–

expressed GST-hSkp1, but not GST, pulled down E. coli–

expressed H6-HA-hSrb7 (Figure S8C, lane 3), demonstrating that

both proteins interacted directly with each other also in vitro. The

human Split-Ubiquitin system (Figure S8D; [49]) was used to

demonstrate that both proteins interacted with each other also in

vivo (Figure S8E). hSrb7 and hSkp1 are subunits of distinct protein

complexes, but the SCF component hSkp1 might play an

additional role as a component of Mediator, while the Mediator

component hSrb7 might moonlight as a component in an SCF

complex. In order to distinguish between these possibilities, we

performed co-immunoprecipitations with HeLa extracts and

found that hSkp1 pulled down other Mediator components like

hMed6 (Figure S9A, lane 3), while hMed6 pulled down other SCF

components like hCul1 (Figure S9A, lane 10), indicating that

hSrb7 and hSkp1 interacted with each other as components of

their own respective complexes. We knocked down hSrb7 and

hSkp1 in HeLa cells by RNA interference (Figure S9B), which

dramatically reduced the heat-shock induction of the human
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HSP70B’ gene (Figure S9C), indicating that hSrb7 and hSkp1 are

functionally relevant for transcription in human cells. Skp1 is a

component of the SCF E3 ubiquitin ligases, suggesting that protein

degradation could be an important aspect of how Srb7 regulates

transcription.

Mediator Controls Gal80 Degradation
The Split-Ubiquitin assay revealed that also the S. cerevisiae Srb7

and Skp1 proteins interacted with each other in vivo (Figure 5A,

line 2). Interestingly, Skp1dM was defective for the protein

interaction with Srb7 (Figure 5A, line 4). Our results showed that

the Mediator of transcription interacts with SCF E3 ubiquitin

ligases, and in order to see if Mediator plays a role in the galactose-

induced protein degradation of Gal80, we generated a gal2 allele

of SRB7 by replacing endogenous Srb7 with a GST fusion to a C-

terminal fragment of Srb7 lacking the first 40 amino acid residues

(Figure 5B, line 2). The over-expression of Gal3 and the deletion of

GAL80 suppressed the gal2 phenotype of the GST-Srb7D40 strain

(Figure 5B, compare lines 1 to 4), indicating that excess Gal80

could have caused the gal2 phenotype. The over-expression of

Gal3 and the deletion of GAL80 did not suppress the gal2

phenotype of cells lacking the Mediator subunit Gal11 (Figure 5B,

compare lines 5 to 7), demonstrating that the suppression had been

gene-specific and that the Mediator subunit Srb7 acts genetically

upstream of Gal80, while the Mediator subunit Gal11 acts

genetically downstream of Gal80. The over-expression of a2 and

the deletion of MIG2 did not suppress the gal2 phenotype of the

GST-Srb7D40 strain (Figure 5B, compare lines 8 to 11), while the

over-expression of a2 and the deletion of MIG2 had suppressed

(partially) the gal2 phenotype of the skp1dM strain (Figure 2C, line

4 and [37]), suggesting that Skp1 acts genetically upstream of both

Gal80 and Mig2, while Srb7 acts genetically upstream of Gal80

only. Cycloheximide chase assays demonstrated that Gal80 was

degraded in galactose-induced cells expressing wild-type Srb7

(Figure 5C, lanes 5 to 8; Figure 5D, white bars), but stable in

galactose-induced GST-Srb7D40 cells (Figure 5C, lanes 13 to 16;

Figure 5D, black bars), indicating that Mediator controls the

galactose-induced protein degradation of Gal80. Real-time PCR

quantification confirmed that galactose induction of GAL1 mRNA

relative to ACT1 mRNA was abolished in the GST-Srb7D40 strain

and that it was almost fully restored by the over-expression of Gal3

and the deletion of GAL80 (Figure 5E), suggesting that the failure

Figure 4. A galactose-stable Gal80 deletion derivative inhibits galactose induction of the GAL1 gene. (A) BY4742DW cells over-
expressing the indicated HA-Gal80 deletion derivatives from RS316 under the control of the ACT1 promoter were 10-fold serially diluted, titrated onto
the indicated plates, and incubated for 3 d (Glucose) and 6 d (Galactose+AA = 1 mg/l Antimycin A), respectively. (B) Cells of part A, lines 1, 2 and 6,
were grown in glucose liquid media to OD600 nm = 1 and induced with galactose liquid media for the indicated number of hours. Total RNA was
isolated and GAL1 mRNA was determined relative to ACT1 mRNA by quantitative real-time PCR. The value determined for BY4742DW cells containing
RS316 grown with glucose liquid media was set as 1 and the error bars indicate the standard deviations between three replicates. (C) BY4742DW cells
expressing HA-tagged wild-type Gal80 or Gal80DN12 from RS317 under the control of the ACT1 promoter were grown in glucose liquid media to
OD600 nm = 1 and induced with galactose liquid media for 1 h. Cycloheximide was added at time = 0 and the amount of HA-Gal80 and HA-Gal80DN12
proteins remaining in the cells after the indicated number of minutes was determined by Western blot with the help of an anti-HA antibody (upper
panels). The membranes were stripped and reprobed with an anti-CPY antibody (middle panels), followed by a second stripping and staining with
Coomassie Blue as loading controls (lower panels). (D) The ratio of the amount of HA-Gal80 protein to CPY protein (white bars) and of HA-Gal80DN12
protein to CPY protein (black bars) in BY4742DW cells for each time point in part C was determined with Image J. The ratio of the band intensities
before the addition of cycloheximide (time = 0) was set as 1 and the error bars indicate the deviations between duplicates.
doi:10.1371/journal.pbio.1001290.g004
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of the GST-Srb7D40 strain to degrade Gal80 upon galactose

