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Sensorineural hearing loss (SNHL) becomes an inevitable worldwide public health issue, and deafness treatment is urgently
imperative; yet their current curative therapy is limited. Auditory neuropathies (AN) were proved to play a substantial role in
SNHL recently, and spiral ganglion neuron (SGN) dysfunction is a dominant pathogenesis of AN. Auditory pathway is a high
energy consumption system, and SGNs required sufficient mitochondria. Mitochondria are known treatment target of SNHL,
but mitochondrion mechanism and pathology in SGNs are not valued. Mitochondrial dysfunction and pharmacological therapy
were studied in neurodegeneration, providing new insights in mitochondrion-targeted treatment of AN. In this review, we
summarized mitochondrial biological functions related to SGNs and discussed interaction between mitochondrial dysfunction
and AN, as well as existing mitochondrion treatment for SNHL. Pharmaceutical exploration to protect mitochondrion
dysfunction is a feasible and effective therapeutics for AN.

1. Introduction

Hearing loss is one of the most crucial public health issues.
According to the 70th World Health Assembly (WHA),
360 million people are suffering from auditory dysfunction
in the world, accounting for 5% of the world’s population.
Besides, more than 1000 million juveniles are risky to hearing
disorder [1]. Auditory dysfunction causes speech communi-
cation barrier, cognitive disorder, psychological isolation,
and inferiority but also brings a heavy burden on family
and society. SNHL is the major type of deafness, representing
damage in the inner ear or auditory nerves that travel from
the ear to the brain [2]. The etiology of deafness is complex,
and SGNs draw more and more attention recently [3].

AN or auditory disease was first proposed by Kaga
et al. [4] and Starr et al. [5] in 1996, referring to an

acquired disorder characteristic of slight hearing impair-
ment with wave I-III absence of auditory brainstem
response (ABR) and speech recognition disorder, while
distortion product otoacoustic emission (DPOAEs) and
cochlear microphonic potential (CMs) did not change.
AN may present as a sole clinical phenotype or just be
one of the symptoms in systematic diseases like hereditary
sensorimotor neuropathies (HSMN) or other demyelinat-
ing diseases. Pathology evidence demonstrated auditory
nerve damage and loss of inner hair cells (IHCs) and rib-
bon synapses in AN. AN could be aroused by hereditary
defects; for instance, mutation of genes encoding otoferlin
or vesicular glutamate transporter 3 was found to induce
IHC presynaptic and postsynaptic dysfunctions, respec-
tively. And exogenous damage is another key contributor
to be reckoned with, including noise exposure, ototoxic
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drugs, hyperbilirubinemia or thiamin deficiency in infant,
or presbycusis [6].

Mitochondrion dysfunction is a major reason for neu-
ropathy. Mitochondria, serving as the engines of eukary-
otic cells, participate in cellular energy metabolism, ROS
generation, calcium homeostasis, and apoptosis. Mitochon-
dria exhibit special dynamic nature, with feature of plural-
istic  morphology and great interconnectivity, which
determine their function and network structure. Mitochon-
drion dysfunction is a key reason in aging and neurodegener-
ation like Alzheimer’s disease (AD), amyotrophic lateral
sclerosis (ALS), Charcot-Marie-Tooth disease (CMT), and
optic atrophy [7]. Additionally, association between mito-
chondrial biology and optic neuropathies were also detailedly
illustrated by pathology and relevant molecular and thera-
peutic targets. Patients with neuropathy including myoclonic
epilepsy with ragged-red fibers (MERRF); mitochondrial
encephalomyopathy, lactic acidosis, and stroke-like episodes
(MELAS); Charcot-Marie-Tooth disease type 2A (CMT2A);
and HSMN caused by mitochondrial dysfunction [8] were
also observed suffering from sensorineural hearing loss [9,
10]. The mutation of optic atrophy 1 (OPA1), a key protein
related to mitochondrial fusion, was proved to cause syndro-
mic autosomal dominant optic atrophy (DOA+) with audi-
tory dysfunction [11], which reveals to the potential
association between auditory nerves and mitochondria in
the development of hearing disorders.

