
180

REVIEWS | Hepatology CommuniCations, Vol. 3, no. 2, 2019  

Combatting Fibrosis: Exosome-Based 
Therapies in the Regression of Liver 
Fibrosis
Li Chen,1 David A. Brenner,1 and Tatiana Kisseleva2

Hepatic fibrosis results from chronic injury and inf lammation in the liver and leads to cirrhosis, liver failure, and 
portal hypertension. Understanding the molecular mechanisms underlying hepatic fibrosis has advanced the prospect 
of developing therapies for regression of the disease. Resolution of fibrosis requires a reduction of proinf lammatory 
and fibrogenic cytokines, a decrease in extracellular matrix (ECM) protein production, an increase in collagenase 
activity, and finally, a disappearance of activated myofibroblasts. Exosomes are nanovesicles of endocytic origin se-
creted by most cell types. They epigenetically reprogram and alter the phenotype of their recipient cells and hold 
great promise for the reversal of fibrosis. Recent studies have shown that exosomes function as conduits for intercel-
lular transfer and contain all the necessary components to induce resolution of fibrosis, including the ability to (1) 
inhibit macrophage activation and cytokine secretion, (2) remodel ECM production and decrease fibrous scars, and 
(3) inactivate hepatic stellate cells, a major myofibroblast population. Here, we discuss the research involving the 
regression of hepatic fibrosis. We focus on the newly discovered roles of exosomes during fibrogenesis and as a 
therapy for fibrosis reversal. We also emphasize the novel discoveries of exosome-based antifibrotic treatments  
in vitro and in vivo. (Hepatology Communications 2019;3:180-192).

Hepatic fibrosis is caused by the excessive 
production and accumulation of insoluble 
collagen and extracellular matrix (ECM) 

components following sustained chronic injury in the 
liver. Various chronic liver diseases, such as hepati-
tis B virus, hepatitis C virus, alcoholic liver disease, 
and nonalcoholic steatohepatitis (NASH), result in 
fibrosis.(1) If the death rate from cirrhosis continues 
to increase as projected, cirrhosis will become the 
twelfth leading cause of death by 2020.(2)

Essential mechanisms have been identified for 
the circuitous nature of the pathogenesis and resolu-
tion of hepatic fibrosis due to chronic liver disease. 
Transforming growth factor β (TGF-β) is a central 
regulator in chronic liver disease; it contributes to all 
stages of disease progression from initial liver injury 
through inflammation and fibrosis.(3) Liver damage- 
induced levels of active TGF-β stimulate an increase in 
expression levels of many growth factors and cytokines 
involved in fibrogenesis, including platelet-derived 

Abbreviations: α-SMA, α-smooth muscle actin; CCN2, connective tissue growth factor; CD, clusters of differentiation; Colα1(I), collagen 
α1(I); DC, dendritic cell; ECM, extracellular matrix; Grp78, glucose-regulated protein 78; HSC, hepatic stellate cell; HSP, heat shock protein; 
IL, interleukin; LOXL2, lysyl oxidase-like 2; miRNA or miR, microRNA; MMP, matrix metalloproteinase; mRNA, messenger RNA; MSC, 
mesenchymal stem cell; MT1, membrane-type 1; mtPmp70, mitochondria peroxisomal membrane protein 70 kDa; NK, natural killer; PAMP, 
pathogen-associated molecular pattern; PDGF, platelet-derived growth factor; PF, portal fibroblast; Pmp70, peroxisomal membrane protein 70 
kDa; STAT, signal transducer and activator of transcription; TGF-β, transforming growth factor β; TIMP, tissue inhibitors of metalloproteinase; 
TNF-α, tumor necrosis factor α; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand.

Received August 7, 2018; accepted October 24, 2018.
Supported by the National Institutes of Health (awards R01 DK099205-01A1 to T.K. and P50AA011999 to D.A.B.
© 2018 The Authors. Hepatology Communications published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of 

Liver Diseases. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which 
permits use and distribution in any medium, provided the original work is properly cited, the use is noncommercial, and no modifications or 
adaptations are made.