induction had been the main cause for the failure to activate the

transcription of the GAL1 gene. GST-Srb7, but not GST, pulled

down Skp1 from yeast extract, while GST-Srb7D40 failed to do so

(Figure 5F, lanes 5 and 6), indicating that the protein-protein

interaction with Skp1 is mediated by the N-terminus of Srb7,

which is the most conserved part of the protein [46]. Our results

have shown that the degradation of Gal80 was abolished when

endogenous Skp1 was replaced by a mutant Skp1 derivative that

failed to interact with Srb7 and when endogenous Srb7 was

Figure 5. Mediator controls galactose-induced Gal80 degradation. (A) JD52 cells expressing Srb7 fused to Cub-RUra3 and Nub-HA fused to
the indicated derivatives of Skp1 were titrated onto the depicted plates and incubated for 3 d (Skp1dM = Skp1V90A,E129A). Protein-protein
interaction between Srb7 and Skp1 is indicated by lack of growth on the uracil-depleted plate and by growth on the FOA-containing plate. (B) JD52
cells whose chromosomal SRB7 gene had been replaced by HIS3 and that expressed wild-type Srb7 under the control of its own promoter from the
single-copy vector YCplac22 (22-SRB7; lines 1 and 8) or GST-Srb7 lacking the first 40 amino acids of Srb7 from the multi-copy vector YG1u under the
control of the ADH1 promoter (GST-Srb7D40; lines 2 to 4 and lines 9 to 11) and BY4741DW cells of the indicated genotype (lines 5 to 7) were 10-fold
serially diluted, titrated onto the depicted plates, and incubated for 3 d on the glucose plate and for 6 d on the galactose plate containing 0.1 mg/l
AA. Cells in lines 3 and 6 over-expressed Gal3 from RS315 under the control of the ACT1 promoter, cells in line 10 over-expressed a2 from RS315 under
the control of the ACT1 promoter, cells in lines 4 and 7 lacked GAL80, and cells in line 11 lacked MIG2. (C) JD52 cells whose chromosomal SRB7 gene
had been replaced by HIS3 and that expressed wild-type Srb7 under the control of its own promoter from the single-copy vector YCplac22 (22-SRB7)
or GST-Srb7 lacking the first 40 amino acids of Srb7 from the multi-copy vector YG1u under the control of the ADH1 promoter (GST-Srb7D40) were
transformed with the single-copy vector RS316 expressing HA-tagged Gal80 under the control of the ACT1 promoter. Cells were grown in glucose
liquid media to OD600 nm = 1 and induced with galactose liquid media for 1 h. Cycloheximide was added at time = 0 and the amount of Gal80 protein
remaining in the cells after the indicated number of minutes was determined by Western blot with the help of an anti-HA antibody (upper panels).
The membranes were stripped and stained with Coomassie Blue as loading controls (lower panels). (D) The ratio of the amount of HA-Gal80 protein
to total protein (Coomassie) in 22-SRB7 cells and GST-Srb7D40 cells for each time point in part A was determined with Image J. The ratio of the band
intensities before the addition of cycloheximide (time = 0) was set as 1 and the error bars indicate the deviations between duplicates. (E) Cells of part
B, lines 1 to 4, were grown in glucose liquid media to OD600 nm = 1 and induced with galactose liquid media for 8 h. Total RNA was isolated and GAL1
mRNA was determined relative to ACT1 mRNA by quantitative real-time PCR. The value determined for 22-SRB7 cells grown with glucose liquid media
was set as 1 and the error bars indicate the standard deviations between three replicates. (F) Whole-cell extracts of JD52 cells expressing the indicated
Srb7 derivatives in place of endogenous Srb7 and Nub-HA-Skp1 were incubated with glutathione beads, and precipitates were washed five times.
Inputs and precipitates were analyzed by Western blot with an anti-HA antibody (upper panel) and with an anti-GST antibody (lower panels).
doi:10.1371/journal.pbio.1001290.g005
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replaced by a Srb7 mutant protein that failed to interact with

Skp1, suggesting that the protein-protein interaction between the

Mediator component Srb7 and the SCF component Skp1 is

required for the protein degradation of Gal80.

Snf1 Directs Galactose-Induced Gal80 Degradation
Mediator acts upstream of the activator Gal4 by controlling the

galactose-induced protein degradation of the inhibitor Gal80. But

how does Mediator know about the switch in carbon source? The

protein kinase Snf1 is required for the transcription of glucose-

repressed genes in S. cerevisiae, and the deletion of SNF1 resulted in

the failure to degrade Gal80 (Figure 6A, lanes 19 to 24; Figure 6B,

grey bars), to utilize galactose (Figure 6C), and to activate the

GAL1 gene under inducing conditions (Figure 6D). The activating

gamma subunit Snf4 is required for the kinase activity of the SNF1

complex and Gal80 was also stable in galactose-induced DSNF4

cells (Figure 6A, lanes 31 to 36; Figure 6B, grey bars), indicating

that the kinase activity of the SNF1 complex is required for the

degradation of Gal80. The additional gene deletion of GAL80 fully

suppressed the transcriptional defect of DSNF1 and DSNF4 cells

(Figure 6C, lines 3 and 4; Figure 6D), but no interaction was

observed between Snf1 and Gal80 in a pulldown assay (Figure

S10), indicating that Snf1 controls GAL1 expression mainly by

targeting Gal80 via Srb7 and SCF E3 ubiquitin ligases. The Split-

Ubiquitin assay did not reveal an interaction between Snf1 and

Srb7 (Figure S11, line 23), however Srb7 is a component of

Mediator and Snf1 interacted with the Mediator components

Med6 (Figure S11, line 6), Med10 (Figure S11, line 11), Srb6

(Med22; Figure S11, line 21), and Srb11 (CycC; Figure S11, line

27). The protein interaction between the kinase Snf1 and the

Mediator component Srb11 had been observed both in vivo and

in vitro previously [50,51]. Srb11 is a cyclin-like cofactor for the

protein kinase Srb10 (Cdk8), and the Mediator components Srb10

and Srb11 are both required for the full transcriptional activation

of the GAL1 gene [52]. Gal80 was stable in galactose-induced

DSRB10 and DSRB11 cells (Figure S12A, lanes 7 to 12 and 19 to

Figure 6. The protein kinase Snf1 is required for galactose-induced protein degradation of Gal80. (A) BY4742DW (lanes 1 to 12),
BY4742DWDSNF1 (lanes 13 to 24), and BY4741DWDSNF4 (lanes 25 to 36) cells expressing HA-tagged Gal80 under the control of the ACT1 promoter
were grown in glucose liquid media to OD600 nm = 1 and induced with galactose liquid media for 1 h. Cycloheximide was added at time = 0 and the
amount of Gal80 protein remaining in the cells after the indicated number of minutes was determined by Western blot with the help of an anti-HA
antibody (upper panels). The membranes were stripped and reprobed with an anti-CPY antibody (middle panels), followed by a second stripping and
staining with Coomassie Blue as loading controls (lower panels). (B) The ratio of the amount of HA-Gal80 protein to CPY protein in BY4742DW cells
(white bars), BY4742DWDSNF1 cells (black bars), and BY4741DWDSNF4 cells (grey bars) for each time point in part A was determined with Image J. The
ratio of the band intensities before the addition of cycloheximide (time = 0) was set as 1 and the error bars indicate the deviations between
duplicates. (C) BY4742DW cells (lines 1 to 3) and BY4741DW cells (lines 4 to 6) of the indicated genotype were 10-fold serially diluted, dropped onto
the depicted plates, and incubated for 6 d at 28uC. The galactose plate contained 1 mg/l Antimycin A. (D) Cells of part C, lines 1 to 3, were grown in
glucose liquid media to OD600 nm = 1 and induced with galactose liquid media for the indicated number of hours. Total RNA was isolated and GAL1
mRNA was determined relative to ACT1 mRNA by quantitative real-time PCR. The value determined for BY4742DW cells grown with glucose liquid
media was set as 1 and the error bars indicate the standard deviations between three replicates.
doi:10.1371/journal.pbio.1001290.g006
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24; Figure S12B), confirming that Snf1 might transduce the signal

to degrade Gal80 via the Mediator subunit Srb11. The additional

gene deletion of GAL80 suppressed the galactose utilization defect

of cells lacking Srb10 and Srb11 (Figure S12C, lines 3 and 5),

providing genetic evidence that galactose-stable Gal80 had caused

the gal2 phenotype of DSRB10 and DSRB11 cells.

