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Various mesenchymal stem cells as easily accessible and multipotent cells can share different essential signaling 

pathways related to their stemness ability. Understanding the mechanism of stemness ability can be useful for 

controlling the stem cells for regenerative medicine targets. In this context, OMICs studies can analyze the 

mechanism of different stem cell properties or stemness ability via a broad range of current high-throughput 

techniques. This field is fundamentally directed toward the analysis of whole genome (genomics), mRNAs 

(transcriptomics), proteins (proteomics) and metabolites (metabolomics) in biological samples. According to 

several studies, metabolomics is more effective than other OMICs   ّ for various system biology concerns. 

Metabolomics can elucidate the biological mechanisms of various mesenchymal stem cell function by measuring 

their metabolites such as their secretome components. Analyzing the metabolic alteration of mesenchymal stem 

cells can be useful to promote their regenerative medicine application. 
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wo main properties of stem cells are including 

prolonged self- renewal and multi-potent 

differentiation capacity which make them ideal 

candidate for cell therapy and regenerative 

medicine (1-5). Related to these properties, stem 

cells share several essential genes and signaling 

pathways (i.e. Hedgehog, Wnt, Notch, 

phosphatidylinositol 3-kinase/ phosphatase, and 

nuclear factor-κB signaling pathways) as stemness 

ability (6-8). In other word, stem cells can preserve 

their lineage, interaction with the environment, and 

cross-talk with adjacent cells to keep a balance 

between repose, proliferation, and restoration, 

through stemness ability (9-11). However, 

understanding the mechanism of stemness ability is 

challenging (9). According to several studies, 

stable, safe, and more accessible stem cells are 

considered as an excellent choice for regenerative 

medicine. In this context, mesenchymal stem cells 

(MSCs) (as easily accessible, self-renewable, and 

multipotent cells with few consideration ethics) 

have significant efficacy in regenerative medicine. 

(12-26). Furthermore, recent development in 

OMICs approaches (technologies for understanding 

the whole activity of cells, tissues, and organs at the 

molecular level) specifically metabolomics 

approaches (extensive analysis of metabolites in 

cells, tissues, and organs) can increase our 

understanding about the self-renewal and 

differentiation mechanisms. On the other hand, 

analysis of chemical alterations related to natural 

processes of living cells including growth, 

environmental adaptation, and differentiation can 

be provided by metabolomics methods (27-29). 

OMICs - based stem cell monitoring 

Multi- OMICs approaches including geno-

mics, epigenomics, transcriptomics, proteomics, 

and metabolomics are functional methods to study 

stem cell biology and its therapeutic application 

(Fig.1) (30-32).  
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Fig. 1. Based stem cell monitoring. Multi- OMICs approaches are functional methods to study stem cell biology and its 

therapeutic application through evaluation of molecular mechanisms of stem cells properties and quantification of cellular 

products (33). 
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At first, human genome project has led to the 

advancement of genome sequencing and study on 

DNA by analysis of single nucleotide 

polymorphisms (SNPs), variation copies, and 

mutations (34-36). Nowadays, genomics as the 

most mature approache of OMICs and next 

generation sequencing (NGS) as the latest 

technology in this field are used for high-

throughput  detection and cost effective analysis of 

biological data (37-40). On the other hand, 

epigenetic modifications (e.g. methylation and 

histone acetylation) have an important role in 

differentiation and development of stem cells (41, 

42). The study of heritable modifications (not 

sequence changes) of DNA is called epigenomics 

(43, 44). Additionally, qualitative and quantitative 

transcriptomics can facilitate the investigation of 

RNAs in stem cells, via molecular and cellular 

methods such as micro-array and RNA-sequencing 

(45, 46). It also has a vital role in analyzing key 

genes and pathways that participate in self-renewal, 

proliferation, and differentiation of stem cells (47-

49). Some transcription factors (related to non-

coding RNAs) such as octamer-binding 

transcription factor 4 (OCT 4) and NANOG can 

regulate pluripotency feature of stem cells (50, 51). 

Proteomics tries to evaluate the qualitative and 

quantitative changes in proteins and identify new 

markers in stem cell development stages (52, 53). 

Finally, metabolomics measures and demonstrates 

the products of metabolism such as amino-acids 

and fatty-acids. In this respect, metabolomics is an 

accurate approach to recognize metabolite 

biomarkers in biological samples (54, 55). 

Although, application of OMICs, especially 

metabolomics, for monitoring of stem cell in 

researches and therapies is in its infancy period, it 

can be useful to understand different features of 

cell-based therapy (1, 56). 

Stem cells metabolomics  

Because of the self-renewal and differentiation 

properties of stem cells, they can be applied for 

regenerative medicine, drug screening, toxicity 

testing, and evaluation of disease phenotypes (57-

59). Although they are metabolically inactive 

population in quiescent state, their metabolic 

activity increases during differentiation (60). Stem 

cells niche can preserve them in a quiescent state to 

maintain their self-renewal ability (61, 62). In other 

words, morphogens and growth factors in the niche 

of stem cells can change the regulation of stem cells 

through numerous metabolic pathways (1, 63, 64). 

