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ations in microbial fuel cells for
enhanced energy generation: a mini review

Fatma Yalcinkaya, *a Rafael Torres-Mendieta, b Jakub Hruza,a

Andrea Vávrová, c Lucie Svobodová, d Andrea Pietrelli e

and Ioannis Ieropoulos *f

Microbial fuel cells (MFCs) represent simple devices that harness the metabolic activities of microorganisms

to produce electrical energy from diverse sources such as organic waste and sustainable biomass. Because

of their unique advantage to generate sustainable energy, through the employment of biodegradable and

repurposed wastematerials, the development of MFCs has garnered considerable interest. Critical elements

are typically the electrodes and separator. This mini-review article presents a critical assessment of

nanofiber technology used as electrodes and separators in MFCs to enhance energy generation. In

particular, the review highlights the application of nanofiber webs in each part of MFCs including anodes,

cathodes, and membranes and their influence on energy generation. The role of nanofiber technology in

this regard is then analysed in detail, focusing on improved electron transfer rate, enhanced biofilm

formation, and enhanced durability and stability. In addition, the challenges and opportunities associated

with integrating nanofibers into MFCs are discussed, along with suggestions for future research in this

field. Significant developments in MFCs over the past decade have led to a several-fold increase in

achievable power density, yet further improvements in performance and the exploration of cost-

effective materials remain promising areas for further advancement. This review demonstrates the great

promise of nanofiber-based electrodes and separators in future applications of MFCs.
1. Introduction

The utilization of biomass, particularly organic waste, is
considered an environmentally friendly and sustainable
approach to energy production, making it a valuable alternative
source of renewable energy.1 Microbial fuel cells (MFCs) have
gained increasing attention as promising bio-electrochemical
systems that can convert chemical energy stored in organic
compounds, such as acetate, sugars, nitrate, and ethanol,2,3 into
electricity through the metabolic activity of microorganisms.4,5

MFCs offer numerous advantages over conventional fuel cells,
including negating the need for expensive or exotic catalysts,
such as platinum, and generating electricity from renewable
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sources of organic matter, including waste streams.6 Further-
more, MFCs have the potential to remove pollutants via the
microbial metabolism thereby nding application in waste-
water treatment, bioenergy generation, and biosensors.5,7,8

By denition, the MFC is a device that converts the energy
from organic compounds into electrical energy through the
metabolic processes of microorganisms.9–12 The operation of
MFCs is based on the transfer of electrons from the anode
electrode to the cathode. This is achieved by electrochemically
active bacteria, which oxidize organic matter in the anode
compartment, releasing electrons and cations, eqn (1). The
electrons ow through the external circuit to the cathode, where
they combine with an oxidant to produce water (eqn (2)).7,13,14

Meanwhile, the protons migrate through the membrane to the
cathode compartment, where they combine with the electrons
and an oxidant (e.g., O2) to complete the reaction, as per the
given chemical eqn (2).13

C2H4O2 + 2H2O / 2CO2 + 8e− + 8H+ (1)

2O2 + 8H+ + 8e− / 4H2O (E0 = 1.23 V) (2)

In a conventional MFC, two half-cells – an anode and
a cathode, are separated by an ion exchange membrane, as
depicted in Fig. 1. The process of electricity generation in the
MFC is sustained through a continuous consumption of an
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 The schematic and fundamental principles of a conventional
microbial fuel cell (MFC). Fig. 2 Composite anode of electrospun carbon nanofibers and hybrid

carbon nanotubes facilitates microbial attachment, electron transfer,
and exhibits superior conductivity and biocompatibility compared to
commercial carbon felt (this figure has been reproduced from ref. 26
with permission from Elsevier publisher, copyright 2024).
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oxidising agent, e.g., oxygen, as indicated by eqn (1) and (2). The
cathode compartment can work with either aqueous or atmo-
spheric oxygen.15 Due to its high redox potential, oxygen is
considered to be a suitable electron acceptor for the cathode in
MFCs. The interest in microbial fuel cells has been consistently
increasing over the last two decades.16

Despite these promising features and signicant interest,
the performance of MFCs is currently characterized by lower
power density, when compared with chemical fuel cells, whose
rates of reaction are naturally higher than biological processes;
this has however driven the need for innovation to enhance
performance. As with every real system, MFCs produce energy
output that is lower than their theoretical maximum due to
different electrochemical losses. The losses are due to resis-
tance in materials, separator material, and electrolytes, leading
to the lower power production of MFCs compared to their
potential. According to Torres et al.,17 the primary obstacle for
maximizing power output in microbial fuel cells (MFCs) is the
reactor design, which must integrate anodes with a high surface
area, low ohmic resistances, and minimal cathode potential
losses. Developments in electrode and membrane materials are
focused on enhancing MFC performance by seeking novel
materials with improved capabilities.18–21 In recent years,
nanobers in MFCs have emerged as a possible pathway to
enhancing performance. Carbon nanobers (CNFs) are widely
utilised as MFC electrodes due to their unique network struc-
ture and exceptional structural stability. The main challenges
for MFC systems are cost reduction and productivity enhance-
ment. Using nanobers offers a viable option to tackle the main
issues of reducing costs and increasing productivity in micro-
bial fuel cell (MFC) systems.22,23 Nanobers can be produced
economically employing efficient methods and resources,
leading to decreased production expenses. The customisable
features enhance the optimisation of electrode and membrane
materials, hence enhancing the performance and lifespan of
MFC systems. Due to their small size, highly porous structure,
tight pore size, and high specic surface area, nanober webs
are ideal for integration into MFCs.24,25 Such properties offer
several advantages in MFCs, including enhanced bacterial
adhesion, mass transfer, and electron transfer efficiency.26,27