The SNF1 kinase is activated by the absence of glucose, but

transcriptional activation of the GAL genes requires additionally

the presence of galactose, as transcription of GAL1 is not activated

in cells grown with—for example—raffinose (Figure S13B).

Consistently, Gal80 was more stable in cells grown with raffinose

than in cells grown with galactose (Figure S14). The half-life of

Gal80 in BY4741DW cells was calculated to be approximately 3 h

when the cells were grown with glucose, 2 h when the cells were

grown with raffinose, 1 h when galactose-induced cells had been

pre-grown with glucose, and half an hour when the galactose-

induced cells had been pre-grown with raffinose. However, our

observations also indicate that active SNF1 kinase is necessary but

not sufficient for the galactose-stimulated protein degradation of

Gal80. An additional transducer that signals the presence of

galactose is apparently required. A possible candidate for such a

signal transducer is Gal3, as it is known to bind both galactose and

Gal80 [14]. Cells lacking Gal3 display a strong gal2 phenotype

(Figure S15A, lines 3 and 4), which is suppressed by the additional

gene deletion of GAL80 (Figure S15A, lines 5 and 6), but the

degradation of Gal80 in galactose-induced cells remained

unchanged upon the deletion of GAL3 (Figure S15B, lanes 5 to

8; Figure 15C), indicating that Gal3 does not play a role in the

galactose-induced protein degradation of Gal80 and that galactose

must utilize another transducer to stimulate the protein degrada-

tion of Gal80.

Discussion

Mediator was isolated by its ability to respond to transcriptional

activators, and all studies published about Mediator have focused

on the role of Mediator past its recruitment to the promoter by the

activator [28]. Once recruited, Mediator is required to recruit the

General Transcription Factors and RNA Polymerase II and to

initiate transcription [29]. Mediator also affects post-initiation

steps by affecting transcription elongation and chromatin structure

[31]. We have shown here that Mediator additionally acts

upstream of the activator Gal4 by controlling the degradation of

the inhibitor Gal80. In cells grown with glucose, Gal80 binds to

the activation domain of Gal4 and prevents it from activating

transcription. Upon galactose induction, Mediator initiates the

degradation of Gal80 via its interaction with the SCF E3 ubiquitin

ligase component Skp1. Therefore, Mediator actually orchestrates

its own recruitment to the GAL1 promoter by regulating the

activity of Gal4 (Figure 7).

SCFMdm30 targets not only Gal80 but also Gal4 in galactose-

induced cells, leading to the mono-ubiquitination and subsequent

poly-ubiquitination and protein degradation of Gal4 [20]. In

galactose-induced cells lacking Mdm30, Gal4 is no longer

ubiquitinated and no longer degraded [20]. One could argue that

changes in the proteolytic stability of Gal4 or in its mono-

ubiquitination status might have been the cause for the gal2

phenotypes that we have observed for the various H10UbD58A,

skp1, mdm30, srb7, and snf1 mutant strains described here.

Therefore, it is important to note that our claim that the

degradation of Gal80—and not the degradation of Gal4—is

required for the transcriptional activation of the GAL genes is not

just based on a simple correlation between the proteolytic stability

of Gal80 and the inability of the cell to activate transcription of the

GAL1 gene, but on functional suppression. The additional gene

deletion of GAL80 fully suppressed the transcriptional defects of

the H10UbD58A, skp1, mdm30, srb7, and snf1 mutant strains. This

means that in the absence of Gal80, Gal4 activated transcription

in all these mutant strains just fine, which demonstrates that any

effects that these strain mutations might have had on Gal4 were

not relevant for Gal4’s function as a transcriptional activator.

Therefore, while mono-ubiquitination of Gal4 was certainly

affected in the H10UbD58A strain (since endogenous wild-type

ubiquitin had been replaced with H10UbD58A), Gal4-

H10UbD58A fully activated transcription of the GAL1 gene in

the absence of Gal80, suggesting that H10UbD58A still protected

Gal4 from the UAS-stripping activity of the 19S proteasome [25].

Furthermore, Gal4 fully activated transcription in cells lacking

both Mdm30 and Gal80, which argues that Gal4 does not have to

be degraded to become transcriptionally active. In addition, we

have generated a galactose-stable Gal80 derivative that inhibited

galactose induction in otherwise wild-type cells, which means that

we have presented evidence for our claim that galactose induction

requires Gal80 degradation that did not rely on a mutant strain

background.

The deletion of the three F-box protein-coding genes MDM30,

DAS1, and UFO1 completely abolished galactose induction of

GAL1 mRNA (Figure 3D and [37]). Das1 and Ufo1 (but not

Mdm30) also target the repressor Mig2 for galactose-induced

protein degradation [37]. However, the additional gene deletion of

MIG2 did not increase galactose induction of GAL1 mRNA in the

DUFO1 strain and had only a very small effect on the galactose

induction of the GAL1 mRNA in the DDAS1 strain [37].

Therefore, an additional target for Das1 and Ufo1 had been

proposed, and we have now shown here that Gal80 is this

functionally relevant target, as Gal80—like Mig2 [37]—became

stable in galactose-induced cells lacking Das1 and Ufo1 (Figure

S7A and S7B), and the additional gene deletion of GAL80

suppressed the gal2 phenotype of both the DDAS1 and the DUFO1

strains (Figure S7C). We are proposing that a critical concentra-

tion of the three F-box proteins Mdm30, Das1, and Ufo1 is

required for the galactose-stimulated protein degradation of

Gal80. If any one of these three F-box proteins is missing, the

concentration of the remaining two F-box proteins is insufficient

for targeting of Gal80; Gal80 is not degraded and excess Gal80

prevents Gal4 from activating the GAL genes under inducing

conditions. In support of this model (Figure 7), we were able to

show that the gal2 phenotype of DDAS1 cells was suppressed by

the over-expression of Ufo1 and Mdm30 (Figure S7E).

Gal3 sequesters Gal80 in the cytoplasm upon galactose

induction [14]. The gene deletion of GAL3 had caused a gal2

phenotype that was suppressed by the additional gene deletion of

GAL80, but the protein degradation of Gal80 was still stimulated in

galactose-induced cells lacking Gal3 (Figure S15), indicating that

instable Gal80 was not sufficient to allow Gal4 to activate

transcription in the absence of Gal3. On the other hand,

sequestration of Gal80 into the cytoplasm by endogenous levels

of Gal3 was not sufficient to allow Gal4 to activate transcription in

the presence of stable Gal80. Apparently, sequestration of Gal80

into the cytoplasm by Gal3 and ubiquitin-mediated protein

degradation of Gal80 are both required for the galactose induction

of the GAL genes.