Moreover, molecular mechanisms can regulate 

differentiation and reprogramming, and also they 

can control the energy of metabolism in stem cells 

throughout glycolytic or oxidative phosphorylation 

(OXPHOS) reactions (1, 65, 66). In other words, 

changes in glycolysis and OXPHOS have impact on 

differentiation or reprogramming of stem cells (66-

68). Glycolysis and OXPHOS changes can alter the 

metabolite levels and reduction–oxidation (redox) 

state (69-71). Subsequently, hypoxia, glycolysis 

and redox states can affect the homeostasis and 

regeneration of stem cells (67, 72, 73). For instance, 

hypoxia has a key role in maintaining 

undifferentiated state of stem cells by reducing 

redox state (74-76). For preparing a balance 

between self-renewal and differentiation ability, the 

role of redox state can be important (77, 78). 

Moreover, the increase of reactive oxygen species 

(ROS) can promote cell differentiation (74, 79). 

Herein, understanding the mechanism of stem cells 

(e.g. MSCs) function is momentous for in vitro and 

in vivo studies and also the stem cells application in 

cell therapy. 

Metabolomics- based comparison of mesenchy-

mal stem cells 

MSCs as multi-potent stem cells can be 

extracted from different sources. Their intrinsic 

properties have drawn the attention for developing 

more comprehensive studies (13, 14). Moreover, 

realizing the biological mechanisms of their 

function can be helpful for developing stem cell 

researches. Accordingly, metabolomics as a 
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valuable tool for stem cell monitoring can clarify 

the biological mechanisms of MSCs function 

through assaying metabolites. Metabolites of MSCs 

are involved in metabolic or signaling pathways 

(80-82).  Metabolic pathways produce vital signals 

for the self-renewal, differentiation and other 

properties of MSCs. On the other hand, 

undifferentiated state and differentiated state of 

MSCs can be distinguished via their metabolic 

profile. Accordingly, in undifferentiated state, 

mitochondrial OXPHOS is maintained at a low 

level, while the glycolytic function is maintained at 

a high level (81, 83). Additionally, in the early 

phase of MSCs differentiation, down-regulation of 

some pluripotent genes, up-regulation of terminal 

genes, and changing the subsets of metabolic 

enzymes can redirect the new fate of cells. 

Furthermore, in normoxic states, the proliferation 

and colony-forming abilities of MSCs are 

considerably increased (84, 85). In other words, 

hypoxic condition restricts MSC proliferation to 

maintain long-term self-renewal capacity. 

Generally, metabolomics can analyze the rapid 

kinetics and dynamics of metabolic reactions in 

different MSCs (86-88). Different types of MSCs 

share various properties due to their gene 

expression profile. Additionally, MSCs from 

various sources have also various secretome and 

metabolic profile (89, 90). 

Metabolomics analysis of mesenchymal stem 

cells secretome 

MSCs have demonstrated a pivotal and 

therapeutic impact on several diseases by producing 

a broad spectrum of autocrine and paracrine 

secretion factors (secretome) (15, 81, 91). The 

characterization of the MSCs secretome can 

elucidate their activation mechanism (92). 

Accordingly, metabolomics analyses can decipher 

the mechanism of secretome component functions 

(93). MSCs conditioned media (MSCs-CM) and 

extracellular vesicles (EVs) are two main MSC-

sourced secretome. 

Metabolomics study of mesenchymal stem cells  

conditioned media  

MSCs-CM encompasses multiple growth 

factors (GFs), metabolites, and cytokines. It can be 

prepared through 4 steps including isolation and 

characterization of cells, culture of cells in a proper 

culture medium, cell expansion, and CM collection 

(94, 95). Additionally, it has been shown that 

MSCs-CM can improve various pathophysiology 

hallmarks of diseases e.g. lung injury, skin wound, 

Alzheimer’s disease, and Parkinson’s disease. For 

instance, there are some anti-inflammatory 

cytokines in MSC-CM (i.e. ciliary neurotrophic 

factor (CNTF), transforming growth factor 1 

(TGF1), neurotrophin 3 (NT-3) factor, interleukin 

(IL) 13, IL18 binding protein (IL18BP), IL10, 

IL17E, IL27 or IL1 receptor antagonist (IL1RA)), 

and also some pro-inflammatory cytokines 

(including IL1b, IL6, IL8, and IL9) (95, 96). The 

equilibrium between these two types of cytokines 

can mediate the anti-inflammatory impact of MSC-

CM. On the other hand, MSC-CM has anti-

apoptotic activity via reducing the pro-apoptotic 

factors and increasing the expression of pro-

angiogenic factors. Metabolomics can support 

quantification of MSC-CM metabolites by different 

targeted and non-targeted methods (91). 