Thus, it is of great significance to explore mitochondrial
mechanism of auditory neuropathy and may identify the
therapeutic target of auditory neuropathy. In this review,
we supply a brief introduction in the mitochondrial structure
and function which is correlative to auditory neuropathy and
illustrate the potential mechanism between mitochondrial
dysfunction and auditory neuropathy. Ultimately, we
enumerate the effective therapies targeting mitochondrion
dysfunction in AN.

2. Mitochondrial Genome and Function

2.1. Mitochondrial Genome. Mitochondrial DNA (mtDNA),
which is a mitochondrion-specific genetic system, exists as
double-stranded circular molecule with a length of
16569bp in human. Composed of a heavy strand and a
light strand, mtDNA encodes 2 rRNAs, 22 tRNAs, and 13
subunits of the proteins and complexes in respiratory chain
including COX I, II, and III and ATP synthase [12], illus-
trating its crucial role in oxidative phosphorylation
(OXPHOS). Plenty of mutations in mtDNA are associated
with anomalous OXPHOX. The diversity of mtDNA muta-
tion was observed in neurodegeneration due to the neurons
vulnerable to energy supply, especially during aging [13].
The deletion of mtDNA aggravated age-related hearing loss
at 12 months of Fischer 344 male rats [14], while D257A
and T7511C mutation in mtDNA accelerated the progres-
sion of age-related hearing loss and degeneration of HCs
and SGNs [15, 16]. Moreover, mitochondria are sensitive
to ROS since excessive ROS impedes unfolding of protein;
therefore, ROS induce mtDNA mutation [17].
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MtDNA is of maternal inheritance, and the copy number
of mtDNA reaches nearly 1000 in majority of cells, hundreds
of times as nuclear DNA genomes. Additionally, mitochon-
drial biogenesis or heteroplasmy occurs independently in cell
division, allowing mutated mtDNA distributed unevenly in
subcultured cells without efficient repairment, which was
observed in most of the mitochondrial disease [18].

2.2. Mitochondrial Homeostasis. Mitochondrion is an
organelle with high interconnection and constant move-
ment, forming cellular networks through a dynamic pro-
cess. Mitochondrial homeostasis refers to the steady status
of the mitochondrial network structure between mitochon-
drial biogenesis and degradation, including mitochondrial
fusion and fission, mitophagy, and trafficking. Disorders
of mitochondrial homeostasis have been found in aging
and plenty of age-related diseases like neurodegeneration
and cardiovascular disease.

Mitochondrial biogenesis is a renewed process of mito-
chondria by growth and division, associated with protein
synthesis, import, and assembly under the guidance of
nuclear DNA and mtDNA [19]. Fusion acts on mitochon-
drial remodelling, modulated by proteolytic processing and
PINK1-dependent ubiquitination. Fission allows the extrac-
tion of damage segment and quality control of mitochondria,
which depends on several critical proteins owning highly
conserved dynamic GTPase domain. Mitofusins 1 and 2
(Mfnl and Mifn2) are located in the outer mitochondrial
membrane, and Opal was anchored in the inner mitochon-
drial membrane. Fusion and fission are also involved in the
process of mitophagy with the help of dynamic-related pro-
tein 1 (Drpl), a crucial mediator of mitochondrial fission
assembled with Fisl after posttranslational modifications,
which could accelerate mitochondrial division [10, 20]. Apo-
ptosis could be activated by means of regulating proapoptotic
factors delivered and expressed in the cytoplasm, such as
cyto-c and Bcl-2 [21-24].