Contrary to a previous report [20], we found that the deletion of

the gene encoding the F-box protein Mdm30 abolished galactose

induction of the GAL1 mRNA. We have grown the cells in glucose

liquid media prior to the switch to galactose liquid media—which

is consistent with the switch in carbon sources conducted for the

plate assay—while Muratani et al. grew the cells in raffinose liquid
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media prior to the switch to galactose liquid media. In order to

determine if this difference in protocols was the cause for the

difference in results, we performed the galactose induction with

cells that had been pre-grown in raffinose, and we found that in

this case, galactose-induced protein degradation of Gal80 and

galactose induction of GAL1 mRNA relative to ACT1 mRNA were

restored in the DMDM30 strain (Figures S13B and S14). One

other remarkable difference between the two growth protocols is

the speed of induction. Galactose induction of GAL1 mRNA

relative to ACT1 mRNA takes 4 h if the cells are pre-grown with

glucose and only 1 h if the cells are pre-grown with raffinose

(Figure S16). Consistently, cycloheximide chase assays demon-

Figure 7. How Mediator orchestrates its own recruitment to the GAL1 promoter. (A) The protein kinase SNF1 senses the absence of glucose
and phosphorylates Mig2. Phosphorylated Mig2 is ubiquitinated by the E3 ubiquitin ligases SCFDas1/Ufo1 [37]. SNF1 also signals Mediator the absence
of glucose via the Snf1-Srb11 interaction. Mediator transduces the signal to the E3 ubiquitin ligases SCFMdm30/Ufo1/Das1 via the Srb7-Skp1 interaction.
SCFMdm30/Ufo1/Das1 ubiquitinate Gal80 via the interaction of Gal80 with the F-box proteins Mdm30, Ufo1, and Das1. (B) Poly-ubiquitinated Gal80 and
Mig2 are degraded by the 26S proteasome. (C) Gal4 recruits chromatin-remodeling and chromatin-modifying complexes as well as the Holoenzyme
of Transcription (consisting of RNA Polymerase II, the General Transcription Factors, and Mediator) to the GAL1 promoter genes via the Gal4-Gal11
interaction [43].
doi:10.1371/journal.pbio.1001290.g007
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strate that Gal80 is more rapidly degraded in galactose-induced

cells when the cells had been pre-grown with raffinose instead of

with glucose (compare Figures 3B and S14B). The half-life of

Gal80 in galactose-induced BY4741DW cells was approximately

1 h when the cells had been pre-grown with glucose and only half

an hour when the cells had been pre-grown with raffinose. The

correlation of the kinetics of galactose-induced Gal80 destruction

and GAL1 mRNA production suggests that the degradation of

Gal80 is the rate-limiting step for the galactose induction of the

GAL1 gene.

Materials and Methods

Strains and Plasmids
The S. cerevisiae strain SUB288 [53] has all chromosomal

ubiquitin genes deleted and allows for the expression of plasmid-

born ubiquitin derivatives in place of endogenous ubiquitin (see

Table S1 for the genotypes of the strains and Table S2 for the

sequences of PCR primers). However, the strain fails to grow on

galactose plates containing the respiration inhibitor Antimycin A

(AA). Transformation of the strain with single-copy vectors

expressing Gal3 from its own promoter allowed the strain to grow

on galactose AA plates and sequencing of the chromosomal GAL3

gene demonstrated that SUB288 carries a frame shift in the third

codon of GAL3. The TRP1 and LEU2 genes were deleted and the

defective gal3 gene was repaired by homologous recombination

with a wild-type GAL3 PCR fragment followed by selection on a

galactose AA plate or with YIplac204-GAL3, a derivative of the

TRP1-marked integrative vector YIplac204 [54] containing the

GAL3 gene, resulting in SUB288GAL3DWL+316-Ub and SUB288-

GAL3DL+316-Ub, respectively. DNA sequencing of PCR frag-

ments derived from genomic DNA was used to confirm that the

GAL3 gene had been repaired. The ubiquitin point mutants were

generated by two-step PCR with degenerate primers and cloned

into the LYS2-marked single-copy vector RS317 [55] containing

the ACT1 promoter-terminator cassette and into RS317 expressing

10 histidines from the ACT1 promoter. The 317-Ub and 317-H10-

Ub plasmids were transformed into SUB288GAL3DWL+316-Ub

and 316-Ub was shuffled out on FOA plates. All ubiquitin mutant

strains were confirmed by DNA sequencing. The GAL80 gene of

SUB288GAL3DWL+317-Ub was knocked out with a derivative of

NKY51 [56], which carried the hisG-URA3-hisG cassette in the BglII

site at nucleotide 612 of GAL80. 317-Ub was replaced by 316-Ub

via plasmid loss, and plasmid shuffle was used to generate the 317-

H10-Ub and 317-H10-UbD58A strains carrying hisG integrated

into GAL80. The essential SRB7 gene of JD52 and JD52DGAL80

was knocked out with a PCR fragment containing the HIS3 gene

flanked by 50 bp of SRB7 promoter and terminator in the

presence of 33-SRB7, a derivative of the URA3-marked single-copy

vector YCplac33 [54] that expressed Srb7 from its own promoter.

GST-Srb7 and GST-Srb7D40 were expressed from the TRP1-

marked multi-copy vector YG1m under the control of the ADH1

promoter. BY4741DW and BY4742DW and their gene deletion

derivatives were obtained from the respective EUROSCARF

strains by inserting hisG into the TRP1 gene with the help of

NKY1009 [56]. YEp13-GAL3 was isolated from a LEU2-marked

multi-copy YEp13-based genomic DNA library [37] as a multi-

copy suppressor of the gal2 phenotype of the H10UbD58A strain.

YEp13-GAL3 contains a 2,643 bp genomic DNA fragment with

the entire GAL3 gene, including 842 bp of promoter and 238 bp of

terminator DNA. 112-GAL3 is a derivative of the TRP1-marked

multi-copy vector YEplac112 [54] containing the genomic GAL3

fragment. 314-Gal3 is a derivative of the TRP1-marked single-copy

vector RS314 [55], expressing Gal3 from the ACT1 promoter. 315-

Gal3 is a derivative of the LEU2-marked single-copy vector RS315

[55], expressing Gal3 from the ACT1 promoter. 316-HA-Gal80 is a

derivative of RS316, expressing Gal80 from the ACT1 promoter.

The N-terminal deletion derivatives of Gal80 were cloned into the

same vector. 423-HA3-Mdm30, 423-HA3-Das1, and 423-HA3-Ufo1

are derivatives of the HIS3-marked multi-copy vector RS423 [55],

expressing Mdm30, Das1, and Ufo1 tagged with three HA

epitopes from the ACT1 promoter. 424-GST and 424-GST-Gal80

are derivatives of the TRP1-marked multi-copy vector RS424 [55],

expressing GST and GST-Gal80 from the ACT1 promoter.

YIplac128-Snf1c-HA3H10 is a derivative of the LEU2-marked

integrative vector YIplac128 [54], containing a C-terminal BglII-

SalI fragment of SNF1 lacking the stop codon, and YIplac128-

Skp1c-HA3H10 is a derivative of YIplac128 containing a C-terminal

EcoRI-SalI fragment of SKP1 lacking the stop codon. Snf1-HA3H10

was expressed from the SNF1 promoter following digestion with

MluI and integration into the SNF1 locus, while Skp1-HA3H10 was

expressed from the SKP1 promoter following digestion with AvaI

and integration into the SKP1 locus.

