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ABSTRACT: Heteroarylation via C−H functionalization has
been synthetically challenging, but such transformations
represent an atom-economical and highly convergent route
toward complex molecules. Reported herein is a photoredox-
catalyzed coupling between 2-trifluoroborato-4-chromanones
and various heteroarenes through a Minisci pathway.
Mesitylacridinium perchlorate, an organic photocatalyst,
proved to be a better photocatalyst than transition-metal
counterparts for such transformations. To highlight the utility
of this approach, a library of unprecedented heteroaryl-substituted chromanones was generated that was composed of numerous,
specifically substituted molecules containing a broad range of functional groups.

For decades, chromanones have captured the attention of the
synthetic community because of their prevalence in natural

products and in unnatural, biologically relevant compounds.1

Although there are a large number of 2-aryl-substituted
chromanones reported in the literature, there remain significant
gaps among certain subclasses of these molecules. For example,
there are less than 30 reported 2-quinolinyl-substituted 4-
chromanones and no examples of 2-isoquinolinyl-substituted 4-
chromanones. To date, 2-aryl-4-chromanones are primarily
accessed through a chalcone precursor that is subsequently
cyclized to form the pyranone ring under acidic, basic, or
photochemical conditions (Scheme 1).2 Although these routes
are effective for providing targeted substructures, accessing a
diverse array of aryl- or heteroaryl-substituted chromanones is
challenging using a late-stage cyclization pathway.
Inspired by these shortcomings, a photocatalyzed Minisci

reaction was envisioned. Thus, we sought to deviate from the
dual catalytic manifold into a singular photocatalytic cycle.
Combining photoredox catalysis and C−H functionalization of
heteroarenes represents a more sustainable approach tomolecule
construction that is being employed with increasing frequency.3

Until recently, Minisci reactions typically required super-
stoichiometric amounts of oxidant for radical generation under
forcing conditions.4 Notably, our laboratory demonstrated
trifluoroborates to be viable radical sources under “classical”
Minisci reaction conditions, requiring either manganese or silver
oxidant.4f,g Radical intermediates have been accessed via
photocatalysis in a significantly milder manner, but limitations
remain, including the need for excess radical precursor,3d

expensive photocatalysts,3e or complex radical precursors that
limit substrate scope.3e Keeping these limitations in mind,
alkyltrifluoroborates appeared to be an attractive alternative
given the precedent for single-electron oxidation of trifluor-
oborates via photoredox catalysis reported by Akita and co-

workers.5 Therefore, a robust method was sought to harness the
reactivity of 2-trifluoroborato-4-chromanones as radical pre-
cursors to construct a wide range of 2-heteroaryl-4-chromanones
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Scheme 1. Synthetic Routes toward 2-Aryl-4-chromanones
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in a photocatalytic fashion that would address the shortcomings
of previously reported methods.
In this vein, we recently developed a protocol for alkylation of

heteroarenes in which primary, secondary, and tertiary
alkyltrifluoroborates could be used in photoredox Minisci
chemistry,6 allowing alkylation of numerous heteroarenes. The
chemistry made use of an organic photocatalyst (a mesityl
acridinium dye) and an inexpensive, mild oxidant and required
only 1 equiv of alkyltrifluoroborate as an alkyl radical precursor
(eq 3). We set out to parlay this development into a method for

the construction of heteroaromatic flavanones. A mechanistic
scenario (Scheme 2) was envisioned in which the excited state of

a suitable photocatalyst possessed a redox potential sufficiently
high to induce a single-electron oxidation of the trifluorobor-
atochromanone (I) to afford the α-alkoxy radical (II). The
stabilized radical (II) would add to the heteroarene, activated by
a Bronsted acid. An appropriate oxidant would be required to
regenerate the ground-state photocatalyst as well as to
rearomatize intermediate III via hydrogen atom transfer (HAT).
As alluded to above, access to the requisite 2-trifluoroborato-4-

chromanones was achieved through a conjugate borylation
reaction previously reported by our group (eq 4).7 Using this
process, a variety of chromanones were acquired with excellent
tolerance of functional groups and diverse substitution patterns.

With several 2-trifluoroborato-4-chromanones in hand, the
development of the Minisci coupling reaction conditions was
carried out using 4-bromoquinoline as a reaction partner (Table
1). A variety of photocatalysts were screened that possessed

sufficiently high excited-state redox potentials to oxidize the
trifluoroboratochromanones (Ered ≈ +1.11 V).8 Although
Ir[dF(CF3)ppy]2(bpy)PF6 (E*1/2 = +1.21 V)9 and Eosin Y
(E*1/2 = +0.79 V)10 proved to be viable catalysts, Fukuzumi’s
mesitylacridinium perchlorate organophotocatalyst (E*1/2 =
+2.20 V),11 recently used by Akita and co-workers,12 provided
superior yields. Using an organic photocatalyst is particularly
advantageous because of the substantially lower cost relative to
transition metal counterparts.13 Furthermore, both oxidant and
protic acid loadings were lowered to 1 equiv without affecting the
yield. Control studies were performed to confirm the need for
acid (entry 8), terminal oxidant (entry 9), and photocatalyst
(entry 10). Stern−Volmer relationship studies are consistent
with the reductive quenching of the photocatalyst by the
trifluoroborate (see the Supporting Information). Interestingly,
the Stern−Volmer plot exhibited an exponential fluorescence
quenching trend, suggesting a static quenching pathway.14

Additional 19F NMR experiments supported a static quenching
pathway, where a distinct chemical shift was observed when
photocatalyst was added to a solution of alkyltrifluoroborate.15