Mitophagy is a vital process for mitochondrial quality
control that could eliminate impaired mitochondria in time.
When mitochondrial membrane potential vanished, PINK1
aggregated on the mitochondrial outer membrane with phos-
phorylation of Mfn2 and Parkin, inducing ubiquitination of
multiple downstream proteins. Finally, impaired mitochon-
dria were separated [10]. Besides, mitochondrial renewal
and long-distance energy supply rely on mitochondrial
trafficking orthodromic and antidromic. It is essential to
neuron that their survival leans more heavily on mito-
chondrial trafficking than other cells for its high energy
consumption and unique cellular morphology. Studies
demonstrated fundamental significance to mitochondrial
trafficking of motor/adaptor complex composed of kinesin,
dynein, Milton, and Miro [25]. Mitochondrial trafficking
mechanism in neurodegeneration has been widely studied
in AD, Parkinson’s disease, Huntington’s disease, and
amyotrophic lateral sclerosis (ALS) [26].

2.3. Mitochondrial Energetic Metabolism. As a cellular energy
organ in eukaryote, mitochondria play vital roles in energy
metabolism and ATP production through two essential
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process, the citric acid cycle (TCA) and OXPHOS. The TCA
cycle is a critical task in aerobic respiration of eukaryotes as
well as an ultimate metabolic step of carbohydrates, fats,
and proteins. The close loop initiates with citrate production
as acetyl-coenzyme A drifted into TCA cycle and ends as
fumarate converted into oxaloacetate, in which electron
carriers NADH and FADH2 were manufactured and fur-
ther participating in electron transfer to electron transport
chain (ETC) [27]. The OXPHOS system operates as the
launch of ETC. ETC is situated in the inner membrane
of mitochondria (IMM), performing functions in convey-
ing electrons through complex I-III, cyto-c, and complex
IV successively to convert oxygen to water and driving
proton gradient production. Coenzyme Q (CoQ) is the
key intermediate electron transporter of this process. With
the actuation of proton gradient, ATP is released via ADP
phosphorylation through complex V (ATP synthase).
Nonetheless, there is still a bit of energy that remained
besides the portion consumed by ATP synthesis, as the
protons are able to leak across IMM and induce ROS gen-
eration to mitochondrial matrix via complexes I and III to
a great extent [28]. ROS is an indispensable regulator for
normal cellular activities covering intercellular communi-
cation as the secondary messenger, proliferation, differenti-
ation, and apoptosis, while excessive accumulation of ROS
might lead to oxidative damage, cell death, and diseases
like cancer as well as neurodegeneration [29].

Besides, mitochondria also impact apoptosis and regulate
calcium flux through mitochondrion-associated ER mem-
branes, which not only act as the second messenger but also
are essential to neurotransmitter release like glutamine [30].
As there is a high consumption of energy, normal activities
of neuron are bound up with functional mitochondria,
including auditory nerves.

3. Mitochondrial Dysfunction in
Auditory Neuropathy

3.1. Auditory Neuropathy and the Role of SGNs in Auditory
Pathway. Neuropathy is a common pathology in SNHL,
related to age-related hearing loss and noise-induced hearing
loss. Significant SGN degeneration followed by age is
observed in apical and basal turns of both human and other
mammals’ cochlea, while inner or outer hair cells (OHCs)
remain existing [31-34]. In Alzheimer’s disease (AD), a
study found significant loss of SGNs, rather than HC death,
which could be found in the cochlea of both 9- and 12-
month-old 3xTg-AD model mice [35]. Meanwhile, it was
demonstrated that swollen cochlear nerve dendrites were
seen in the first 24 h after noise exposure which could lead
to temporary threshold shifts (TTS), without HC loss
[36]. DPOAE threshold shifts were mild, suggesting that
neuropathy and loss of ribbon synapse also contributed
to the hearing loss prior to OHC damage. OHCs recov-
ered 2 weeks after exposure, but delayed neurodegenera-
tion was still observed for a long time [37]. In addition
to aggravation of ABR threshold and aberrant compound
potential of spiral ganglion, impaired SGNs also conduced

to degraded precision of acoustic signal encoding and
abnormal speech recognition [6].