Split-Ubiquitin Screen
A Clontech library derived from human B-cell cDNAs was

partially digested with Sau3A and cloned into the BglII site of

PADNX-Nub-IBC [57] in all three reading frames, resulting in

60,000 independent DH5a transformants. hSrb7 was cloned into

Pcup1-Cub-RUra314 [57] and transformed together with the Nub

library into JD52 [58], resulting in 160,000 transformants, which

were plated onto FOA plates containing 10 mM CuSO4. The Nub

plasmids from the 10 arising colonies were isolated and

transformed back into JD52 containing hSrb7-Cub-Ura314. Only

one was plasmid-linked, and it contained the entire hSkp1 open

reading frame fused to Nub-HA.

mRNA Quantification
HeLa cells were grown to 80% confluency and transfected with

2 mg of pSuper (OligoEngine) construct and 5 ml of lipofectamin in

serum-free DMEM for 5 h before being transferred into regular

DMEM. The three constructs used were an empty vector as a

negative control, siRNA specific for hSKP1, and siRNA specific for

hSRB7. 48 h after transfection, one set of cells was heat-shocked at

45uC for 15 min and allowed to recover for 1 h in a 37uC
incubator. A non-heat-shock sample was also incubated at 37uC
for an identical length of time. These cells were then harvested by

trypsinization and their mRNA was extracted using a Qiagen

RNA Easy Kit. 300 nM of mRNA was utilized for reverse

transcription primed by random hexamers, and the cDNA was

quantified using Sybr-Green in an ABI Prism. Primers for

HSP70B’ mRNA were 59-ccccatcattgaggaggttg-39 and 59-gaagca-

gaagaggatgaacc-39. Primers for hSKP1 mRNA were 59-gcaaaga-

gaaccagtggtgtga-39 and 59-aggtttgggatctgtgctcaa-39. Primers for

hSRB7 mRNA were 59-aatgtggtcctcctgcctctt-39 and 59-ccagaag-

catgtctcctcgata-39. Primers for GAPDH mRNA were 59-

ctctctgctcctcctgttcgac-39 and 59-tgagcgatgtggctcggct-39.

S. cerevisiae cells were cultured in synthetic complete 2% (w/v)

glucose medium at 28uC. At OD600 nm = 1, the cells were collected

by centrifugation. Galactose induction was performed by resus-

pending the cells in 2% galactose medium and incubation for the

indicated amount of time. Total RNA was isolated using the

RNAeasy Mini Kit (Qiagen) according to the manufacturer’s

protocol. cDNA was generated by reverse transcription PCR using

Taqman MicroRNA Reverse Transcription Kit (Roche Applied

Biosystems). Quantitative real-time PCR was performed using

SYBR Green PCR Master Mix (Applied Biosystems). Primers used

for ACT1 mRNA were 59-gaccaaactacttacaactcca-39 and 59-
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cattctttcggcaatacctg-39. Primers used for GAL1 mRNA were 59-

acttgcaccggaaaggtttg-39 and 59-ttggtacatcaccctcacagaaga-39. All

mRNA quantifications were performed three times, and the error

bars represent the standard deviations.

Coimmunoprecipitation
HeLa cells were grown to 80% confluency before they were

transfected with 2 mg of pCMV-myc-hSKP1 or pCMV-myc vector and

5 ml of lipofectamin in serum-free DMEM for 5 h before being

transferred into regular DMEM. The cells were harvested 48 h

after transfection by trypsinization and lysed in 16PBS by freeze-

thaw. The cell lysate was subsequently agitated on a rotor with

2 ml of anti-myc affixed agarose beads (Sigma) in 500 ml of ice cold

16 PBS overnight. The beads were washed four times with 1 ml

PBS prior to heat elution at 95uC for 15 min. Proteins were

separated on a 12% gel, transferred to a nitrocellulose membrane,

which was probed with anti-Med6 rabbit polyclonal antibody

(Abcam).

HeLa cells were grown to 80% confluency before they were

harvested by trypsinization and lysed in 16 PBS by freeze-thaw.

The cell lysate was diluted 1:5 with RIPA buffer (50 mM Tris-HCl

ph 8, 150 mM NaCl, 2 mM EDTA, 1% NP-40, 0.5% Sodium

deoxycholate, 0.1% SDS) and incubated with 10 ml of rProtein G

Sepharose (GE Healthcare) as well as 5 ml of anti-Med6 rabbit

polyclonal antibody (Abcam) or anti-Cul1 mouse monoclonal

antibody (Abcam) for 3 h. The sepharose was washed four times

with 1 ml PBS and heat eluted at 95uC for 15 min. Proteins were

separated on a 12% gel and transferred to a nitrocellulose

membrane, which was probed with the reciprocal antibody (anti-

Cul1 mouse monoclonal antibody (Abcam) or anti-Med6 rabbit

polyclonal antibody (Abcam), respectively).

GST Pulldown Assays
GST pulldown assays were performed using whole cell S.

cerevisiae extracts prepared by bead beating in yeast lysis buffer

(100 mM Tris pH 7.5, 50 mM KCl, 1 mM EDTA, 0.1% NP40)

and whole cell E. coli extracts prepared by freeze-thaw in PBS

(Phosphate-Buffered Saline). 500 ml of whole cell extract was

added to equilibrated glutathione beads (Amersham Biosciences)

containing 2 mM PMSF and 1 mM DTT. The reaction mixture

was incubated at 4uC for 1 h. The sample was centrifuged at

3,000 rpm and the supernatant was removed. The glutathione

beads were washed five times before Western Blot analysis.

Ni Pulldown Assays
S. cerevisiae cells were grown in 50 ml synthetic complete 2%

glucose medium to OD600 nm = 1 and harvested by centrifugation.

The cell pellets were suspended in 1 ml yeast breaking buffer

(Triton X-100, 10% SDS, 5 M NaCl, 1 M Tris-Hcl pH 8, 0.5 M

EDTA; Figure 5D) or yeast lysis buffer (Figure S6), pipetted into a

screw-cap microcentrifuge tube containing acid-washed glass

beads (Sigma-Aldrich, USA), and 2 mM PMSF was added. The

tubes were then subjected to homogenization with a bead beater

for 1 min and then rested on ice for 3 min. This process was

repeated for three times. The samples were then centrifuged for

15 min at 13,000 rpm, and the supernatants were incubated with

10 ml of equilibrated nickel beads for 1 h at 4uC. After incubation,

the samples were centrifuged at 3,000 rpm for 2 min. The nickel

beads were washed with 1 ml yeast breaking/lysis buffer

containing 20 mM imidazole. This washing process was repeated

five times. The bound protein was eluted from the nickel beads

using 100 ml of yeast breaking/lysis buffer with 500 mM imidazole

for 30 min. This process was repeated two times. The supernatant

was collected and stored at 280uC.