View this article online at wileyonlinelibrary.com
DOI 10.1002/hep4.1290

Potential conflict of interest: Nothing to report.

mailto:
mailto:
http://Creative Commons Attribution-NonCommercial-NoDerivs


Hepatology CommuniCations, Vol. 3, no. 2, 2019 CHen, BRenneR, KisseleVa

181

growth factor (PDGF), connective tissue growth 
factor (CCN2), interleukins (ILs [IL-1α, IL-β, and 
IL-6]), and tumor necrosis factor α (TNF-α).(4-8) 
Increased levels of active TGF-β enhance hepatocyte 
destruction and mediate hepatic stellate cell (HSC) 
and fibroblast activation, resulting in a wound-heal-
ing response that includes myofibroblast generation 
and ECM deposition.(3) Overexpression of CCN2 
in concert with signaling pathways associated with 
development of liver fibrosing injury can lead to the 
initiation or exacerbation of fibrosis.(8) IL-1β exerts a 
stimulatory effect on the synthesis of ECMs,(9) IL-6 
induces hepatic inflammation and collagen synthe-
sis,(10) and TNF-α is required for cholestasis-induced 
liver fibrosis.(11)

A key event during liver fibrosis is the activa-
tion of myofibroblasts, which originate from fibro-
blasts, including HSCs, portal fibroblasts (PFs), and 
fibrocytes. Depending on the ECM composition, 
fibroblasts maintain quiescence or activate into myo-
fibroblasts.(12) Due to chronic insult, fibroblasts sub-
jected to extracellular stress caused by abnormal ECM 
(e.g., fibronectin, collagen type I and III) proliferate 
and obtain a myofibroblast-like phenotype. Activated 
myofibroblasts secrete ECM and form stress fiber-in-
duced cell-matrix junctions, which further facilitate 
ECM remodeling. Excessive ECM deposition and 
significant changes in topographic distribution of 
ECM components increase expression of tissue inhib-
itors of metalloproteinases (TIMPs).(13) Following 
resolution of the injury, liver fibrosis can be reversed 
after the withdrawal of the underlying cause of dis-
ease. This is associated with a significant reduction 
of myofibroblasts due to apoptosis, induction of 

senescence and killing apoptosis of senescent HSCs 
by natural killer (NK) cells, or phenotypic reversion to 
the quiescent-like phenotype. Meanwhile, a reduction 
in collagen production as well as decreased TIMP-1 
expression and an increase in hepatic collagenase 
and elastase activity result in ECM degradation and 
remodeling.(14-18)

Over the past 3 decades, the drive to discover the 
mechanisms underlying the critical events during 
fibrogenesis has been fundamentally relevant to the 
development of antifibrotic strategies. However, even 
with this push to understand the mechanisms of dis-
ease progression, there are currently no antifibrotic 
treatments. Therefore, the need to continue to uncover 
the mechanisms of fibrogenesis and discover potential 
targets for treatment is essential in drug development.

Exosomes are cell-derived vesicles that are present 
in eukaryotic fluids. They are either released directly 
from the plasma membrane or from the cell when 
multivesicular bodies fuse with the plasma membrane. 
They contain proteins and other molecules that reflect 
the transcriptional and/or translational activity of the 
cell of origin.(19) The differential contents of RNAs, 
proteins, lipids, and metabolites in exosomes are dis-
tinct to the cell type of origin. Following their release 
into the intercellular space, exosomes bind to recipient 
cells and deliver their informative cargo. The recipi-
ent cells may then undergo epigenetic reprogramming 
and subsequent phenotypic alterations according to 
the molecular information received. The presence of 
specific components (protein, microRNA [miRNA 
or miR], or messenger RNA [mRNA]) in different 
types of exosomes results in different functional prop-
erties in the recipient cells. For instance, lipotoxic 
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fatty acid-injured hepatocytes produce exosome-like 
vesicles, which are then taken up by HSCs, leading 
to fibrogenic activation.(20,21) Additionally, the use of 
human mesenchymal stem cell (MSC)-derived exo-
somes allows an MSC-like therapeutic payload to be 
delivered to the liver, followed by a subsequent reduc-
tion of liver fibrosis, thus protecting hepatocytes.(22) 
Further, fibrogenic signaling in HSCs is suppressed 
by exosomes shuttled between quiescent and activated 
HSCs.(23-25)

This review covers some of the most important 
functions of different exosomes during liver fibrogen-
esis and the regression of liver fibrosis. We empha-
size both the established mechanism of regression of 
liver fibrosis and the new developments in novel exo-
some-based antifibrotic strategies. We also highlight 
the emerging consensus about rodent models of fibro-
sis regression, which demonstrate a return of normal 
or near-normal liver histology and function.