Fig. 2 illustrates the superior power generation advantages of
CNFs anode compared to commercial carbon felt. For instance,
incorporating nanobers into the anode can promote microbial
© 2024 The Author(s). Published by the Royal Society of Chemistry
adhesion and increase surface area, resulting in faster electron
transfer rates and higher power production.28,29 Tao et al.30 used
a hierarchically structured textile polypyrrole/poly(vinyl alcohol-
co-polyethylene) nanobers/poly(ethylene terephthalate)
(referred to PPy/NFs/PET) as an anode of MFC. The results
showed the high surface roughness, porous and three-
dimensional interconnecting conductive scaffold improved
the colonization of Escherichia coli and electron transfer to the
anode. The maximum power and current densities were 2420
mW m−2 and 5500 mA m−2, which is approximately 17 times
higher compared to anode prepared without a nanober layer
(144 mW m−2). It is clearly shown that the nanober effect on
the colonization of bacteria is non-negligible.

Integrating nanobers in MFCs has demonstrated potential
benets for improving power density, current output, and
durability of these cells. Nanobers can be used as an anode
material to facilitate electron transfer from bacteria to the
electrode surface, a cathode material to enhance oxygen
reduction, or a membrane material to separate the anode and
cathode compartments. However, more research is needed to
optimize the fabrication and integration of nanobers in MFCs
and to understand their long-term stability and performance
under different operating conditions.

In the literature, CNFs have been widely studied inMFCs due
to their excellent electrical conductivity and biocompatibility.
One such study,31 employed activated electrospun carbon
nanobers (ACNFs) in an MFC as an alternative cathode catalyst
to platinum (Pt) and conducted a performance comparison with
plain carbon paper. It was found that chemically ACNFs showed
better catalytic activity than that of the physically activated one
with 78% more power generation. Chemically ACNFs with 8 M
KOH generated oxygen reduction reaction (ORR) performance
levels that contributed to 3.17 timesmore power than that of the
carbon paper, 1.78 and 1.16 times more power generation than
that of the physically activated ACNFs and the chemically acti-
vated ACNFs with 4 M KOH, respectively. Karra et al.32 utilized
ACNFs as the anode material to stimulate bacterial biolm
growth, and improve MFC performance. The analysis of biolm
adhesion, both qualitatively and quantitatively, indicated that
RSC Adv., 2024, 14, 9122–9136 | 9123



Fig. 3 Polymeric polyamide 6 nanofibers with an average fiber
diameter 114 ± 22 nm.
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ACNFs outperformed other commonly used carbon anodes. The
power density of the ACNFs was 1.13 and 3.18 times higher than
that from granular activated carbon and carbon cloth anodes,
respectively. Metal doped carbon nanobers (MDCNFs) have
also been explored for their use in MFCs due to their high
electrical conductivity and catalytic activity. Bosch-Jimenez
et al.33 have successfully prepared CNFs doped with metals such
as Co, Ni or Fe which increased surface areas up to 573 m2 g−1.
Adding metals increased mesoporosity and catalytic activity of
cathode material. Manickam et al.29 used activated carbon
nanober anodes in MFC. The preliminary tests in a single
chamber MFC demonstrated a 10% increase in current densi-
ties to ∼2715 A m−3 compared to the highest maximum ob-
tained so far. The bio-electrochemical performance of activated
carbon nanober anodes was compared to commonly-used
anodes like carbon cloth and granular activated carbon, and
this anode architecture is expected to help overcome low power
density issues that have limited the widespread adoption of
MFCs.

Polymer nanobers have been investigated for their use in
MFCs due to their high surface area and exibility. Polymeric
polyvinylidene uoride (PVDF)/Naon composite membranes
are good candidates as proton exchange membranes in MFCs
due to their porosity, high specic surface area, tight pore size,
chemical resistance, good electrical insulation, good thermal
properties and its biocompatibility34,35 as shown in Fig. 2. When
combining carbon nanobers (CNFs) with Naon 117,
a commonly utilized membrane in Microbial Fuel Cells (MFCs),
can alter membrane roughness, pore size, and porosity,
consequently enhancing the power generated by the MFCs.36

The reduction in pore size and roughness of these nano-
composite membranes leads to the blockage of oxygen transfer
from the cathode to the anode and impedes the migration of
bacteria and other components from the anode to the cathode.
Consequently, higher power production can be achieved. Chae
et al.37 developed a sulfonated polyether ether ketone (SPEEK)-
based composite proton exchange membrane reinforced with
polyimide nanobers for use in microbial electrolysis cells. The
addition of the nanober layer not only enhances the dimen-
sional stability of the SPEEK membrane but also improves its
affinity for protons, all while reducing costs. Additionally, the
composite membrane demonstrated superior hydrogen effi-
ciency (electron to hydrogen) of 86.4 ± 14.7%, compared to 77.2
± 10.3% observed with Naon membranes.

In addition to the potential improvement of MFC perfor-
mance, nanober technology can also contribute to the
sustainability of MFCs by utilizing renewable feedstocks in
nanober production. Nanobers can be fabricated from
various materials, such as carbon, metal, polymer, and ceramic,
using different fabrication techniques, including electro-
spinning,38,39melt spinning,40 force spinning,41 chemical vapour
deposition,42 and template synthesis.43 The most common
nanober production process is electrospinning due to several
benets compared to conventional techniques for producing
nanobers, including exibility in choosing materials, ability in
controlling ber size and structure, and capacity for large-scale
production. Electrospinning is a method that can produce
9124 | RSC Adv., 2024, 14, 9122–9136
continuous and uniform nanobers from various polymers and
composite materials, making it a popular choice for applica-
tions in various applications, including fuel cells.