Cycloheximide Chase Assays
S. cerevisiae cells were grown in liquid drop out media containing

2% glucose or raffinose to OD600 nm = 1. Half of the cultures were

induced in liquid media containing 2% galactose for 1 h before the

addition of 200 mg/l cycloheximide (Sigma). Aliquots were taken

at the indicated time points, and cellular proteins were analyzed by

Western Blot with primary antibodies against hemagglutinin (HA;

Roche) and carboxypeptidase Y (CPY; Molecular Probes),

followed by staining with a horseradish peroxidase-coupled

secondary anti-mouse IgG antibody and by Coomassie Brilliant

Blue (Sigma) staining. The intensities of the bands were quantified

with Image J (rsb.info.nih.gov/ij/index.html). The ratio of the

band intensities before the addition of cycloheximide (time = 0)

was set as 1, and the error bars represent the deviations between

duplicates. Representative Western blots are shown. No significant

differences were observed when the HA-Gal80 bands were

normalized to CPY or to Coomassie staining. The half-life of

Gal80 was calculated using trendline (excel).

Supporting Information

Figure S1 Identification of galactose utilization-defective Ub

mutants. Ten-fold serial dilutions of SUB288GAL3DWL cells

expressing the indicated ubiquitin derivatives in place of

endogenous ubiquitin were titrated onto the depicted plates and

incubated at 28uC for 6 d. The ubiquitin derivatives were

expressed from the LYS2-marked single-copy vector RS317 under

the control of the ACT1 promoter. The galactose plates contained

1 mg/l of the respiration inhibitor Antimycin A (AA).

(TIF)

Figure S2 Summary of the results of the alanine scans of

ubiquitin and histidine-tagged ubiquitin. All residues of ubiquitin

other than alanine and glycine were replaced by alanine one by

one, and cells expressing the indicated ubiquitin derivative in place

of endogenous ubiquitin were tested for viability by growth on

plates containing FOA and for the gal2 phenotype by growth on

galactose plates containing the respiration inhibitor Antimycin A.

2 indicates lack of growth and + indicates growth.

(TIF)

Figure S3 The over-expression of Gal3 dosage compensates the

gal2 phenotype of all ubiquitin mutants. Ten-fold serial dilutions of

SUB288GAL3DWL cells expressing the indicated ubiquitin deriv-

ative in place of endogenous ubiquitin that contained RS315 (odd

lanes) or that over-expressed Gal3 from RS315 under the control

of the ACT1 promoter (even lanes) were 10-fold serially diluted,

titrated onto the indicated plates, and incubated for 6 d at 28uC.

The Galactose+AA plate contained 1 mg/l Antimycin A.

(TIF)

Figure S4 The additional gene deletion of GAL80 suppresses the

gal2 phenotype of all gal2 ubiquitin mutants. Ten-fold serial

dilutions of SUB288GAL3DWL cells expressing the indicated

ubiquitin derivative in place of endogenous ubiquitin that

contained the GAL80 gene (odd lanes) or that lacked the

GAL80 gene (even lanes) were 10-fold serially diluted, titrated

onto the indicated plates, and incubated for 3 d at 28uC. The

Galactose+AA plate contained 1 mg/l Antimycin A.

(TIF)

Figure S5 HA-Gal80 is stable in the gal2 H10Ub mutant strains.

Left panels: SUB288GAL3DL cells expressing the indicated H10Ub

derivatives in place of endogenous ubiquitin were transformed

with the single-copy vector RS316 expressing HA-Gal80 under the

control of the ACT1 promoter. Cells were grown in glucose liquid
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media to OD600 nm = 1 and induced with galactose liquid media

for 1 h. Cycloheximide was added at time = 0 and the amount of

Gal80 protein remaining in the cells after the indicated number of

hours was determined by Western blot with the help of an anti-HA

antibody (upper panels). The membranes were stripped and

reprobed with an anti-CPY antibody (middle panels), followed by

a second stripping and staining with Coomassie Blue as loading

controls (lower panels). Right panels: The ratio of the amount of

HA-Gal80 protein to the loading controls for each time point was

determined with Image J. The ratio of the band intensities before

the addition of cycloheximide (time = 0) was set as 1 and the error

bars indicate the deviations between duplicates.

(TIF)

Figure S6 GST-Gal80, but not GST, co-precipitates Skp1-HA3-

H10. Endogenous Skp1 of BY4741DW cells was tagged with three

HA epitopes and 10 histidines. GST (lanes 1, 2, 5, 6) and GST-

Gal80 (lanes 3, 4, 7, 8) were expressed in these cells under the

control of the ACT1 promoter. Cells were grown with glucose

liquid media to OD600 nm = 1 (odd lanes) and induced in galactose

liquid media for 1 h (even lanes). GST and GST-Gal80 were

pulled down from cell extracts with the help of glutathione beads,

and Inputs (lanes 1 to 4) and GST Pulldowns (lanes 5 to 8) were

analyzed by Western blots with the help of an anti-HA antibody

(upper panel) and an anti-GST-antibody (middle panel). The

membrane was stripped and stained with Coomassie in order to

compare the amount of protein loaded for Input and GST

Pulldown (bottom panel).

(TIF)

Figure S7 Das1 and Ufo1 target Gal80. (A) HA-tagged Gal80

was expressed in BY4741DW (lanes 1 to 8), BY4741DWDDAS1

(lanes 9 to 16), and BY4741DWDUFO1 (lanes 17 to 24) cells from

the single-copy vector RS316 under the control of the ACT1

promoter. Cells were grown in glucose liquid media to

OD600 nm = 1 and induced with galactose liquid media for 1 h.

Cycloheximide was added at time = 0 and the amount of Gal80

protein remaining in the cells after the indicated number of hours

was determined by Western blot with the help of an anti-HA

antibody (upper panels). The membranes were stripped and

stained with Coomassie Blue as loading controls (lower panels). (B)

The ratio of the amount of HA-Gal80 protein to total protein

(Coomassie) in BY4741DW cells (white bars), BY4741DWDDAS1

cells (black bars), and BY4741DWDUFO1 cells (grey bars) for each

time point in part A was determined with Image J. The ratio of the

band intensities before the addition of cycloheximide (time = 0)

was set as 1 and the error bars indicate the deviations between

replicates. (C) BY4741DW cells of the indicated genotype were 10-

fold serially diluted, titrated onto the indicated plates, and

incubated at 28uC for 3 d on the glucose plate and for 6 d on

the galactose+AA ( = 0.1 mg/l Antimycin A) plate. (D) HA3-

tagged Das1 and GST (lanes 1, 2, 6, 7) or GST-Gal80 (lanes 3, 4,

8, 9) were expressed in BY4741DW cells under the control of the

ACT1 promoter from the multi-copy vectors RS423 and RS424,

respectively. Cells were grown with glucose liquid media to

OD600 nm = 1 (odd lanes) and induced in galactose liquid media for

1 h (even lanes). GST and GST-Gal80 were pulled down from cell

extracts with the help of glutathione beads, and Inputs and GST

Pulldowns were analyzed by Western blots with the help of an

anti-HA antibody (upper panel) and an anti-GST-antibody (lower

panel). The size marker (M) was loaded into lane 5 and the dots

indicate the positions of the marker bands of 150 kD, 100 kD,

75 kD (upper panel) and 100 kD, 75 kD, 50 kD, 37 kD (two dots),

and 25 kD (lower panel). (E) HA3-tagged Ufo1 and GST (lanes 1,

2, 6, 7) or GST-Gal80 (lanes 3, 4, 8, 9) were expressed in

BY4741DW cells under the control of the ACT1 promoter from the

multi-copy vectors RS423 and RS424, respectively. Cells were

grown with glucose liquid media to OD600 nm = 1 (odd lanes) and

induced in galactose liquid media for 1 h (even lanes). GST and

GST-Gal80 were pulled down from cell extracts with the help of

glutathione beads, and Inputs and GST Pulldowns were analyzed

by Western blots with the help of an anti-HA antibody (upper

panel) and an anti-GST-antibody (lower panel). The size marker

(M) was loaded into lane 5. See part D for the marker sizes. (F)