Exosomes in Liver Fibrosis
tHe patHogenesis oF 
epitHelial inJuRy

Recurrent epithelial injury is a prominent driving 
factor in the pathogenesis of progressive fibrosis(26) and  
results in hepatocyte dysfunction, which can occur 
through apoptosis.(26,27) Hepatocytes, in response to 
the hostile environment, undergo apoptosis through 
an extrinsic death receptor-mediated pathway, or alter-
natively, intracellular stress can activate the intrinsic 
pathway of apoptosis. Both pathways target the mito-
chondria, and mitochondrial dysfunction is a prerequi-
site for hepatocyte apoptosis.(28)

Hepatocytes can produce exosomes that con-
tain caveolae (Caveolin-1), early endosome (Eaa1), 
endoplasmic reticulum (glucose-regulated protein 78 
[Grp78]), peroxisome (peroxisomal membrane protein 
70 kDa [Pmp70]), or mitochondria (Prohibitin1 and 
mtPmp70),(29) and these exosomes are able to com-
municate with other hepatocytes or other cell types 
throughout the body. Interestingly, the proteins that 
are found in hepatic-derived exosomes have been 
demonstrated to play a role in metabolizing lipo-
proteins, endogenous compounds, and xenobiotics. 
Further, exosomes derived from injured hepatocytes  
are enriched with cytochrome P450s that serve 

important roles in the cellular detoxification of endog-
enous toxic substances.(29) Cytochrome P450 2E1 
(CYP2E1) generates reactive oxygen species that can 
produce superoxide anion radicals, hydrogen peroxide, 
and powerful oxidants, such as the hydroxyl radical, 
in the presence of iron catalysts. Elevated levels of 
CYP2E1 under a variety of pathophysiologic condi-
tions lead to hepatic apoptosis through mechanisms 
of oxidative stress.(30) Therefore, it is speculated that 
injured hepatocyte- derived exosomes containing P450s 
participate in the development of steatosis, increased 
fibronectin expression, and hepatocyte apoptosis.

In response to lipid injury, hepatocytes release 
exosome-like vesicles containing tumor necrosis fac-
tor-related apoptosis-inducing ligand (TRAIL) and 
clusters of differentiation (CD)40 ligand, inducing 
the production of inflammatory-type macrophages.(31) 
Hepatocytes injured by lipotoxic fatty acids produce 
exosome-like vesicles enriched in miR17-92 clusters, 
which are taken up by HSCs, leading to fibrogenic 
activation.(20,21)

The exosomes derived from CCl4-treated hepato-
cytes include diverse types of self-RNAs and recognize 
an activator of toll-like receptor 3, which increases the 
production of IL-17A production in hepatic γδ T 
cells. The increased levels of proinflammatory cyto-
kines are tightly associated with HSC activation.(32) 
In agreement, Il-17-produced T cells regulate produc-
tion of TGF-β1 in Kupffer cells and can directly acti-
vate collagen type I production by HSCs, the major 
source of fibrogenic myofibroblasts in fibrotic liver.(33)

Exosomes released from epithelial cells carry infor-
mation that can activate fibroblasts and initiate and 
perpetuate fibrosis. For example, injured epithelial cells 
produce increased numbers of exosomes containing  
information sufficient to activate fibroblasts. When 
released by injured epithelial cells, these exosomes are 
taken up by neighboring fibroblasts, resulting in their 
increased production of α-smooth muscle actin (α-SMA) 
and type I collagen, thus driving liver fibrosis.(34)

eXCessiVe Deposition oF eCm 
DuRing DeVelopment oF 
liVeR FiBRosis

The ECM represents a noncellular component 
in the liver that is mainly composed of proteins 
and proteoglycans.(35) It forms an intricate network 
that provides a physical scaffold for cellular support 
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while allowing unimpeded transport of solutes and 
growth factors.(36) The ECM undergoes continuous 
remodeling, particularly during injury and wound 
healing.(37) In response to chronic liver injury, the 
secretion of types of ECM proteins alters dramat-
ically, resulting in abundant production of type I 
and III collagens, increased deposition of fibronec-
tin and proteoglycans, as well as other subtypes of 
collagens.(36) During this process, lysyl oxidase-like 
2 (LOXL2) facilitates crosslinking of collagens and 
elastin by catalyzing oxidative deamination of lysine 
residues.(38) As a consequence, tissue stiffness is also 
increased. This heavily crosslinked collagen network 
replaces normal tissue structure and results in a 
change in the phenotype of normal resident cells as 
well as pathologic myofibroblasts.

Exosomes play an important role in ECM cross-
linking, thus affecting processes such as angiogenesis, 
fibroblast activation, and premetastatic niche forma-
tion.(39) LOXL2 has been detected on the exterior of 
endothelial cell-derived exosomes, placing it in the 
direct vicinity of the ECM. Increased LOXL2 levels 
in both endothelial cells and endothelial cell-derived 
exosomes enhance the activity of collagen gel con-
traction. However, knockdown of LOXL2 in exo-
some-producing endothelial cells in both normal and 
hypoxic conditions reduces exosome activity.(40) Thus, 
ECM crosslinking by endothelial cell-derived exo-
somes is mediated by LOXL2.

tHe oRigin oF 
myoFiBRoBlasts in FiBRotiC 
liVeR

Hepatic fibrosis is accompanied by the accumu-
lation of increased numbers of myofibroblasts in the 
liver.(41,42) These myofibroblasts are the source of 
ECM components necessary for building the fibrous 
scar tissue surrounding the wound. The production 
of these stress fibers makes myofibroblasts highly 
contractible and mobile, enabling their migration 
throughout the injured tissue and their further secre-
tion of ECM components. Therefore, activation of 
myofibroblasts is a key mechanism in the develop-
ment of liver fibrosis.