2. Nanofiber technology for microbial
fuel cells

Nanober technology has shown promise in the development of
microbial fuel cells (MFCs) due to several advantages over
traditional electrode materials. Nanobers are ultra-thin bers
with diameters ranging from 1 to 100 nanometers that can be
made from a variety of materials, including composites, poly-
mers, metals, and ceramics.

Fig. 3 shows the polymeric nanobers which have ber
diameters between 67–185 nm (diameter measured using
ImageJ program). Their high surface area-to-volume ratio, small
diameter, and porosity render these suitable as electrode
materials in MFCs. The high surface area of nanobers allows
for a larger number of microorganisms to attach to the elec-
trode, resulting in improved performance.44 The small ber
diameter of nanobers enhances the accessibility of microor-
ganisms to the electrode surface, improving their metabolic
activity and resulting in increased energy generation. The high
porosity of nanobers facilitates the diffusion of nutrients and
oxygen to the microorganisms, which is essential for their
growth and metabolism.45 Additionally, certain types of nano-
ber materials, such as carbon nanotubes and graphene, have
high electrical conductivity, facilitating the transfer of electrons
between the microorganisms and the electrode and resulting in
improved energy generation.46 Ho-Young et al.47 included
conductive nanocomposite into anode of MFCs. Compared to
commercial graphite felt, the nanocomposite anode showed
a 1.8-fold increase in power density. The role of carbon nano-
bers on MFCs is not only because of their conductivity, but
also their adoption properties. The conductive carbon nano-
bers can improve bacterial attachment and extracellular elec-
tron transfer simultaneously. For instance, Zhang et al.48

fabricated a bacteria/Multi-Walled Carbon Nanotube (MWCNT)
hybrid biolm by inserting the MWCNTs into the anode bio-
lm. The bacteria/MWCNTs biolm was formed via an
© 2024 The Author(s). Published by the Royal Society of Chemistry



Review RSC Advances
adsorption–ltration method. The start-up time was shortened
by 53.8% while the current density, power density, and
coulombic efficiency increased by 46.2%, 58.8% and 84.6%,
respectively compared to naturally grown biolm. Apparently,
carbon-based nanobers, including carbon nanotubes and
graphene, are attractive due to their high electrical conductivity
and adsorption properties. Other commonly used nanober
materials in MFCs include metal oxides, such as titanium
dioxide, and conductive polymers, such as polyaniline.
3. Applications of nanofiber
technology in microbial fuel cells

Nanober technology can have different applications in MFCs,
including the development of nanober-based anodes, cath-
odes, and separator membranes. Low charge transfer efficiency
of electrodes and costly catalysts are limiting the development
of MFC technology. Due to the unique properties of nanobers
explained in the previous section, these materials are promising
alternative to conventional materials, which signicantly
Table 1 Ideal MFC components

Ideal properties Effect on MFC performance

Anode electrode
Conductivity Reduce resistance, improve electr

Improve electrochemical perform
Surface area Enhance bacterial attachment

More biocatalysts from organic co
higher output power than a graph

Porosity and pore structure Maintain anoxic conditions for el
Large bio-accessible surface area

Thickness Minimise resistance to electron tr
Stability and durability pH shi tolerant conditions
Biocompatibility Facilitate bacteria–electrode inter
Electro catalytic activity Enhancement on in situ oxidation
Low cost Feasibility of scale-up and comme
Mechanical strength Better mechanical strength under

metallic materials (e.g., carbon pa
vitreous carbon, nickel sheets, sta

Cathode electrode
Conductivity Polarization loss reduction

Oxygen reduction reaction enhan
Stability and durability pH shi tolerant
Low cost Feasibility of scale-up and comme
Catalytic activity Oxygen reduction reaction enhan

Lower cathodic activation energy
Biocompatibility Improve the biocathode biocomp
Active sites Enhancement in number of active

facilitate a more efficient transfer o

Separator membrane
Stability To be resilient and stable in acidi
Conduction To conduct the protons to cathod

energy generation
Impermeability to gases To allow H+ to pass from the ano

gases like H2, O2, and N2

Low cost Feasibility of scale-up and comme
Hydrophilicity To facilitate cationic transport an

© 2024 The Author(s). Published by the Royal Society of Chemistry
impact the efficiency and performance of MFCs. In the
following section, the application of nanober webs in various
components of MFC is summarised.
3.1. Nanober-based anodes

The anode part of MFCs mostly inuences the microorganism
attachment, biolm formation, substrate oxidation, and elec-
tron transfer rate. For this reason, the anode half-cell has been
the focus of research. A desirable anode should exhibit; high
surface area and porosity to enhance bacterial attachment,
capacity to enhance biolm formation via a strong intercon-
nection between microorganisms and the material, and good
electrical conductivity.29,44,49 The ideal anode selection is
summarized in Table 1. The material should have a networked
structure to ensure stable attachment of the biolm. Qualitative
and quantitative biolm adhesion analysis exhibited that acti-
vated carbon nanobers showed better performance compared
to granular activated carbon and carbon cloth anode.32 The
combination of high porosity and short distances between the
free surface and the bulk allows for improved nutrient access to
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Fig. 4 Electrospun metal-doped carbon nanofibers at the bio–abiotic
interface enable rapid bioelectrocatalysis (this figure has been repro-
duced from ref. 55 with permission from Elsevier publisher, copyright
2024).