Metabolomics profiling of mesenchymal stem 

cells derived extracellular vesicles 

EVs including exosomes and micro -vesicles 

can be secreted by cells which have an important 

role in intercellular signaling pathways (15, 97). It 

has been confirmed that MSC-EVs specifically 

MSCs-derived exosomes (MSC-Exo) can imitate 

their origin MSCs therapeutic effects in 

improvement of different disorders. MSC-EVs 

carry lipids, genetic materials (mRNA and non-

coding RNA), and proteins.  Moreover, they can be 

characterized by some surface markers such as 

CD29, CD73, CD44, and CD105. On the other 

hand, it is remarkable that MSCs- EVs from 

different MSC sources have also different 
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composition (98). Namely, menstrual fluid derived 

MSCs -Exo has greater neurite outgrowth response 

than bone marrow (BM), chorion, and umbilical 

cord-derived MSCs. Metabolomics techniques can 

be used to analyze the mechanism of different 

MSC-EVs activity based on their different 

metabolic profile (99). 

Analytical techniques in metabolomics analysis 

Metabolomics can assay the metabolite 

compositions of cells and biological fluids through 

various targeted and non- targeted techniques (100, 

101). A broad range of analytical methods 

containing capillary electrophoresis (CE) (the 

separation method in which metabolites are 

separated based on their migration in the electrical 

field of the capillary tube), gas chromatography 

(GC) (a method for separating volatile matters), 

ultra-performance liquid chromatography (UPLC) 

(as a modern liquid chromatography method can be 

used for particles less than 2 µl in diameter), and 

high performance or high-pressure liquid 

chromatography (HPLC) (the highly advanced form 

of column chromatography which pumps the 

sample   of   metabolites   in  mobile  phase  at  high  

 

Table 1. Advantages and disadvantages of metabolomics techniques. 

Method Advantages Disadvantages References 

NMR - Simple sample preparation 

 -Excellent reproducibility 

-Quantify a wide-range of organic 

compounds in the micro-molar range 

-Low sensitivity compared with MS methods 

- Suitable for quantification of metabolites 

present in relatively high concentration  

(102, 103) 

 

GC-MS - High separation efficiency  

- The oldest and a robust tool for qualitative 

metabolic profiling 

-Non-volatile matrices require additional 

preparation 

- Some gases are challenging (CO2, N2, O2, 

Ar, CO, H2O) 

(104, 105)  

LC-MS - High separation efficiency  

- No derivatization is needed for the analysis 

of polar or high molecular weight 

metabolites 

- Quick analysis of small samples 

- Ion suppression (103, 106)  

CE-MS -Suitable for the separation of polar and 

charged compounds   

- Powerful for charged metabolites 

 -High-analyte resolution – providing 

information mainly on polar or ionic 

compounds  

-Short analysis time  

-Very small sample requirement  

- Poor concentration sensitivity (107, 108) 

HPLC-

MS 

-Robustness 

-Ease of use 

- Good selectivity 

 -Adjustable sensitivity 

-Lack of efficiency due to low diffusion 

coefficients in liquid phase 

(109, 110) 

UPLC-MS -Powerful technique in biomolecular 

research  

- Covers a number of polar metabolites and 

enlarges the number of detected analytes 

-Better efficiency with speedy analysis 

Less time life of columns (107, 111)  

CE: capillary electrophoresis; GC: gas chromatography; HPLC: high performance liquid chromatography; LC: liquid chromatography; MS: mass 

spectrometry; NMR: nuclear magnetic resonance; UPLC: ultra-performance liquid chromatography. 
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pressure within a column or the stationary phase) 

linked to high-throughput techniques including 

nuclear magnetic resonance (NMR) (a 

spectroscopic procedure to follow local strong 

stationary magnetic fields around atomic  

nuclei which is for absorbing very high-frequency 

radio waves) and mass spectrometry (MS) (an 

analytical manner to ionizing chemical samples to 

identity unknown composites and chemical features 

of different molecules based on their mass-to-

charge ratio) can be used for separation, 

examination, and quantification of the cellular 

metabolites composition as metabolomics 

approaches (107, 112-114). Each of the metabolo-

mics approaches has some advantages and 

disadvantages (Table 1). 

Conclusion and future perspectives 

Metabolomics is an impressive research area, 

which can be used for screening the metabolic 

modifications during the stem cells reprogramming, 

proliferation, and differentiation (56, 115). Indeed, 

screening the metabolic modifications of stem cells 

(e.g. MSCs) can facilitate their application for 

regenerative medicine purposes via increasing  

the man control over in vitro manipulation of  

stem cells including tissue-specific stem cells  

activation, and promote stem cells for migration to 

the side of tissue injury. Based on researches, some 

important metabolic elements can be used to 

dedifferentiate stem cells toward organ-specific 

somatic cells (116). Accordingly, in the coming 

future it seems that the application of generated 

knowledge on metabolic key methods can be  

useful for therapeutic targets without the necessity 

of genetic manipulation. On the other hand, 

combination of metabolomics technology with 

other technologies (i.e. genomics, proteomics, 

structural biology and imaging) can increase its 

performance to identify novel biological pathways 

in mechanism of stem cell function, and also to 

identify disease mechanism (39, 117). Additionally, 

progress in the development of metabolite 

databases and in silico fragmentation tools can pave 

the way for large-scale metabolomics analysis (118, 

119). 
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