The origin of myofibroblasts has been well stud-
ied. HSCs are the major source of myofibroblasts.(1) 
Hepatic myofibroblasts also originate from PFs and 
fibrocytes.(43) Despite earlier studies,(44,45) recent 

reports have demonstrated that myofibroblasts do not 
originate from epithelial cells undergoing an epitheli-
al-to-mesenchymal transition.(46,47)

HsCs
HSCs are perisinusoidal cells that reside between the 

hepatocytes and small blood vessels in the liver. They 
are characterized by the presence of numerous retinoid 
and lipid droplets(48,49) where they store vitamin A.(50) 
A critical feature of the wound-healing response during 
liver injury is the differentiation of HSCs from a “qui-
escent” state in the normal liver to an “activated” state 
in the injured liver.(51) This transition is characterized 
by both morphologic and functional changes, including 
down-regulation of vitamin A expression; production 
of α-SMA, which confers contractility and promotes 
wound closure; and ECM synthesis.(51,52)

TGF-β is a potent cytokine that activates HSCs 
into myofibroblasts followed by increased expres-
sion of α-SMA, PDGF, CCN2, type I collagen, and 
TIMP1,(53-55) all of which result in a wound-heal-
ing response, including myofibroblast generation and 
ECM deposition.(3) CCN2, a fibrogenic molecule 
synthesized downstream of TGF-β, is tightly associ-
ated with fibrogenic pathways in activated HSCs.(56) 
It has recently been found that activated HSC-derived 
exosomes contain CCN2 or CCN2 mRNA, each of 
which increases in concentration during HSC activa-
tion and amplified fibrogenic signaling.(57) The induc-
tion of CCN2 expression in activated HSCs is due 
to decreased expression of miR-214, which otherwise 
inhibits CCN2 expression by directly binding to the 
CCN2 3′-untranslated region.(23,57) Further, miR-
214 can be exported from HSCs through exosomes 
to neighboring cells, leading to regulation of miR-214 
target genes.(23) The dynamic expression of miR-214 in 
HSCs is the result of its transcriptional regulation by 
Twist-1, which is also exosomally transferred between 
HSCs where it maintains its ability to induce miR-214 
in recipient cells.(25) Thus, a Twist1–miR-214–CCN2 
axis is exosomally shuttled to activate additional HSCs 
in which fibrogenic signaling is then modulated.

Fibrocytes
Although HSCs are believed to be a major source 

of myofibroblasts (which produce collagen type I in 
the fibrotic liver), bone marrow-derived fibrocytes, 
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as defined by their simultaneous expression of CD45 
and collagen type I, are also a potential source of 
myofibroblasts and are implicated in the pathogene-
sis of liver fibrosis.(58) Fibrocytes also express CD34 
and major histocompatibility complex II and secrete 
TGF-β, promoting the deposition of ECM.(59,60)

Exosomes released from fibrocytes have a concen-
tration-dependent proangiogenic activity. The recipi-
ent cells of fibrocyte-derived exosomes demonstrated a 
dose-dependent increase in the expression of collagen 
α1(I) [Colα1(I)] and α-SMA.(61) Heat shock protein 
(HSP)-90a and total activated signal transducer and 
activator of transcription 3 (STAT3) are important 
components of the fibrocyte exosome cargo. Fibrocyte-
derived exosomes are also enriched with miR-21, miR-
142a, miR-125b, miR-126, miR-130a, and miR-132, all 
of which work in tandem to modulate collagen produc-
tion, resulting in enhanced deposition of mature collagen 
fibrils in the wound and promotion of wound contrac-
tion at an early stage in the wound-healing process.(62)

pFs
PFs normally comprise a small population of the 

fibroblastic cells that surround the portal vein to main-
tain integrity of the portal tract. They are associated 
with the pathogenesis of cholestatic liver injury.(63) It 
has been demonstrated that PFs are a major source of 
myofibroblasts in cholestatic liver injury, contributing 
to greater than 70% of myofibroblasts at the onset of 
injury (5 days after bile duct ligation).(64) PFs respond 
rapidly to TGF-β1, as demonstrated by up-regulation 
of Colα1(I), α-SMA, TIMP1, TGF-β2, plasmin-
ogen activator inhibitor 1, elastin, fibronectin, and 
CD73 ecto-enzyme.(65-68) However, unlike HSCs, 
PFs respond to stimulation with taurocholic acid 
and IL-25, leading to an induction of Colα1(I) and  
IL-13, respectively.(64)