Fig. 5 Power density, open circuit potential, and current density after
24 h batching of MFCs using different anodes (this figure has been
reproduced from ref. 58 with permission from MDPI publisher,
copyright 2024).
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the deep inner layers, optimizing the utilization of the available
surface area. However, to enhance the properties of nanobers
in MFCs, the addition of various materials such as reduced
graphene oxide (rGO), carbon nanotubes (CNTs), metals, and
metal–organic frameworks is necessary. This addition provides
improved conductivity, thermal stability, mechanical strength,
and corrosion resistance to the nanobers. For instance, using
electrospinning and calcination techniques, nitrogen-doped
carbon nanobers anchored with iron nanoparticles (Fe/N-
x@CNFs) have been developed as anode electrocatalysts with
good electrocatalytic activity and biocompatibility.50 In another
study,51 Mo-doped carbon nanobers were prepared by using
electrostatic spinning, followed by stabilization and carbon-
ization. The Mo-doped carbon nanobers anode delivered
a maximum power density of 1287.38 mW m−2 while pristine
carbon nanober delivered 649.69 mW m−2. Conductive
nanober with a higher surface area could improve the
conductivity of the anode for microorganism adherence on
anodic electrodes.52 By using activated carbon nanober with
carbon nanotubes in anode, the power density of the could
increase by 180% compared to that of the commercial graphite
felt,47 and 40% higher maximum power density compared to
unmodied carbon cloth.53 The aligned carbon nanober-
bacteria (ACNF-bacteria) hybrid exhibits a rich porous struc-
ture and a large specic surface area, resulting in signicantly
enhanced electrocatalytic performance compared to pristine
carbon cloth (CC) anodes.22 The ACNF-bacteria hybrid has
a maximum power density of 704 mW m−2, surpassing the
performance of ACNF, CNF, and CC anodes by 1.7, 2.1, and 2
times, respectively. Jiang et al.54 employed a manganese cobalt
metal–organic framework (MOFs) derived carbon nanober
(CNF) anode electrode to improve electricity generation as well
as pollutant removal. The modied CNF provides the anode's
conductivity and increases the surface area and porous struc-
ture, allowing for more attachment sites for electroactive
bacteria. This enhancement improved the electrocatalytic
activity of bioanode and catalytic reduction capability of
anaerobic microorganisms for Sb(V), leading to increased
performance in microbial fuel cells. Wu et al.51 employed
molybdenum (Mo) metal-doped carbon nanober (CNF) anode
electrodes. The Mo–CNF anodes were produced through elec-
trospinning and high-temperature carbonization processes.
These Mo–CNF II anodes demonstrated an accelerated electron
transfer rate and achieved a maximum power density of 1287.38
mW m−2, which was twice that of the pristine CNF anode. The
enhancement is due to the improved microbial colonisation,
electrocatalytic activity, and larger reaction surface areas
enabled by the Mo–CNF structure. These characteristics not
only enable direct electron transfer but also promote avin-like
mediated indirect electron transfer mechanisms.

In another work,55 electrospun metal-doped CNF were
employed as anode electrodes. The CNF served as carriers for
metals, enhancing the surface area and creating a highly porous
structure. Among the three different metals (Fe, Ni, Cu), the
iron-doped CNF showed the maximum output power (641.96
mW m−2), providing a 7.62-fold increase compared to pristine
CNF (Fig. 4). Differences in power output across various metals
9126 | RSC Adv., 2024, 14, 9122–9136
are due to variances in active sites on the carbon nanober
surface, as well as differences in surface morphology, structure,
and electronegativity. These differences inuence the direct
contact between the anode interface and extracellular proteins
of electricity-producing microorganisms, affecting the degree to
which the diffusion limit is surpassed. Therefore, signicant
differences have been observed in the improvement of bio-
electrocatalytic performance with different metal anode mate-
rials. Furthermore, combining iron cobalt bimetallic metal–
organic frameworks (FeCo-MOFs) with CNFs can enhance the
power density up to 5300 mW m−2 since the synergistic effect
between different metals in bimetallic MOFs improves the
catalytic performance of MFC.56,57 The incorporation of bime-
tallic MOFs enhances both the strength and exibility of CNFs.
This combination enhances the electrocatalytic efficiency of
bimetallic MOFs and avoids the agglomeration of nano-
particles. Barakat et al.58 conducted a comparative analysis of
various anode materials, including cobalt (Co)-doped carbon
nanobers (CNFs), single and double layer active Co-free CNF
mats, carbon cloth, and carbon paper. The ndings indicated
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 6 Nitrogen-doped reduced graphene oxide@carbon nanofiber
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that the inclusion of additional Co signicantly increased the
power density, reaching a maximum of 21 mW m−2, as illus-
trated in Fig. 5. Adding cobalt (Co) to carbon nanobers (CNFs)
helps reduce the negative impact of the metal on microorgan-
isms and lowers the chance of metal dissolution, while simul-
taneously utilising the advantageous features of cobalt.