Most of SGNs are bipolar cells located in Rosenthal’s
canal around the modiolus, serving as the primary afferent
nerves with innervation of the sensory HCs and cochlear
nucleus [38, 39]. About 95% of SGNs embedded in myelin
formed by satellite glial cells are connected to IHCs, named
type I SGNs [40]. The rest of the neurons are type II SGNs
and act as postsynaptic sites of OHCs. When action poten-
tials of HCs were initiated by acoustic signal, glutamine, the
neurotransmitters were released at ribbon synapses, which
was highly specific with precise and speedy information
transmission, inducing action potential of SGNs through
AMPA receptors [41, 42]. Consequently, SGNs gathered
sound signals from dendrites and communicated to an audi-
tory nucleus through axon. The average length of fiber
between SGN and HCs in human was nearly 32 mm [43],
which required high energetic consumption and protein syn-
thesis to complete long distance transportation [44]. Impera-
tive requirement of energy support by mitochondria in SGNs
indicated the contribution of mitochondrial dysfunction may
induce auditory neuropathy (Figure 1).

3.2. Mitochondrial Homeostasis in Auditory Neuropathy.
Deregulation of mitochondrial homeostatic mechanism
might probably contribute to auditory neuropathy, with
dysfunctional mitochondrion biogenesis or impaired
dynamics. PGC1-a, a key regulator of mitochondrial bio-
genesis, was also found increased in HCs and auditory
cortex, which might improve the sensitivity of age-related
hearing loss [45-47]. Additionally, it was found that muta-
tion of tRNA 5-methylaminomethyl-2-thiouridylate meth-
yltransferase (TRMU), the tRNA-modified protein, was
related to incidence of SNHL [48, 49]. Dysfunction on
mitochondrial protein synthesis plays a fundamental role
in SNHL development, when tryptophanyl-tRNA synthe-
tase 2 (Wars2) and mitochondrial ribosomal protein S2
(MRPS2), which are critical to the process, were proved
to lead to severe SNHL and SGN loss during mutation
[50, 51]. Mitochondrial protein transport dysfunction also
drives the development of SNHL, such as GFER, mito-
chondrial disulfide relay system protein [52], and DDP
[53]. Performing as the critical protein of mitochondrial
fission, OPA1 R455H missense mutations were also dis-
covered linking to auditory neuropathy. The absence of
ABR, serious speech perception impairment with pre-
served activity of OHCs, points to the damage of IHCs,
ribbon synapse, or auditory nerves [54]. PINK1 is widely
expressed in mouse cochlea and able to protect SGNs
from cisplatin-induced ototoxicity [55]. Conversely, mito-
phagy deficiency due to Drp-1 inhibition might give rise
to age-related hearing loss with impaired mitochondrial
membrane potential HC damage [56].

3.3. Redox Homeostasis and Energetic Metabolism in
Auditory Neuropathy. Due to abundant antioxidant enzyme
and low transfer potential energy, mitochondria with inte-
grated structure and function can defend against the forma-
tion of ROS [57]. ROS homeostasis was associated with
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F1Gurk 1: Mitochondrial dysfunction mechanism of spiral ganglion neurons in auditory neuropathy. Although mechanisms of mitochondrial
dysfunction have not been illustrated distinctly, damages in following targets have been mentioned: (1) mitochondrial homeostasis including
biogenesis, dynamics, and mitophagy; (2) redox homeostasis and energetic metabolism; (3) mitochondrial calcium homeostasis; and (4)
proapoptotic signal in mitochondria. Drpl: dynamin-related protein 1; MENI1/2: mitofusin 1/2; OPAl: optic atrophy 1; PGCl-a:
peroxisome proliferator-activated receptor y coactivator-1 a; TFAM: mitochondrial transcription factor A; TCA: tricarboxylic acid; ETC:
electron transport chain; MCU: mitochondrial calcium uniporter; VDAC: voltage-dependent anion channel; NCLX: Na+/Ca2+/Li+
exchanger; Bcl-2: B cell lymphoma-2; BAX: Bcl-2 associated protein X; AIF: apoptosis inducing factor.