Although PFs play a critical role in the pathogenesis 
of cholestatic liver fibrosis, functional properties of PFs 
and the mechanism by which PFs contribute to choles-
tatic fibrosis are not well understood. Additionally, exo-
somes originated from PFs have not yet been reported.

maCRopHages anD immune 
Cells

Chronic inflammation and fibrosis are inextrica-
bly linked through the interactions among immune 

cells.(69-72) Macrophages play an important role in 
inflammation and subsequent fibrogenesis.(73-77) 
To promote fibrosis, macrophages produce specific 
matrix metalloproteinases (MMPs), such as MMP9, 
that degrade the basement membrane and allow 
inflammatory cells and recruited fibroblasts to enter 
sites of injury. They secrete a variety of profibrotic 
mediators, including TGF-β1, PDGF, and many 
chemokines, that recruit and activate inflammatory 
cells.(78,79) Macrophages are also tightly associated 
with collagen-producing myofibroblasts in vivo and 
produce cytokines and growth factors that modulate 
myofibroblast activity. Various types of macrophages, 
such as M1 (inflammatory), M2a-like (profibrotic), 
and Mregulatory/M2c-like (regulatory),(73,75-77,80,81) are  
recruited during fibrogenesis, resulting in re- 
epithelization, healing, or pathologic scarring. In 
contrast, macrophages also play a distinct role in the 
resolution of fibrosis. Macrophages may activate addi-
tional stem cell and local progenitor cell populations 
that participate in repair; thus, macrophages that 
exhibit an anti-inflammatory phenotype become the 
dominant population.(16) These macrophages respond 
to IL-10 and other inhibitory mediators and secrete a 
variety of anti-inflammatory mediators, such as IL-10 
and TGF-β1, that play major roles in suppressing  
the immune system and quieting the inflamma-
tion.(82-85) Macrophages can also induce myofibroblast 
apoptosis, remove cellular debris, and stimulate the 
production of collagen-degrading MMPs in myofi-
broblasts.(86) Therefore, different phenotypes of mac-
rophages play unique and crucial roles at different 
stages of tissue repair.

Macrophages can reportedly release exosomes, 
which contain pathogen-associated molecular patterns 
(PAMPs), that lead to the activation of naive recipient 
immune cells.(87) Moreover, these macrophage exosomes 
can be actively endocytosed into placenta tissue and drive 
cytokine release.(87) Thus, the macrophage- immune cell 
exosome pathway represents a novel non–cell- associated  
mechanism of antigen transfer between immune cells; 
this can exert varying effects on naive cells. The uptake 
of macrophage-derived exosomes into neighboring 
immune cells could then result in immunomodulation 
and alteration of subsequent inflammatory stimuli. 
However, functional properties of macrophage exosomes 
in the resolution of fibrosis have not been reported, 
although it is clear that macrophages exhibit an import-
ant role in the mechanisms of fibrosis regression.
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NK cells and NKT cells provide the initial defense, 
invading infectious microbes and neoplastic cells.(88) 
Dendritic cells (DCs) are central to the processes 
that modulate liver immunity,(89) whereas regulation 
of T cells mediates immune tolerance.(90) The role of 
B cells in the pathogenesis of fibrosis was identified 
by the reduction in collagen deposition observed in 
CCl4-induced fibrosis in B-cell-deficient mice.(72) It 
has been shown that DC-derived exosome-like ves-
icles can enhance the antigen-specific responses of 
CD4+ and CD8+ T cells and participate in the acti-
vation of NK cells.(91) Exosomes from IL-10-treated 
DCs suppressed inflammation and collagen-induced 
arthritis in mice.(92) In addition, miRNAs released 
from T-cell exosomes are transferred into DCs in 
an antigen-specific manner.(93) However, the mecha-
nisms of immune cell-derived exosomes during liver 

fibrogenesis are still under investigation. The actions 
and roles of exosomes in liver fibrosis are summarized 
in Figure 1 and Table 1.

Exosomes in the Regression 
of Hepatic Fibrosis

Hepatic fibrosis was considered to be irreversible.(94)  
However, numerous studies have demonstrated that 
regression of hepatic fibrosis is possible and is depen-
dent on an increase in collagenase activity, a disappear-
ance of activated myofibroblasts, and a suppression 
of proinflammatory and fibrogenic cytokines, subse-
quently resulting in a decrease in ECM production 
and increased ECM degradation.