It can be concluded that employing conductive nanobers as
anodes can alter the surface morphology and porosity of the
anode material, thereby impacting the performance of MFC
units. The incorporation of metals onto the nanober layer has
shown signicant potential to enhance power generation
performance several-fold. This improvement is attributed to
better attachment of electroactive bacteria, enhanced electro-
catalytic activity, and catalytic reduction processes facilitated by
the modied nanober structure.
(N-rGO@CNF) hybrid membranes, with varying amounts of rGO
embedded into CNF, serving as high-performance integrated air
cathodes in microbial fuel cells (this figure has been reproduced from
ref. 100 with permission from Elsevier publisher, copyright 2024).
3.2. Nanober-based cathodes

Currently, carbon cloth, carbon paper, and graphite are the
most commonly used cathode materials. It is expected that
a good cathode material should capture protons easily and have
a high redox potential. The power density and the electrical
performance of the cathode can be improved by modifying it
with a highly active catalyst.59 It is possible to use carbon60 or
metal-based catalysts such as platinum (Pt)61 or biocatalysts by
attachment of microorganisms on the cathode.62,63 The main
limitation of noble metal–electrode cathodes for scaled-up
applications is their high cost.64 The drawback of the bio-
catalyst is accumulation of metabolites which limits ions
transferred through cell membranes.65 An ideal oxygen reduc-
tion reaction catalyst should be extremely active, durable, long-
lasting, scalable, and, most signicantly, inexpensive. To
maximize the technoeconomic potential of microbial fuel cells,
it is critical to choose a cost-effective cathode material.

Nanober-based cathodes have been developed as a viable
option to improve MFCs' performance. Nanobers' high surface
area, porosity, and electrical conductivity make them suitable
for replacing traditional electrode materials such as graphite
and platinum. Carbon-based nanobers, such as graphene and
carbon nanotubes, are particularly attractive due to their high
electrical conductivity and potential for enhanced electron
transfer.

Xu et al.100 used nitrogen-doped reduced graphene oxide–
carbon nanober hybrid membranes as cathode material which
showed superior MFC performance with maximum power
density reached 826 mW m−2 and oxygen reduction reaction
activity compared to the pristine nitrogen-doped carbon nano-
bers and commercial activated carbon (Fig. 6). Ghasemi et al.31

studied activated electrospun carbon nanobers as a cathode
electrode and compared performance to plain carbon paper. To
increase surface area and catalytic activity of the cathode,
chemical and physical activation was done by KOH reagents
and CO2 gas, respectively. Chemically activated carbon elec-
trodes have a better catalytic activity than physically activated
ones with 78% more power generation. On the other hand, the
cost of chemically activated carbon nanobers was 2.65 times
greater than that of the traditionally used platinum cathode.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Eom et al.101 used polyacrylonitrile (PAN)-based carbon nano-
bers in both anode and cathode electrode. Palladium (Pd) was
used at various ratios to enhance the catalytic activity of MFC
together with carbon nanobers in the cathode electrodes.
Results indicated that the performance of MFC increased as the
content of Pd increased. Pd incorporated nanober showed
current density and power density 17.2 times and 283 times
higher than pristine carbon nanober. A novel cathode, elec-
trospun zeolitic imidazolate framework-67/polyacrylonitrile
carbon nanober (ZIF-67/CNFs), has been developed to
improve the oxygen reduction reaction (ORR) performance,
pollutant removal, and bioelectricity output of microbial fuel
cells (MFCs).102 This innovative cathode achieved the highest
output voltage (607 ± 9 mV) and maximum power density (1191
mW m−2). The porous structure of the nanober composite
electrode effectively decreased the internal resistance of the
MFC cathode. Nandy et al.23 conducted a comparative study on
the performance of soil microbial fuel cell (SMFC) technology
utilizing different cathode materials: Fe-doped carbon nano-
ber (CNF), Pt-doped carbon cloth (PtC), carbon cloth, and
graphite felt (GF). The study showed that Fe-doped CNF and PtC
had steady performance, reaching peak power densities of 25.5
mW m−2 and 30.4 mW m−2, respectively, in relation to the
cathode's geometric area. The graphite felt (GF) showed supe-
rior electrochemical performance, with a peak power density of
87.3 mW m−2. The increased performance of GF was due to its
larger surface area, which improved biolm adhesion and
resulted in higher oxygen reduction reaction (ORR) activity.
Gong et al.103 synthesized carbon nanober membranes (CNMs)
incorporated with palladium nanoparticles (Pd-CNMs) using
polyimide as the primary material. Palladium nanoparticles are
evenly spread and highly active on the surface of carbon
nanobers in the Pd-CNMs structure. The Pd-CNMs exhibit
outstanding electrocatalytic performance for the oxygen reduc-
tion process (ORR) in alkaline electrolytes due to their large
specic surface area. Comparing the electrocatalytic power of
Pd-CNMs to commercial Pd/C, the half-wave potential fell by
RSC Adv., 2024, 14, 9122–9136 | 9127
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approximately 0.03 V and 0.042 V, respectively aer 4000 CV.
Commercial Pd/C showed greater electrocatalytic activity but
lower ORR performance than Pd-CNMs.

On the other hand, Santoro et al.104 proposed using nitric
acid (HNO3) activated CNFs cathodes (ACNF) as a substitute for
platinum (Pt)-based cathodes in single chamber microbial fuel
cells. The nitrogen functional groups attached to the nanober
surfaces likely enhanced the properties of the ACNF. The nd-
ings demonstrated that CNFs activated by HNO3 exhibited
greater stability in voltage output and power production over
extended periods compared to a Pt-based cathode, which
experienced deterioration and detachment of the catalyst with
time. While Cong et al.105 found that nitrogen-doped carbon is
not electrochemically stable under prolonged potential scan-
ning, employing hot-pressing of ACNF led to gradual degrada-
tion over time. Furthermore, it was suggested that the ACNF
cathode serves as a dependable and cost-effective alternative to
Pt-based cathodes. Similarly, Yang et al.106 synthesized nitrogen-
doped porous carbon nanobers (CNFs) as a substitute for
platinum-based catalysts in fuel cells. Depending on the
carbonization temperature, variations in nitrogen content and
the degree of graphitic phase were observed. The optimal
carbonization temperature for achieving a desirable graphitic
phase and a nitrogen content of 3.5% (atomic percentage) in the
carbon bers was determined to be 1000 °C. Among the
samples with varying pore volumes (0.09, 0.52, and 0.94 cm3

