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ABSTRACT The 4.8-Mbp draft genome sequence of Polaromonas eurypsychrophila
AER18D-145, isolated from a uranium tailings management facility, is reported. The
sequence may provide insights into the mechanisms of the hypertolerance of this strain
to extreme conditions and help determine its potential for bioremediation applications.

Polaromonas spp. have been reported to be among the most abundant microorgan-
isms in glacial and seasonally cold nonglacial environments (1–5). These bacteria were

shown to be capable of oxidizing molecular hydrogen (6), arsenite (7), and various recalci-
trant organic compounds (8, 9). Several Polaromonas species were demonstrated to be ca-
pable of nitrate reduction (10, 11). Sun et al. (12) suggested that some Polaromonas spp.
might also be capable of vanadate reduction. Despite the fact that several microorganisms
belonging to this genus have been previously isolated and their metabolic capabilities
investigated, few studies have been dedicated to the determination of genome sequences
of Polaromonas spp. inhabiting uranium-rich environments.

Here, we report the draft genome sequence of Polaromonas eurypsychrophila AER18D-
145 from a uranium tailings management facility in Key Lake, Northern Saskatchewan,
Canada (57°139N, 105°389W). The strain was isolated from a tailings sample collected at an
18-m depth below the tailings-water interface (13). To isolate the microorganism, 0.2 g of
the sample was suspended in 1 mL of sterile Tris-EDTA buffer, pH 8, plated on Reasoner’s
2A (R2A) agar, and incubated aerobically at 5°C for 3 weeks. Following isolation, colonies
were subcultured three times. The pure culture was stored at 280°C in 15% glycerol/5%
tryptic soy broth. A DNA extraction kit (Qiagen, Maryland, USA) was used to extract DNA
from glycerol-stock cells, which were regrown on R2A agar.

Genomic DNA was extracted using the DNeasy blood and tissue kit (Qiagen)
according to the manufacturer’s recommendations. Libraries were prepared using the
Nextera XT library preparation kit (Illumina) with a MiSeq reagent 300-cycle V2 kit
(Illumina), and sequencing was performed on an Illumina MiSeq instrument, resulting
in 725,002 paired reads (209.75 Mbp). The A5-miseq assembly pipeline version
20140604 (14, 15) was used for error correction, quality trimming, contig assembly,
misassembly corrections, and scaffolding. The genome consists of 135 contigs (N50,
77,773 bp) and is 4,822,403 bp long; no gaps were identified. The genome coverage is
42�, and the G1C content is 63.1%. Annotation of the genome was done using the
NCBI Prokaryotic Genome Annotation Pipeline (PGAP) version 5.1 (16, 17). As a result
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of annotation, 4,490 protein-coding sequences, as well as 49 RNA-coding sequences,
were identified in the genome.

Comparison of the 16S rRNA gene sequence of P. eurypsychrophila AER18D-145 to the
RefSeq database sequences (18) using the BLASTN algorithm (19) showed that its 1,425-
bp fragment was 100% identical to that of P. eurypsychrophila strain D3M1 (GenBank
accession number MW647764). Comparison to the 16S rRNA gene sequences of type
strains indicated the highest percent identity of 98.8% to P. eurypsychrophila strain B717-2
(11) (Fig. 1), confirming the species identity of P. eurypsychrophila AER18D-145.

Some genes indicating the potential utility of this bacterium in bioremediation appli-
cations were identified through the genome analysis using RAST (Rapid Annotations
using Subsystems Technology) version 2.0 (20, 21). In particular, merA, merP, and merT,
responsible for mercury resistance, chrA and chrF, responsible for resistance to chro-
mium-containing compounds, and dedA and cysA, which may play roles in selenium oxy-
anion uptake, were among the identified genes.

Data availability. This whole-genome shotgun project was deposited in DDBJ/ENA/
GenBank under the accession number NZ_NBZV00000000. The raw data were deposited
in the SRA under the accession number SRR16891862 (BioProject number PRJNA381359).
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