neurodegeneration and auditory neuropathy [58]. Three-
week-old mice infected with murine congenital cytomegalo-
virus (MCMYV) in neonatal were found to be suffering from
hearing loss, and MCMV-infected cultured SGNs in vitro
displayed elevated ROS levels and activated NLRP3 inflam-
masome, which can be suppressed by ROS inhibitor NAC
[59]. Additionally, ROS is related to cochlear neuropathy in
presbycusis. Evaluated mtDNA oxidative damage and
mitochondrial ultrastructural damage in SGNs and audi-
tory cortex were described in aging C57/B6j mice [60].
To mimic human’s presbycusis, a senescence-accelerated
mouse prone 8 (SAMP8) mouse model was chosen to
study the mechanism of ARHL. SGNs of SAMP8 mice
own disorganized mitochondria with missing cristae at 12
months, and MDA (a lipid peroxidation) increased and anti-
oxidant enzyme decreased in 1 month, compared to wild-
type mice [61]. Disrupted CMP-Neu5Ac hydroxylase
(Cmah) is also involved in ARHL. Cmah-null mice showed
significant downregulation of ROS gene degradation such
as Gpxs and Sod; meanwhile, SGN's lost dramatically. KEGG
pathway analysis demonstrated downregulation of mito-
chondrial molecular transport regulator gene, including
Crumbs homolog 1 (Crb1), mitochondrial fission process 1
(Mtfpl), Ras homolog family member T2 (RhoT2), soluble
oxidase component (Soc2), and ATP synthase F1 (Atp5fl),

indicating mitochondrial dysfunction [62]. The mutation of
the protein that can affect ROS production and degradation
such as superoxide dismutase (SOD) [63], glutathione S-
transferases (GST) [64], mitochondrial uncoupling proteins
(UCPs) [65] were found be associated with ARHL.

Now, we have consensus that excessive ROS production
aroused cochlear injury in NIHL [66, 67]. Noise exposure
induced ROS damage, and raised mitochondrial calcium
leads to endoplasmic reticulum (ER) and extracellular fluid,
which damage abnormal mitochondrial membrane potential
[68-70]. The stria vascularis also contributed to neuropathy:
lipid peroxide formation and swollen blood vessels in stria
vascularis reduced cochlear blood flow [71, 72], resulting in
cochlea ischemia reperfusion and secondary injury by ROS.
Noise exposure also caused glutamate excitotoxic neural
swelling [67, 73]. A previous study of excessive ROS produc-
tion after noise exposure focus on the HCs rather than SGN.
Although it was still unknown whether ROS was associated
with synapse and SGNs damage in NIHL, SGN was suscep-
tive to hypoxia demonstrated by patients who experienced
perinatal and postnatal hypoxia [74].

TCA cycle is a key process for energy-intensive auditory
nerves. Isocitrate dehydrogenase 2 (IDH2) is one of the iso-
zymes of IDH and can convert NADP+ to NADPH, involved
in TCA cycle. IDH2 dysfunction accelerated apoptosis and
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caused cardiac impairment due to oxidative stress [75, 76].
Severe oxidative damage and more fragmented nuclear
DNA in SGNs were seen in Idh2”" mice at 24 months com-
pared to WT, indicating IDH2 deficiency promotes age-
related hearing loss [77]. Calorie restriction protected HC
and SGN degeneration by the promotion of mitochondrial
antioxidant defense with sirtuin 3 (Sirt3), which boosted
longevity and hearing maintenance [78]. Besides, Sirt3
and Sirtl help inhibit p53 and restrain apoptosis [79].