g−1), the medium porous sample (C-PEOPAN-11-1000) exhibited
the highest performance in the oxygen reduction reaction
(ORR), with a total pore volume of 0.79 cm3 g−1. The measured
H2O2 yields for C-PEOPAN-11-1000 and commercial Pt/C cata-
lyst were approximately 8% and 2%, respectively, at a potential
of 0.5 V. Furthermore, C-PEOPAN-11-1000 demonstrated supe-
rior tolerance to methanol crossover and excellent stability in
KOH solution compared to Pt/C catalyst. The remarkable elec-
trocatalytic activity, with an onset potential of approximately
0.09 V for the C-PEOPAN-11-1000 sample (compared to 0.07 V
for commercial Pt/C catalyst), was attributed to the balance
between nitrogen content, electrical conductivity, and active
site density on the surface. Their analysis showed that all
nitrogen atoms primarily existed in active pyridinic and
quaternary-N bonding congurations across all carbon bers.
Similarly, nitrogen-doped carbon-based nanobers (N-CNFs)
Fig. 7 Air breathing cathodes for MFCs using Mn-, Fe-, Co- and Ni-
containing platinum group metal-free catalysts (this figure has been
reproduced from ref. 108 with permission from Elsevier publisher,
copyright 2024).
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were synthesized as a catalyst layer at the cathode in Single
Chamber Microbial Fuel Cells (SCMFCs) with an air-cathode,
using a carbonization temperature of 900 °C.107 The presence
of nitrogen defects, combined with their high surface area,
makes them a promising catalyst layer for the oxygen reduction
reaction (ORR). The results obtained conrmed that SCMFCs
equipped with N-CNFs achieved a higher maximum power
density (1.15 W g−1) compared to those with a reference Pt/C
layer (0.571 W g−1). This highlights the signicant potential of
N-CNFs to replace noble metal-based catalysts. The Pt metal
group-free oxygen reduction reaction (ORR) catalysts based on
Fe, Co, Ni, and Mn demonstrated superior electrochemical
performance and power generation compared to activated
carbon, with the following order of effectiveness: Fe > Co > Ni >
Mn as shown in Fig. 7.108 This suggests a promising avenue for
synthesizing Pt metal group-free catalysts for microbial fuel cell
(MFC) applications.

Besides carbon, polymeric nanobers started to be used in
MFCs. Silver (Ag) anchored PVDF nanober membrane was
prepared for efficient oxygen reduction reaction in MFC's
cathode.109 Neither supporting carbon cloth, nor coating cata-
lyst material has been used to fabricate MFC cathode. The Ag
showed catalyst role. Compared to commercial Pt/carbon (C)
(20% Pt) cathode, the PVDF@Ag nanober cathode showed
higher power density, chemical oxygen demand (COD) removal
rate, and coulombic efficiency as 72%, 57.44%, and 25.7%,
respectively. This work showed, without carbon cloth or paper
and catalyst coating, it is possible to get high MFC performance
by using modied nanobers.

It is very common to use nanobers together with a catalyst.
Graphene/nickel (Ni) nanober hybrid was prepared for
cathode catalyst by the decoration of Ni nanobers on the gra-
phene akes.110 Compared to pure Ni or graphene catalysts,
graphene/Ni nanober showed almost 2-fold higher power
density. Ahmed et al.111 prepared polyaniline (PANI) nanober/
carbon black composite as an oxygen reduction catalyst in MFC.
The power density of pristine PANI nanober increased 2.6-fold
by adding carbon black and 1.2-fold lower than commercial Pt
catalyst. However, the lower cost of PANI/C would suggest an
alternative to Pt catalyst for the bulk application. Other
researchers used non-precious metal (Co, Ni or Fe) doped
carbon nanober air-cathode for MFC.33 Using metals not only
improved the catalytic activity but also increased the surface
area of the electrode up to 573 m2 g−1. In terms of the catalytic
potential of electrodes, the ascending sort was Fe1 > Co > Ni >
pristine carbon nanobers. On the other hand, for the long-
term stability (6000 h) and high performance of the low-cost,
Co-dopped carbon nanobers showed the best performance
with a current density of 27.4 A m−3, power output up to 14.4 W
m−3 with COD removal of 70–85%.
3.3. Nanober-based membranes