Fig. 1. Exosomes regulate cell functions. 1, Hepatocytes produce exosomes enriched in Caveolin-1, early endosome (Eaa-1), 
endoplasmic reticulum (Grp78), peroxisome (Pmp70), and mitochondria (Prohibitin 1 and mtPmp70), participating in hepatocyte 
metabolism. 2, Injured hepatocytes enriched in cytochrome P450s promote hepatocyte steatosis and apoptosis. 3, Lipid-induced injury 
of hepatocytes enriched in TRAIL and CD40 ligand promote activation of macrophages and HSCs. 4, Injured hepatocytes by lipotoxic 
fatty acids produce exosomes enriched in miR17-92 clusters, promoting HSC activation. 5, Endothelial cells release exosomes enriched 
in LOXL2, enhancing the activity of collagen contraction. 6, Fibrocytes release exosomes enriched in HSP-90a, activated STAT3, 
and miRs (21, 142a, 125b, 126, 130a, and 132), participating in ECM remodeling. 7, Activated macrophages produce exosomes 
enriched in PAMPs, leading to the activation of naive recipient immune cells. 8, miR155- and miR125b-enriched exosomes promote 
differentiation of M1 macrophages over M2 macrophages. 9, Exosomes enriched with MT1-MMP, IDE, heparanase, integrins, and 
LOXL2 lead to collagen cleavage and degradation. 10, HSCs release exosome-enriched Twist1 and miR214/199-5a clusters, reducing 
CCN2 expression in activated HSCs. Abbreviations: IDE, insulin-degrading enzyme; MT1-MMP, membrane-type 1 MMP.
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The emerging field of exosome biology has iden-
tified several novel pathways of exosome-dependent 
intercellular transfer of biologically active materials 
that not only facilitate the development of liver fibro-
sis but can also initiate fibrosis resolution. Exosomes 
from healthy subjects can transport biologically active 
antifibrotic molecules, including proteins and nucleic 
acids, that in turn regulate gene expression and cellu-
lar function in target cells. For example, DC-derived 
exosomes from mice subjected to immunosuppressive 
treatments or modified to express immunosuppressive 
cytokines promoted tolerogenic immune responses, 
leading to amelioration of inflammatory responses 
in mice,(95) and mRNA-155- and miRNA-125b-  
enriched exosomes promoted differentiation of M1 
macrophages over M2 macrophages.(96) (Figure 1) 
Human amnion epithelial cell-derived exosomes sig-
nificantly reduced the number of macrophages and 
macrophage infiltration during liver fibrosis.(97)

In addition, exosomes from healthy subjects also 
contain a variety of molecules capable of interact-
ing with and altering ECM components, including 
enzymes, such as membrane-type 1 (MT1) MMP, 
insulin-degrading enzyme, and heparanase, as well 
as integrins and LOXL2.(39) These enzymes could 
potentially localize on the surface of exosomes and 
through their contact with molecules in the ECM 
and could lead to cleavage of a wide range of sub-
strates, such as collagen, a step necessary for collagen 
degradation. For example, MT1-MMP derived from 
exosomes has been demonstrated to target the ECM 
and degrade fibrillar collagen (type I, II, and III) as 
well as other matrix components, including fibronectin 
and vitronectin, promoting cell migration.(98) On the  

other hand, fibronectin-enriched exosomes inter-
act with integrins to promote adhesion formation 
of cells.(39) Thus, a dynamic mechanism of forming 
adhesion interactions and breaking interactions by 
exosomal enzymes and components of the ECM 
is involved in wound healing and inflammation. 
Another enzyme, heparanase, is expressed on the 
surface of exosomes and has been shown to degrade 
heparan sulfate within the ECM and to participate in 
an inflammatory response.(99) Further, exosomes from 
hypoxia-induced endothelial cells have increased col-
lagen crosslinking activity in the ECM through up- 
regulation of LOXL2, whereas knockdown of LOXL2 
in endothelial-derived exosomes in both normal and 
hypoxic conditions reduced activity of exosomes.(40) 
(Figure 1 & Table 1) Therefore, exosomes have been 
implicated in the regulation of both inflammation and 
ECM remodeling.

Studies to elucidate the signaling molecules that 
contribute to the activated HSC  phenotype have 
identified potential therapeutic targets for antifibrotic 
therapy.(56,100) One potential target is CCN2, a profi-
brotic factor that is produced in fibrosing liver tissue. 
CCN2, a cysteine-rich matricellular protein, interacts 
with integrins, low-density lipoprotein receptor-re-
lated proteins, and heparan sulfate proteoglycan core-
ceptors,(101,102) thus stimulating adhesion, migration, 
proliferation, survival, and differentiation of HSCs. 
CCN2 exhibits strong profibrogenic properties. 
Overexpression of CCN2 promotes ECM deposition 
and development of fibrotic lesions. Hepatic levels of 
CCN2 correlate with the severity of liver disease in 
patients with liver fibrosis.(103,104) Additionally, over-
expression of CCN2 mediates TGF-β1-dependent 

taBle 1. eXosomes Regulate Cell FunCtions

Donor Cells Exosomal Cargo Target Cells Outcomes

Normal hepatocytes(36) Caveolin-1, Eaa-1, Grp78, Pmp70, and 
mitochondria (Prohibitin 1 and mtPmp70)

