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Abstract

An important step in understanding gene regulation is to identify the promoter regions where the transcription factor
binding takes place. Predicting a promoter region de novo has been a theoretical goal for many researchers for a long time.
There exists a number of in silico methods to predict the promoter region de novo but most of these methods are still
suffering from various shortcomings, a major one being the selection of appropriate features of promoter region
distinguishing them from non-promoters. In this communication, we have proposed a new composite method that predicts
promoter sequences based on the interrelationship between structural profiles of DNA and primary sequence elements of
the promoter regions. We have shown that a Context Free Grammar (CFG) can formalize the relationships between different
primary sequence features and by utilizing the CFG, we demonstrate that an efficient parser can be constructed for
extracting these relationships from DNA sequences to distinguish the true promoter sequences from non-promoter
sequences. Along with CFG, we have extracted the structural features of the promoter region to improve upon the
efficiency of our prediction system. Extensive experiments performed on different datasets reveals that our method is
effective in predicting promoter sequences on a genome-wide scale and performs satisfactorily as compared to other
promoter prediction techniques.
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Introduction

Promoters are the key regulatory elements known to regulate

the initiation of transcription in both eukaryotes and prokaryotes.

In a DNA sequence, promoter is the region that appears

immediately upstream of a Transcription Start Site (TSS) that

performs a crucial role in initiation of transcription and is

responsible for binding of RNA polymerase [1,2]. Therefore, an

in-depth characterization of this region can provide a deep insight

about the transcription initiation and gene function. Also, the

prediction of this region can be very successfully used to discover

the genes that are often missed out by several gene prediction

tools. Moreover, proliferation of eukaryotic sequences due to

second generation sequencing project requires a fast as well as an

accurate method that can predict and characterize the regulatory

regions in a genome. Significant progress has been made towards

developing methods for recognizing the promoter regions of DNA

sequences, yet it still remains an interesting and a challenging

problem from the view point of bioinformatics.

The promoter region is divided into three parts: (1) the core

promoter, (2) the proximal promoter and (3) the distant promoter.

As an illustration of the proposed method, we are focusing only on

predicting the core promoter region which extends typically 50 bp

(base pairs) upstream to 50 bp downstream of the TSS [2]. It is

known that the promoter sequences possess some special

signatures that can be exploited to distinguish them from the rest

of the genome sequences and these entire set of promoter

properties are known to be conserved within a species. Needless

to say, there exists a significant exception, which makes promoter

recognition a complex problem. Nevertheless, a few core promoter

elements have been detected, of which the most common elements

are CpG island, TATA box, initiator (Inr), downstream promoter

element (DPE) and TFIIB recognition element (BRE) [2] but these

promoter elements may not be universal. A statistical survey on

,10000 predicted human promoter data reveals that among these

four promoter elements Inr is the most common and usually

occurs about half of the human promoters [3]. DPE and BRE

found nearly one fourth of the promoters and TATAbox found

roughly one eighth of the human promoter. A quarter of all

promoters do not contain none of the promoter elements. About

,60% of the human core promoter falls near a CpG island a short

stretch of DNA having a high G+C content and a high frequency

of GC dinucleotide compared to the bulk DNA. Certain

combinatorial nature exist among CpG island and certain

promoter elements. Such as TATAbox are more common in

promoters lacking the CpG island nearby whereas BREs are more

common in the promoters that are associated with CpG island.

Utilizing these known signatures, a number of computational

algorithms have been proposed. Among them the methods, prove

to be very useful in predicting promoters in vertebrates are based

on CpG island near TSS [4–6]. A host of computational methods
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have been proposed based on the recognition of TATA box [7,8],

CAAT box [9], the recognition of the presence of specific

transcription factor binding sites (TFBs) [10–12], utilizing a

pentamer matrix [7], and locating oligonucleotides [13]. But

these methods typically utilize heterogeneous local sequence

compositional signals represented by the promoter elements alone;

thus they cannot identify the true promoters and reports in a high

number of false positive instances. Other promoter prediction

methods use statistical properties of the core and proximal

promoters [14,15], similarities between orthologous promoters

[10] and information from mRNA transcripts [16]. Relatively new

developments are based on machine learning techniques, such as

discriminant analysis, Hidden Markov Model, Artificial Neural

Network, Support Vector Machine and Stochastic Context Free

Grammar [17–21]. Exploiting the structural properties of DNA

sequences to predict the promoter regions have also been

employed. A number of studies have revealed that the eukaryotic

core promoters have distinct structural properties that distinguish

them from other non-promoter regions. Thus it becomes feasible

to predict promoter region from structural perspectives [22–26].

Motivated by these methods, we present a new method for

predicting de novo the promoter regions. Our method is based upon

formal grammar and structural properties of promoter sequences.

A formal language is a language that is defined by precise

mathematical or machine processable formulas. A formal gram-

mar or syntax is that generates the language. The syntax i.e. the

grammar of a formal language can be formally presented by

specifying a set of nonterminal symbols or variables, a set of

terminal symbols and a set of production rules of the form SRa or

SRAaB, where S, A, B are the nonterminal symbols and a is the

terminal symbol. The recursive application of production rules

beginning from start symbol S can generate a set of string

containing only terminal symbols, which is the language generated

by the grammar. Here we have developed a context free grammar

that has been used to design and verify the structure of a promoter

sequence. The term ‘‘context free’’ implies that there should not be

any terminal symbol on the left hand side of the production rules.