BY4741DW cells of the indicated genotype were 10-fold serially

diluted, titrated onto the indicated plates, and incubated at 28uC
for 6 d. Cells in line 3 over-expressed Ufo1 and cells in line 4 over-

expressed Mdm30 from the ACT1 promoter. The galactose plate

contained 1 mg/l Antimycin A (AA).

(TIF)

Figure S8 hSrb7 interacts with hSkp1 in vitro and in vivo. (A)

The Split-Ubiquitin assay. Two proteins of interest X and Y are

fused to the N-terminal half of ubiquitin and to the C-terminal half

of ubiquitin extended by the RUra3 reporter, Nub and Cub-

RUra3, respectively. The protein interaction between X and Y

brings the two halves of ubiquitin into close proximity, which

causes Ubiquitin-specific proteases (Ubps) to cleave off RUra3,

which is subsequently degraded by the enzymes of the N-end rule.

The protein interaction between X and Y can therefore be

selected for on plates containing 5-fluoro orotic acid (FOA), as

Ura3 (orotidine-59-phosphate decarboxylase) converts FOA into

toxic fluoro uracil. (B) JD52 cells expressing the indicated fusions

were 10-fold serial diluted, titrated onto the depicted plates, and

incubated for 3 d. Protein interaction is revealed by growth on the

FOA plate and lack of growth on the uracil-depleted plate. (C)

GST fusions purified from E. coli extracts with glutathione beads

were incubated with E. coli extract containing H6-HA-hSrb7 (lanes

2, 3) and with S. cerevisiae extract containing Nub-HA-hSkp1 (lanes

5, 6). Precipitates were washed five times and analyzed by Western

blot with an anti-HA antibody. (D) The human Split-Ubiquitin

system. Two proteins of interest X and Y are fused to the N-

terminal half of ubiquitin and to the C-terminal half of ubiquitin

extended by the RGpt2 reporter, Nub and Cub-RGpt2,

respectively. The protein interaction between X and Y brings

the two halves of ubiquitin into close proximity, which causes

Ubiquitin-specific proteases (Ubps) to cleave off RGpt2, which is

subsequently degraded by the enzymes of the N-end rule. The

protein interaction between X and Y causes sensitivity to

hypoxanthine/aminopterin/thymine (HAT) media and resistance

to 6-thioguanine (6TG). (E) Human HT1080HPRT2 fibroblast

cells stably expressing hSrb7-Cub-RGpt2 and Nub (left panels) or

hSrb7-Cub-RGpt2 and Nub-hSkp1 (right panels) were placed into

control media (top panels), into HAT media (middle panels), or

into media containing 6TG (bottom panels). In HAT media, the

cells require functional Gpt2 (hypoxanthine-guanine phosphor-

ibosyltransferase) enzyme, whereas 6TG media counter-selects

against Gpt2 function. Growth in 6TG media and lack of growth

in HAT media indicates that hSrb7 interacts with hSkp1 inside the

tissue culture cells.

(TIF)

Figure S9 Mediator interacts with SCF E3 ubiquitin ligases. (A)

Whole cell extracts of HeLa cells expressing myc-tagged hSkp1

(lanes 1 to 3) were incubated with anti-myc beads (lane 3). Whole

cell extracts from untransfected HeLa cells (lanes 4 to 10) were

incubated with an anti-hCul1 antibody (lanes 5 and 8) and with an

anti-hMed6 antibody (lane 10). Antibodies were precipitated with

Protein G-coupled beads. Inputs and precipitates were analyzed

by Western blot with an anti-hMed6 antibody (lanes 1 to 5) and
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with an anti-hCul1 antibody (lanes 6 to 10). (B) HeLa cells were

transfected with empty vector (Control) or with pSuper containing

siRNA against hSRB7 and hSKP1. Real-time PCR was used to

quantify the amount of hSRB7 mRNA and hSKP1 mRNA relative

to GAPDH mRNA. The value obtained for cells transformed with

the empty vector was set as 1 and the error bars indicate the

standard deviations between three replicates. (C) HeLa cells

transfected with pSuper (control) or with pSuper containing

siRNA against hSRB7 and hSKP1 were grown at 37uC (No Heat-

Shock) or placed at 42uC for 15 min 1 h prior to RNA isolation

(Heat-Shock). Real-time PCR was used to quantify the amount of

HSP70B mRNA relative to GAPDH mRNA. The value obtained

for non-heat-shocked cells transformed with pSuper was set as 1

and the error bars indicate the standard deviations between three

replicates.

(TIF)

Figure S10 Snf1 does not interact with Gal80. (A) HA-Gal80 is

functional. BY4742DW cells of the indicated genotype were 10-

fold serially diluted, dropped onto the depicted plates, and

incubated at 28uC for 6 d. The cells in the top three lines

contained RS317 and the cells in the bottom line expressed HA-

Gal80 from RS317 under the control of the ACT1 promoter. The

Galactose+AA plate contained 0.1 mg/l Antimycin A. (B) Snf1-

HA3-H10 is functional. BY4742DW and BY4742DWDSNF1 cells

transformed with the LEU2-marked single-copy vector YCplac111

as well as BY4742DW cells expressing Snf1 chromosomally tagged

with three HA epitopes and 10 histidines were 10-fold serial

diluted and titrated onto the indicated plates and incubated at

28uC for 6 d. (C) BY4742DW cells transformed with YCplac111

(lanes 1, 5) and BY4742DW cells expressing Snf1-HA3-H10 from

the endogenous SNF1 locus (lanes 2, 3, 4, 6, 7, 8) were transformed

with RS317 (lanes 1, 2, 5, 6) or with RS317 expressing HA-Gal80

from the ACT1 promoter (lanes 3, 4, 7, 8). Cells were grown in

glucose liquid media to OD600 nm = 1 (lanes 1, 2, 3, 6, 7) and

induced in galactose liquid media for 1 h (lanes 4, 8). Snf1-HA3-

H10 was pulled down from cell extracts with Ni-beads and Inputs

(lanes 1 to 4) and Ni-pulldowns (lanes 5 to 8) were analyzed by

Western blot with the help of an HA antibody (upper panel). The

membrane was stripped and stained with Coomassie as a loading

control (lower panel).

(TIF)

Figure S11 Snf1 interacts with Med6, Med10, Srb6, and Srb11.