Hepatocytes Participate in hepatocyte metabolism

Injured hepatocytes(37) Cytochrome P450s Hepatocytes Promote hepatocyte steatosis and apoptosis

Steatotic hepatocytes(38) TRAIL and CD40 ligand Macrophages Promote activation of macrophages

Lipotoxic fatty acid-induced  
injury of hepatocytes(27,28)

miR17-92 clusters HSC Promote HSC activation

Endothelial cell(44,45) LOXL2 ECM Enhance activity of collagen contraction

Fibrocytes(67) HSP-90a, activated STAT3, and miRs (21, 142a, 
125b, 126, 130a, and 132)

ECM Participate in ECM remodeling

Activated macrophages(84) PAMPs Immune cells Lead to activation of naive recipient immune 
cells

Activated HSC(58) CCN2 HSC HSC activation
Normal HSC(30-32) Twist-1 and miR214/miR199-5a Activated HSC Reduce CCN2 expression in activated HSC
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fibrotic pathways in HSCs,(105,106) and TGF-β1 
mRNA transported by injured epithelial-derived 
exosomes results in a rapid initiation of activation of 
myofibroblasts.(34) In the exosome-mediated trans-
fer of activated HSC-derived exosomes to quiescent 
HSCs, CCN2 was directly targeted through modula-
tion of a Twist–miR-214/199 axis, resulting in HSC 
activation.(23-25)

Quiescent HSCs produce exosomes that inhibit 
activation of HSCs and attenuate pathways of fibro-
genesis.(23-25) This results in an exosomal transfer of 
miR-214, miR-199a-5p, or Twist-1 into the recip-
ient HSCs and directly inhibits transcription of 
CCN2, thus suppressing downstream collagen pro-
duction and reverting HSCs to a more quiescent 
phenotype (Figure 1 & Table 1). Hepatocytes have 
also been demonstrated to produce exosomes that 
cause a reversal of fibrosis-associated gene expres-
sion and ethanol-induced damage in hepatocytes.(107) 
Hepatocyte-derived exosomes can bind to activated 
HSCs or injured hepatocytes through mechanisms 
that involve heparin-like molecules and cellular inte-
grin subunits αv or β1, thus mediating therapeutic 
changes.(107) Therefore, hepatic fibrosis is amendable 
to therapy. Exosomes produced either from quiescent 
HSCs or normal hepatocytes may be important for a 
reduction in the progression of fibrosis and therefore 
have serious potential as antifibrotic therapies.

The Role of Exosomes as a 
Biomarker of Liver Fibrosis

Clinically, patient management decisions depend on 
the accurate assessment of the severity and progression 
of liver fibrosis. Liver biopsy is the “gold standard” and 
is invasive, expensive, and risky to patients. Because 
the components of exosomes are a “fingerprint” of the 
dynamic status of the underlying pathologic condition 
in patients, they might represent a new biomarker for 
identifying and assessing molecular signatures asso-
ciated with liver fibrosis. In addition, exosomal com-
ponents are protected from proteinase-dependent 
degradation and thus can be stably detected in the 
circulating plasma and serum, making them ideal bio-
markers for a number of clinical applications.(108,109) 
Increased levels of CD10 protein in urinary exo-
somes from glycine N-methyltransferase knockout 

mice have been associated with steatosis, fibrosis, and 
hepatocellular carcinoma.(110) CD81-enriched serum 
exosomes of patients with chronic HCV was associ-
ated with inflammation and severity of fibrosis.(111) 
Decreased levels of miRNAs (miR-34c, miR-151-3p, 
miR-483-5p, or miR-532-5p) were detected in serum 
exosomes of CCl4-induced mice or human patients 
with F3/4 fibrosis.(97)

MSC-Derived Exosomes or 
Other Exosomes as a New 
Therapeutic Strategy for 
Experimental Fibrosis Models

The transfer of MSCs has been proposed as a 
potential therapeutic strategy for the treatment of 
various diseases and immune disorders, mostly due 
to their immunoregulatory properties.(112) For exam-
ple, MSCs secrete several antifibrotic molecules, 
such as hepatocyte growth factor, fibroblast growth 
factor, epidermal growth factor, insulin, and dexa-
methasone. They were also reported to mediate cyto-
protective, anti-angiogenic, and regenerative effects 
in damaged liver.(113) Although the exact mechanism 
remains unknown, MSCs were demonstrated to 
attenuate liver fibrosis by suppressing activation of T 
helper 17-positive immune cells in fibrotic liver.(114) 
A similar effect can be achieved using adoptive 
transfer of MSC-derived exosomes to mice with 
liver fibrosis.(115,116)