MFCs equipped with high-resistance membranes tend to have
poor performance due to limited proton diffusion between the
anode and cathode, resulting in low current and power densi-
ties.112 Besides the inuence on performance, the membrane
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 8 Synthetic route of Nafion-functionalized PVDF nanofibers
(PVDFNF-Nafion) and preparation of Nafion composite membrane
(Nafion-CM1): ozone treatment introduces peroxide groups in Nafion
chains, facilitating the formation of highly reactive radicals. These
radicals react with C]C unsaturated groups. Surface functionalization
of PVDF nanofibers involves a two-step process: radical polymeriza-
tion of GMA followed by addition reactionwithMBA. Maleimide groups
anchored on the PVDF nanofibers serve as active sites for reactionwith
radical-containing Nafion chains, resulting in Nafion-functionalized
PVDF nanofibers (PVDFNF-Nafion). GMA: glycidylmethacrylate, MBA:
maleimidobenzoic acid (this figure has been reproduced from ref. 35
with permission from Royal Society of Chemistry publisher, copyright
2024).
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type is a signicant factor in the development of MFCs,
accounting for approximately 60% of the total cost. Currently,
Naon membranes possess the ideal qualities needed for
MFCs.80,113 Nevertheless, despite being the top choice for MFC
membranes, their high cost hinders their widespread adoption
as MFCs are scaled-up. Therefore, novel membrane designs
focus on low cost and maintaining low internal resistance to
facilitate efficient proton transfer with enhanced characteris-
tics. When selecting a membrane for MFC applications, several
criteria must be fullled. These include exceptional mechanical
and chemical stability, absence of electronic conduction, low
permeability to gases like H2, O2, and N2, high ionic conduc-
tivity, ease of acquisition, superior species selectivity, minimal
oxygen and fuel crossover, and affordability with low electrical
resistance.80 Besides providing low internal resistance, the
separator used on the anolyte side of the cathode should have
a high hydrophilicity to facilitate cationic transport and should
also inhibit oxygen diffusion.84

Functionalized nanobers can be used to selectively trans-
port specic ions or molecules, such as proton-selective
membranes that enhance proton transfer in MFCs. Either
including metals/inorganics or proton-conducting groups (e.g.,
–COOH, –SO3H, and –PO3H2), the nanobers can be suitable to
use as proton exchange membranes.

Limited research has been conducted regarding the utiliza-
tion of nanober membranes in the separator component of
MFCs. More research is being conducted on the application of
nanober membranes in lithium cells, direct methanol fuel
cells (DMFCs), biomedical materials, sensors, and electronic
devices.31,114 Due to pore size, nanobers act as microltration
membranes. It was found that using a microltration
membrane reduces the internal resistance of MCFs compared
to Naon proton exchange membranes (PEM).115 Dong et al.116

compared the proton conductivity of pristine Naon lm
membrane and high-purity Naon nanober (99.9 wt%) via
electrospinning with the use of 0.1 wt% poly(ethylene oxide). It
was found that proton conductivity increased with decreasing
ber diameter. Compared to pristine Naon lm, Naon
nanobers showed 15-fold higher proton conductivity. Based
on the previous nding it can be expected that nanober
membranes can help reduce internal resistance with a lower
cost. Shahgaldi et al.34 prepared PVDF/Naon composite
membranes as proton exchange membranes. The results indi-
cate that maximum power density was attained with 0.4 g
concentration of Naon in composite, which was even higher
than that of pristine Naon. By this method, it is possible to
reduce the price of separator membrane cost. Similarly, elec-
trospun activated carbon nanober/Naon membranes were
fabricated and their power production was compared to Naon
112 and Naon 117 membranes.36 Results indicated that, the
nanober membrane produced the highest power density of
57.64 mW m−2 while it was 13.99 mW m−2 and 38.30 mW m−2

for Naon 112 and Naon 117, respectively. The carbon elec-
trospun structure changed the roughness, lowered pore size
and increased porosity of membranes which resulted in higher
generation of power in MFC. Li et al.35 functionalized the PVDF
nanober with Naon, as shown in Fig. 8. The addition of
© 2024 The Author(s). Published by the Royal Society of Chemistry
Naon chains to PVDF-based nanobers improved their
compatibility with the Naon matrix and created a PVDFNF-
Naon reinforced Naon composite membrane (Naon-CM1).
Functionalizing the nanober surfaces created proton-
conducting channels and enhanced the proton conductivity of
Naon-CM1. Naon-CM1 demonstrated a maximum power
density of 700 mW cm2 in single cell testing with H2/O2,
exceeding the 500 mW cm2 of the commercial Naon 212
membrane. In another work, PVDF nanober was coated with
peruorinated sulfuric acid ionomer (PVDF-PFSA) to be used in
MFCs as a replacement for the Naon 117 membrane and their
power densities were compared.117 The nanober-based proton
exchange membrane showed superior properties compared to
Naon 117, such as; lower dimensional change, lower water
uptake, with a max power density of 548 mW m−2. Liu et al.118

engineered proton-conductive membranes by reinforcing PVDF
nanobers with aromatic ionomers. The resulting composite
nanober membrane (SPP-TFP-4.0-PVDF) exhibited a highly
porous and isotropic structure enhanced by partially uori-
nated aromatic ionomers. With excellent chemical stability and
consistent rupture energy levels at both high and low relative
humidity (RH) levels and higher proton conductivity compared
to commercial Naon membrane, the SPP-TFP-4.0-PVDF
membrane presents itself as a promising alternative proton-
conductive membrane. Similarly, PVDF nanobers were used
as a proton exchange membrane aer being functionalized with
polydopamine/polyethyleneimine (PDA/PEI) and lled with
sulfonated poly (ether ether ketone) (SPEEK) (SPEEK-PDA/
PEI@PVDF).119 Undoubtedly, the membrane exhibited excep-
tional mechanical properties, particularly in wet conditions.
RSC Adv., 2024, 14, 9122–9136 | 9129
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Additionally, the SPEEK-PDA/PEI@PVDF composite membrane
demonstrated excellent long-term stability and durability. The
proton conductivity was measured at 48 mS cm−1 at 80 °C, and
the highest power density was recorded at 58.9 mW cm−2. The
greatest power density attained was 58.9 mW cm−2 using 2 M
methanol as fuel, in comparison to the pristine SPEEK
membrane (47 mW cm−2) and Naon115 (48.4 mW cm−2). The
durability test showed the excellent stability of the composite
membrane, showing just a 2.6% loss in open circuit voltage
aer working at 80 °C for 100 hours.