JD52 cells expressing Snf1-Cub-RUra3 from the SNF1 locus in

place of endogenous Snf1 were transformed with the indicated

Nub fusions. Ten-fold serial dilutions of cells were titrated onto the

depicted plates and incubated at 28uC for 3 d (Glucose,

Glucose2Uracil, Galactose2Uracil) or 6 d (Glucose+FOA).

Protein-protein interaction between Snf1 and the Mediator

subunits is indicated by growth on the FOA plate and lack of

growth on the uracil-depleted plate. Functionality of the Snf1-

Cub-RUra3 fusion is indicated by the ability of the strain to utilize

galactose.

(TIF)

Figure S12 The Mediator subunits Srb10 and Srb11 are

required for the galactose-induced protein degradation of Gal80.

(A) BY4742DSRB10 (lanes 1 to 12) and BY4742DSRB11 (lanes 13

to 24) cells expressing HA-tagged Gal80 from RS317 under the

control of the ACT1 promoter were grown in glucose liquid media

to OD600 nm = 1 (lanes 1 to 6 and 13 to 18) and induced with

galactose liquid media for 1 h (lanes 7 to 12 and 19 to 24).

Cycloheximide was added at time = 0 and the amount of Gal80

protein remaining in the cells after the indicated number of

minutes was determined by Western blot with the help of an anti-

HA antibody (upper panels). The membranes were stripped and

reprobed with an anti-CPY antibody (middle panels), followed by

a second stripping and staining with Coomassie Blue as loading

controls (lower panels). (B) The ratio of the amount of HA-Gal80

protein to CPY protein in BY4742DW cells (white bars),

BY4742DSRB10 cells (black bars), and BY4742DSRB11 cells (grey

bars) for each time point in part A was determined with Image J.

The ratio of the band intensities before the addition of

cycloheximide (time = 0) was set as 1 and the error bars indicate

the deviations between duplicates. The Western blots for the

BY4742DW wild-type control are presented in Figures 4C (lanes

1–12) and 6A (lanes 1–12). (C) Ten-fold serial dilutions of the

indicated strains were titrated onto the depicted plates and

incubated at 28uC for 3 d. The galactose plates contained 1 mg/l

of the respiration inhibitor Antimycin A.

(TIF)

Figure S13 Galactose induction of GAL1 mRNA is restored in

the DMDM30 strain, if the cells are pre-grown with raffinose

instead of with glucose. (A) BY4741DW wild-type and DMDM30

cells were grown in glucose liquid media to OD600 nm = 1 (Glu)

and induced with galactose liquid media for 8 h (Gal 8 h). Total

RNA was isolated and GAL1 mRNA was determined relative to

ACT1 mRNA by quantitative real-time PCR. The value

determined for BY4741DW wild-type cells grown with glucose

liquid media was set as 1 and the error bars indicate the standard

deviations between three replicates. (B) BY4741DW wild-type and

DMDM30 cells were grown in raffinose liquid media to

OD600 nm = 1 (Raf) and induced with galactose liquid media for

1 h (Gal 1 h). Total RNA was isolated and GAL1 mRNA was

determined relative to ACT1 mRNA by quantitative real-time

PCR. The value determined for BY4741DW wild-type cells grown

with raffinose liquid media was set as 1 and the error bars indicate

the standard deviations between three replicates.

(TIF)

Figure S14 Protein degradation of Gal80 is restored in the

DMDM30 strain, if the cells are pre-grown with raffinose instead of

with glucose. (A) HA-tagged Gal80 was expressed in BY4741DW

and BY4741DWDMDM30 cells from the single-copy vector RS316

under the control of the ACT1 promoter. Cells were grown in

raffinose liquid media (lanes 1 to 4 and 9 to 12) to OD600 nm = 1

and induced with galactose liquid media for 1 h (lanes 5 to 8 and

13 to 16). Cycloheximide was added at time = 0 and the amount of

Gal80 protein remaining in the cells after the indicated number of

hours was determined by Western blot with the help of an anti-HA

antibody (upper panels). The membranes were stripped and

reprobed with an anti-CPY antibody (middle panels), followed by

a second stripping and staining with Coomassie Blue as loading

controls (lower panels). (B) The ratio of the amount of HA-Gal80

protein to CPY protein in BY4741DW cells (white bars) and

BY4741DWDMDM30 cells (black bars) for each time point in part

A was determined with Image J. The ratio of the band intensities

before the addition of cycloheximide (time = 0) was set as 1 and the

error bars indicate the deviations between duplicates.

(TIF)

Figure S15 Gal3 is not required for the galactose-stimulated

protein degradation of Gal80. (A) BY4741DW cells of the indicated

genotype were 10-fold serially diluted, dropped onto the depicted

plates, and incubated at 28uC for 3 d. The titrations were

performed in duplicates. The Galactose+AA plate contained

1 mg/l Antimycin A. (B) HA-tagged Gal80 was expressed in

BY4741DWDGAL3 cells from the single-copy vector RS316 under

the control of the ACT1 promoter. Cells were grown in glucose

liquid media (lanes 1 to 4) to OD600 nm = 1 and induced with

Mediator Acts Upstream of Activator

PLoS Biology | www.plosbiology.org 15 March 2012 | Volume 10 | Issue 3 | e1001290



galactose liquid media for 1 h (lanes 5 to 8). Cycloheximide was

added at time = 0 and the amount of Gal80 protein remaining in

the cells after the indicated number of hours was determined by

Western blot with the help of an anti-HA antibody (upper panel).

The membranes were stripped and reprobed with an anti-CPY

antibody (middle panel), followed by a second stripping and

staining with Coomassie Blue as loading control (lower panel). (C)

The ratio of the amount of HA-Gal80 protein to CPY protein for

each time point in part B was determined with Image J. The ratio

of the band intensities before the addition of cycloheximide

(time = 0) was set as 1 and the error bars indicate the deviations

between duplicates.

(TIF)

Figure S16 The degradation of Gal80 as the limiting factor for

the activation of the GAL1 gene. (A) BY4741DW cells were grown

in glucose liquid media to OD600 nm = 1 (0 h) and induced with

galactose liquid media for the indicated number of hours. Total

RNA was isolated and GAL1 mRNA was determined relative to

ACT1 mRNA by quantitative real-time PCR. The value

determined for BY4741DW cells grown with glucose liquid media

was set as 1 and the error bars indicate the standard deviations

between three replicates. (B) BY4741DW cells were grown in

raffinose liquid media to OD600 nm = 1 (0 min) and induced with

galactose liquid media for the indicated number of minutes. Total

RNA was isolated and GAL1 mRNA was determined relative to

ACT1 mRNA by quantitative real-time PCR. The value

determined for BY4741DW cells grown with raffinose liquid

media was set as 1 and the error bars indicate the standard

deviations between three replicates.

(TIF)

Table S1 Genotypes and sources of strains used in this study.

(DOC)

Table S2 Names of plasmids constructed for this study and

DNA sequences of PCR primers used to generate these plasmids.

(DOC)
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45. Gromöller A, Lehming N (2000) Srb7p is essential for the activation of a subset
of genes. FEBS Lett 484: 48–54.
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