Exosomes are emerging as effective therapeutic 
tools for different diseases because these particles can 
bypass biological barriers and can serve as powerful 
drug and gene therapy transporters, raising the excit-
ing prospect of “cell therapy without the cells.”(117-119) 
The administration of MSC-derived exosomes is a 
potential strategy for treating liver disease.(22,120-122) 
The safety and feasibility observed in early clinical 
trials using MSCs has resulted in increased inter-
est in the translation of the use of these cells to the 
clinic.(123,124) Likewise, increasing evidence suggests 
that MSC-derived therapeutic effects are mainly 
mediated in a paracrine manner by extracellular vehi-
cles, such as exosomes.(125,126) In this regard, use of 
MSC-derived exosomes will allow the delivery of 
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anti-inflammatory cytokines and other biologically 
active proteins to injured livers without administra-
tion of heterologous divergent cells. For example, by 
using a CCl4-induced liver injury model in Kunming 
mice, delivery of human umbilical cord MSC-derived 
exosomes reduced hepatic fibrosis through inhibition 
of collagen production.(122) Furthermore, the delivered 
exosomes migrated to the liver, resulting in a signifi-
cant suppression of the TGF-β1/Smad pathway and 
subsequent down-regulation of collagen type I/III 
and TGF-β1 in these mice.(22) Moreover, it has been 
demonstrated that exosomes released from adipose 
tissue-derived MSCs inhibited the proliferation and 
activation of the human LX-2 cell line as well as pri-
mary HSCs from male Sprague Dawley rats.(121)

In addition to MSC-derived exosomes, exosomes  
isolated from serum have also been shown to have 
a therapeutic effect in mice with liver fibrosis. For 
instance, hepatic fibrosis was decreased in CCl4-
injured or thioacetic acid-injured mice treated with 
exosomes derived from the serum of healthy mice (but 
not from fibrotic mice)(127); mice showed improved 
liver function, reduced apoptosis of hepatocytes, sup-
pression of an inflammatory response in the injured 
liver, reduced release of hepatic or circulating proin-
flammatory cytokines (IL-2, IL-4, IL-5, IL-6, IL-10, 
IL-12p70, interferon-gamma, and TNF-α), reduced 
inflammatory infiltration, and reduced circulating 
aspartate aminotransferase/alanine aminotransferase 
levels.(127)

Overall, adoptive transfer of exosomes from nor-
mal healthy individuals may be beneficial for patients 
with liver fibrosis. The main mechanism by which 
“healthy exosomes” support the repair of injured livers 
may be the release of paracrine factors.(128) These exo-
somes shuttle across the intercellular space and deliver 
“therapeutic molecules” between different liver cells; 
this results in the elevation of collagenase activity, the 
abortion of activated myofibroblasts, and the reduc-
tion in proinflammatory and fibrogenic cytokines, 
which finally results in a decrease in ECM production 
and regression of liver fibrosis.

Summary
Decades of basic and translational research have 

brought us to a new era where promising thera-
pies for liver inflammation and fibrosis are being 

developed. Hepatic fibrosis has been shown to be 
reversible in patients with chronic liver disease and 
in experimental models, as demonstrated by a reduc-
tion of proinflammatory and fibrogenic cytokines, 
remodeling of ECM production and decreased 
fibrous scar, and the inactivation or disappearance of 
myofibroblast populations. Because exosomes func-
tion as conduits for intercellular transfer and have 
been demonstrated to be sufficient to inhibit liver 
fibrosis in rodent models, the administration of exo-
somes as a therapy for hepatic fibrosis in humans 
holds great promise.

Exosomes can remain hidden in the bloodstream, 
carry multiple doses, specifically target the cells, 
and store and administer treatment, and their small 
size allows them to cross barriers that cells cannot. 
However, there are some open questions remaining 
that limit the application of exosome therapy: (1) How  
should the the characterization and quantification of 
exosomes be standardized? More effective methods 
and techniques for large-scale exosome production are 
needed; (2) What is the proper source of exosomes for 
therapy? Careful analysis of the complex information 
in cell-derived exosomes or circulating exosomes may 
result in the identification of unique “molecular sig-
natures” for exosome therapy; (3) How should dosing 
of exosomes be evaluated? Exosome-regulated signal-
ing pathways are dose dependent.(129) Therefore, the 
tuning of exosome dose may enable the balancing of 
potential deleterious and therapeutic effects of exo-
some administration.
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