3.4. Calcium Homeostasis in Auditory Neuropathy. Calcium
ions (Ca®") are secondary messengers in many crucial cellu-
lar activities, for instance, cell death and organ development.
To maintain proper Ca** signaling, a mitochondrion is a vital
mediator of calcium in ER, the major intracellular Ca®* pool.
Mitochondrion-associated ER membranes (MAMs), refer-
ring to ER-mitochondrion connection, possess calcium
transport proteins and channels [80]. MAMs permit fast cal-
cium flux between ER and mitochondrial matrix, which is
essential for neural excitation. After being released by ER,
calcium ions traverse voltage-dependent anion-selective
channel (VDAC) and mitochondrial calcium uniporter
(MCU) located in the bilayer of mitochondria and can be
extruded to the cytoplasm by sodium calcium exchanger
(NCLX) [81]. MCU regulates the activity of enzymes in the
TCA cycle [82] and sensitivity of synapses in cochlea to noise
exposure. MCU was found to be increased in HCs after noise.
Treatment with MCU siRNA or specific MCU inhibitor
Ru360 alleviated HCs and ribbon synapse degeneration after
noise into CBA/J] mice. MCU inhibition reduced ABR wave I
amplitude damage, suggesting that MCU was correlated to
cochlear synaptopathy [83]. Moreover, superfluous calcium
uptake results in swollen mitochondria and abnormal
mitochondrial membrane potential, inducing mitochondrial
apoptotic factors released to the cytoplasm [84].

3.5. Apoptosis in Neuropathy. Mitochondria are of great
importance to induce apoptosis under intrinsic and extrinsic
stimulations by means of proapoptotic signal like activation
of BH3-only protein or calcium influx and releasing apopto-
tic protein including cyto-c, caspases, AIF, and Smac [85, 86].
Abnormal mitochondrial might cause apoptosis in cochlear
nerves. Apoptosis-inducing factor (AIF), a flavoprotein and
redox enzyme located in mitochondrial intermembrane
which can condense chromatin and fracture DNA, was
found to be activated by glutamate, which resulted in
SGN apoptosis. Calpain was proved to promote mature
AIF [87]. Pyridoxine damaged nerve fiber by inducing
overload of mitochondrial calcium and activation of apo-
ptosis signal from Bcl-2 family ROS generation and mito-
chondrial potential transition (MPT) were also aroused
after pyridoxine treatment [88]. Although overexpression
of bcl-2 might inhibit SGN apoptosis, growth of SGN
neurite was suppressed in vitro [89].

4. Therapy in Auditory Neuropathy

With the intensive study of mechanism between mitochon-
drial dysfunction and auditory neuropathy, novel perspec-

tives of mitochondrion-targeted therapies were explored.
There were several therapies targeting mitochondrial, which
will rescue auditory neuropathy fundamentally (Figure 2).

4.1. Antioxidants. Antioxidants were elucidated to protect
SNHL by eliminating excessive ROS products, including an
intrinsic system such as SODs and GSH and extrinsic system
such as inhibitors of calcium, HSP, or salicylate [90].

CoQ10, a common redox in mitochondria and cofactor
of respiratory chain, has the capacity of permitting electron
and proton transport through ETC and debriding ROS as
the antioxidant [91]. Supplementation of water-soluble coen-
zyme Q10 analog (Qter) alleviated damage of SGNs after
noise exposure [92] as well as prevented presbycusis in
murine [93].

Methylene blue (MB), distinguished as histological dye,
was first applied to clinical practice for the treatment of
malaria. Besides, MB could also prevent mitochondria from
overproduction of ROS by rerouting electron from NADH
to cyto-c and was proved beneficial to neurodegeneration
covering NIHL, AD, and PD [94]. Pretreatment with MB
diminished ROS and evaluated neurotrophin-3 (NT-3) level,
protecting nerve terminals between HCs and SGNs from
NIHL [95].