Based on the previous studies, it can be concluded that, the
proton exchange membranes based on nanobers demonstrate
exceptional MFC performance attributes surpassing those of the
Naon membrane, suggesting their potential as a viable substi-
tute for Naon membranes in MFC reactors. Future studies are
required to optimize the properties of nanobers and their
potential applications in MFCs and other energy-related elds.

4. Challenges and future directions

The implementation of nanobers into MFC components offers
promise for the enhancement of performance. However, there
are several limitations that must be addressed for extensive
application at larger scale. Table 2 shows the main challenges
and possible solutions to overcome the limitations of nanober
technology to use in energy applications.

The improvement in bulk production of nanobers accel-
erate their application area in the market. Especially aer
COVID19, nanobers have been widely used in face masks.120,121

Future research should focus on optimizing the properties of
nanobers and exploring their potential applications in MFCs
and other energy-related elds. The challenges mentioned in
Table 2 are not insurmountable but require great research and
effort. For instance, for cost-effectiveness production, the
equipment, polymers, solvents, additives need to be selected
carefully. Otherwise, the fabrication of nanobers with high-
quality raw materials can be costly. The scalability of nano-
ber production for large-scale MFC applications needs to be
addressed to make this technology economically viable.

The other limitations, such as un-spinnability, defect-free
surface or low conductivity can be solved by using polymer
mixture, solvent mixture, polymer type, additives, changing
process and system parameters. The defect-free surface is
Table 2 Limitations and solutions of nanofiber technology to use in ene

Limitations Solution

Cost The increase of industrial scale product
Un-spinnability Using polymer mixture or using additi
Defect-free surface Optimizing both system and process p

surface, which can lead to energy gene
Low conductivity The conductivity can be improved by u

or additives
Biocompatibility Focusing on biocompatible polymers a

solution
Stability Using chemical resistance nanober w

enhance stability and durability under
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important in MFC. For instance, large defects or low conduc-
tivity can cause electron loss, high internal-resistance, low
proton conductivity or low impermeability to gases.

The biocompatibility of nanober-basedmaterials is another
challenge that needs to be addressed. Some nanobers might
negatively affect microbial development and activity, which
would prevent their usage in MFCs. To ensure that nanobers
can be used safely in MFCs, a detailed investigation into their
toxicity is required.

Regarding their long-term efficacy, the stability and dura-
bility of nanober-based electrodes and membranes in MFCs
also pose challenges. The polymer selection must be done
carefully. For instance, polyacrylonitrile (PAN) is one of the
most commonly used polymers for the production of nano-
bers. However, the sensitivity of this polymer to alkaline
restrict its application. It is found that the nitrile groups of PAN
hydrolysis and swells under alkaline condition and pores
getting smaller.122 It is necessary to evaluate the mechanical
stability and long-term durability of these components to
ensure their efficacy over extended periods.

Recent research has demonstrated that the incorporation of
nanobers into MFCs holds great potential for enhancing the
performance of MFCs in the future years.28,29,32,123 These studies
have highlighted the remarkable capability of nanobers to
signicantly enhance power generation, potentially by several
orders of magnitude. In this respect, future research should
focus on optimizing the properties of nanobers according
to MFCs application. The advancement of nanober materials
and their composites through the exploration of novel
synthesis methods holds the potential to signicantly
enhance their performance characteristics and expand the
scope of their applications. In order to improve the overall
power generation of MFC systems, it is also critical to give
priority to the exploration and development of MFC stacks. This
factor becomes essential in order to meet the power require-
ments required for the future implementation of large-scale
MFC operations.

In summary, the incorporation of nanober technology into
MFCs exhibits considerable potential for improving their perfor-
mance and extending their applicability.28,29,102 Nevertheless,
certain obstacles relating to cost-effectiveness, biocompatibility,
and long-term stability must be addressed. The focus of future
rgy application

Reference

ion devices reduces the price of nanober webs 85–87
ves can help to fabricate nanober web 88 and 89
arameters is essential to prevent uneven web
ration failure

90–92

sing conductive polymers, carbon nanobers, 32 and
93–95

nd using non-toxic chemicals can be the 96–98

ebs such as PVDF or PSU are benecial to
acidic and alkaline conditions

39 and 99
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research should be on improving nanober characteristics and
investigating potential uses for them in MFCs and other areas
related to energy production.

5. Conclusions

This article described the signicance of nanober technology in
revolutionizing MFCs as a sustainable energy source. The proper
and efficient selection of the material from which MFCs are
constructed is a crucial element in the effort to produce high-
performance MFCs. Nanober technology has been shown to
enhance the performance of MFCs through improved electron
transfer rate, enhanced biolm formation and microbial activity,
and increased durability and stability. Nanober-based anodes,
cathodes, and membranes have been investigated in MFCs, with
promising results. However, the incorporation of nanober
technology into MFCs poses various challenges encompassing
cost-effectiveness, biocompatibility, and long-term stability.
Future research should focus on the optimizing the properties of
nanober and the exploration of their potential applications not
only in MFCs but also in other energy-related domains. Utilizing
MFCs as a viable source of sustainable energy presents an
opportunity to reduce reliance on non-renewable resources and
address the impacts of climate change. Additionally, the poten-
tial of nanober technology to improve MFC performance and
expand their applications holds great promise in advancing
a future driven by sustainable energy solutions.
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