The observed shift in fluorine signals of the trifluoroborate
suggests formation of a preassociation complex between the
alkyltrifluoroborate and MesAcr before the single-electron
transfer occurs. Quantum yield studies in a related study have
indicated that this is not a radical-chain process as evidenced by a
ϕ of 0.31.6 Finally, a control was run in the absence of light (entry
11) to demonstrate that the catalyst is active only in its
photoexcited state.16

With suitable conditions in hand, the substrate scope for the
heteroarene partners was explored (Scheme 3). Lepidine, a
prototypical substrate in Minisci chemistry,4 was first used as a
reacting partner. As expected, 2a was obtained regioselectively in
relatively high yield (61%). Product 2b was obtained along with
trace amounts of regioisomers but was primarily selective ortho to
the nitrogen. Steric sensitivity was probed with 3-bromoquino-
line, affording a lower yield of 2c (33%). When 4-bromoquino-

Scheme 2. Proposed Mechanism

Table 1. Photoredox/C−H Activation Optimizationa

aOptimization reactions were performed on a 0.1 mmol scale. Yields
were obtained via HPLC using a calibration curve.
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line was used, the yield of 2d improved to 50%. Notably, when
the reaction was performed on gram scale, the yield was a
comparable 46% yield. Conversion was significantly higher with
4-chloroquinoline, which provided an excellent yield of 2e. 2-
Chloroquinoline was next explored, and selective addition to the
4-position was observed (2f). With a more decorated
chloroquinoline, 4-chloro-8-(trifluoromethyl)quinoline, a mod-
est 32% yield was achieved. Halogenated isoquinolines were next
explored to access products possessing functional handles for
further diversification. 1-Chloroisoquinoline afforded a lower
30% yield (2h), but when the halide was appended on the
adjacent ring, the yield improved to 50% (2i). Alkyl substitution
at the C4 position resulted in <5% conversion, suggesting
electron-withdrawing groups enhance the electrophilicity of the
isoquinoline moieties. The scope was further explored with
substrates containing more heteroatoms. Quinoxaline yielded
monosubstituted product 2k in 66% yield. A slightly lower yield

of 2l was observed with 2-chloroquinoxaline. Caffeine, another
nitrogen-rich heteroarene, also provided a modest yield of the
alkylated product (2m). Pyridine moieties, a common
pharmacophore in medicinal chemistry,17 were next probed.
After screening various para-substituted pyridines, 4-
(trifluoromethyl)pyridine yielded 2n in a modest yield. Other,
more electron-rich systems (e.g., substituted pyrazine 2o and
benzothiazole 2p) could not be accessed. Typically, more
electrophilic radicals such as CF3 provide higher yields in
reactions with such electron-rich heteroarenes.3a

Finally, functionalized trifluoroboratochromanones were
coupled with a variety of heteroarenes. Alkyl substitution
(Scheme 4) yielded results similar to those of the unfunction-
alized trifluoroborate (3a). Suprisingly, heteroaryl substitution
on the aryl ring led to markedly higher yields (3b,c).

Decorating the aryl ring with a halide was an attractive feature
for further functionalization on the chromanone core. Starting
from the commercially available 6-bromochromone, copper-
catalyzed β borylation afforded the desired trifluoroborate in 84%
yield on a multigram scale (eq 5).

Because 6-bromo-2-trifluoroboratochromanone has potential
for elaboration on the aryl ring, an array of substrates was
explored to confirm that the reactivity was similar to that of 1a
(Scheme 5). Coupling the bromo-substituted trifluoroborato-
chromanone with 4-chloroquinoline resulted in a markedly
higher yield (4a). Other functionalized quinolines resulted in
more modest yields (4b−d). Isoquinoline 4e could not be
accessed utilizing this protocol, but quinoxaline 4f was generated
in 63% yield.
In conclusion, a new class of 2-heteroaryl-substituted 4-

chromanones has been accessed via sustainable photoredox-
catalyzed coupling with a variety of heteroarene partners. An
inexpensive organophotocatalyst was utilized to provide
markedly higher yields relative to precious metal photocatalysts.
This reaction proceeds chemo- and regioselectively, providing a
viable method for radical-induced C−H functionalization of

Scheme 3. Heteroarene Scopea

aReactions were performed with heteroarene (1.0 equiv), trifluor-
oborate (1.5 equiv), MesAcr (1 mol %), K2S2O8 (1.0 equiv), and
trifluoroacetic acid (1.0 equiv) in MeCN/H2O (1:1) on a 0.5 mmol
scale. bIsolated yield for a 1.0 g scale reaction.

Scheme 4. Trifluoroborate Scopea

aReactions were performed with heteroarene (1.0 equiv), trifluor-
oborate (1.5 equiv), MesAcr (1 mol %), K2S2O8 (1.0 equiv), and
trifluoroacetic acid (1.0 equiv) in MeCN/H2O (1:1) on a 0.5 mmol
scale.
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activated heteroarenes. The net result is an efficient, robust, and
reasonably general route to a class of compounds that, as a class,
is underrepresented in the current literature.
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Scheme 5. Bromochromanone Scopea

aReactions were performed with heteroarene (1.0 equiv), 6-bromo-2-
trifluoroboratochromanone (1.5 equiv), MesAcr (1 mol %), K2S2O8
(1.0 equiv), and trifluoroacetic acid (1.0 equiv) in MeCN/H2O (1:1)
on a 0.5 mmol scale.
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