The limitation of the antioxidants was distinct that they
could not sweep up ROS in mitochondria precisely and effec-
tively. Recently, studies have shown mitochondrion-targeted
antioxidant MitoQ concentrated in solving conventional
antioxidant could not aggregate precedingly [96]. MitoQ
comprises CoQ10 and lipophilic triphenyl phosphonium
(TPP), endowing CoQ10 with the ability to go through a
phospholipid bilayer and gather inside mitochondria rapidly,
which could stabilized mitochondrial function by enhancing
mitochondrial fusion via activation of PGC1-« and upregula-
tion of Mfn2 in the PD model [97]. Besides, other
mitochondrion-targeted antioxidants like Mito VitE, and
SkQ1 were developed, while the therapeutic effect to auditory
neuropathy required verification [98].

4.2. Sirtuin Mediators. Sirtuins are from NAD+-dependent
deacylase family which is of great importance to aging
and nervous system. SIRT1 participates in the regulation
of cellular ROS, synaptic plasticity, and extending lifespan
in collaboration with SIRT3, the modulator of mitochondrial
metabolism [99]. Sirtuin mediators like resveratrol and NAD
+ supplement are also popular in antiaging [100], which were
also found efficient in NIHL [101, 102]. Resveratrol, an acti-
vator of SIRT1, is a natural antioxidant relevant to mitochon-
drial biogenesis and modification of mitochondrial function.
Mitigatory SGN degeneration and enhancive expression of
PINK and Parkin were observed in the mice with long-term
replenishment, revealing intensive mitophagy but improved
mitochondrial function [100]. Additionally, resveratrol was
able to eliminate toxicity protein SGNs from injury caused
by noise exposure [101].

NAD, as key coenzyme in several cellular events, took
part in the crucial process in mitochondrial metabolism
and was associated with axonal degenerations and neurode-
generation. Supplementation of NAD could protect damage
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F1GURE 2: Pharmacological targets of mitochondria in auditory neuropathy. Pharmacological therapeutics of mitochondrial dysfunction to
rescue auditory neuropathies are still limited. Proven therapeutic strategy targets are comprised of apoptosis inhibition, sirtuin mediators
maintaining mitochondrial homeostasis and capability of metabolism, and antioxidants and free radical scavengers that are helpful to

alleviate oxidative stress.

neurons and delay neurodegeneration [103]. In hearing loss
induced by Mn, NAD was suggested to prevent auditory
nerve fibers and SGNs from axonal degeneration and cell
apoptosis [102].

4.3. Apoptosis Inhibitors. Due to apoptosis induced by mito-
chondrial dysfunction, inhibitors of apoptosis targeting
mitochondria were developed and found efficient to SNHL.
A calpain inhibitor PD150606 could suppress calpain by
mediating AIF induced by glutamine and caspase-12 activa-
tion, restraining apoptosis processing and SGNs in vitro
[87]. Meanwhile, allicin [104] and curcumin [105] were
found to protect SGNs from ototoxic drugs, when paeoni-
florin and neurotrophin might exert as protective effect
through the PINK1/BAD pathway [89, 106].

Others such as gene therapy [107] and stem cell therapy
[108] still have been studied. But auditory neuropathy treat-
ment is still limited, requiring more exploration.

5. Conclusion

Mitochondrial dysfunction was demonstrated to involve in
both hereditary and acquired hearing loss, and the mech-
anism of ROS damage and mutation of mtDNA in HC
were studied intensively. Mitochondrion function as the
energy manufacturer and regulator of apoptosis and cal-
cium homeostasis, which is able to induce SGN damage.
The function of mitochondria and the association to neu-
rodegeneration have been excavated, extending perspective
on the relationship between mitochondrial dysfunction
and auditory neuropathy. Here, we summarized the associ-

ation between auditory neuropathy and mitochondrial
dysfunction of SGNs, as well as therapeutics targeting
mitochondria in AN. Treatments of optic neuropathy
including drugs, gene, and stem cell therapies [109]
inspired us to explore effective therapeutics for AN.
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