A Context Free Grammar (CFG) G1 is a 4 tuple, defined as

G1~(N,T,S,P)

where N is a set of nonterminal symbol, T is the set of terminal

symbol, S is the start symbol and P is a finite set of production

rules where S belongs to the nonterminal set.

Many researchers have shown that formal language theory is an

appropriate tool in analyzing various biological sequences. A

recent article gives a brief description of most of these works,

attempted to analyze the biological sequences using formal

language theory [27].

Computational grammars have been used in modelling and

predicting transcription binding site [28], associating genes with

their regulatory sequences [29], predicting RNA folding [30],

secondary structure of RNA molecule [31–33], genes and

biological sequences [34,35], syntactic model to design genetic

constructs [36]. Grammatical models have also been developed

with the goal of designing new antimicrobial peptides [37].

Nowadays discovery of grammar rule from biological data set i.e.

grammar inference is an active field of research [38] and has been

used in predicting larger than gene structure [39]. In recent years

Stochastic context free grammar has been used in predicting

protein sequences [40].

Our method uses a set of CFG rules and structural features of

the sequences to predict true promoter and non-promoter

sequences from a set of mixed database and also to identify the

promoter regions on genome-wide scale. Instead of using any

grammar inference algorithm to obtain the grammar rules from

Table 1. Syntactic elements or the nonterminal elements for
human promoter region.

TR TATA-box

IR Initiator

DR DPE

BR BRE

CR CpG island

GR Gap i.e., parts of DNA sequences that are not of our interest or their
significance is still not known. Here a gap in the grammar rule defines some
length of bases flanked by two subsequence of interest. In the grammar rules,
the symbol G (any) is used to specify a gap of indefinite length whereas when
gap length is known to be within a range, gap (#Lower Limit, Upper Limit#) is
preferred.
doi:10.1371/journal.pone.0054843.t001

Table 2. Regular expressions of different promoter elements
which give the terminal set.

Promoter Elements Regular Expressions

1. TATA-box ta[ta][ta][tag][ta]

2. Initiator [ctg][ctg]a[atgc][at][ct][ct]

3. BRE [gc][gc][ga]cgcc

4. DPE [ag]g[at][ct][cag]

5. Gap [atcg]+

doi:10.1371/journal.pone.0054843.t002

Table 3. Production rules of grammar G1 generation the
promoter region of a human DNA sequence.

R1. SR G S1 G

R2. S1RC

R3. S1R C S2

R4. S1RS2

R5. S2R B G(10,30) T G(10,40) I

R6. S2R T G (10,40) I

R7. S2R B G (10,30) T

R8. S2R T G(10,40) I G(15,37) D

R9. S2R I G(15,37) D

R10. S2RB G(10,30) T G(10,40) I G (15,37) D

R11. S2R I

R12. S2RB G (10,50) I

R13. S2RT G (10,40) I G (15,37) D

R14. TRt1|t2|...

R15. IRI1|I2|...

R16. DRd1|d2|...

R17. BRb1|b2|...

R18. GRg0

R19. CRc0

doi:10.1371/journal.pone.0054843.t003
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any training set we have utilized pre-existing biological knowledge

to generate the grammar rules. In this case, the grammar rules are

representing only the promoter sequences. So the sequences

generated using these grammar rules are predicted as the putative

promoters. Most the existing promoter prediction methods doesn’t

give any idea about the presence or absence of the functionally

important elements of the promoter regions and also have not

showed any relationships between these elements. Also these

methods have not showed how the combination of primary

sequence features and structural profiles of the promoter region

enhances the prediction accuracy. Here, we are using the

grammar rules to obtain an inside view of the promoter regions

i.e., to recognize the specific functionally important fragments or

elements that a promoter region can posses and also then utilizing

the structural features to verify and improve upon the promoter

prediction performance.

Materials and Methods

1. Materials
We have extracted 14000 promoter sequences from DBTSS

database (http://dbtss.hgc.jp/), each of which is 1201 bp long

ranging from 21000 to +200 positions relative to the +1 position

of transcription start site. We have used release hg19 of human

genome for the analysis. For this purpose, we used the RefSeq

genes downloaded from the UCSC table browser (http://

genome.ucsc.edu/cgi-bin/hgTables?command = start) [41]. This

set includes 25000 unique gene sequences. We have also

generated a human non-promoter sequence set containing

25000 random fragments of 1201 bp long by selecting intron

sequences, exon sequences and 39 UTR regions sequences to

avoid any sequence bias of coding DNA. To compare the

performance of our method with other currently available

promoter prediction programs, a comparative evaluation is done

on another dataset- the CAGE dataset which has a wider

coverage on genome sequence. CAGE dataset is obtained

through the cap analysis gene expression (CAGE) technique

and is retrieved from Riken Institute website using FANTOM3

project (http://fantom.gsc.riken.go.jp/) [42]. As described earlier

in the previous studies [22,24–25], tag clusters with at least two

mapped tags on the same genome location are considered for

analysis in our studies. These tags are then mapped to human

genome sequence to obtain 180000 unique human TSSs. The

whole human genome (hg19) is retrieved from UCSC Genome

Bioinformatics site (http://genome.ucsc.edu/) [43].

Figure 1. Process of generating the start symbol from input sequence using successive application of the grammar rules. (A) The
strings generated by successive application of production rules to guide the design of a promoter region (B) The sequence of a promoter region
composing of the parts of the syntactic element for verification (C) the LR parse tree for generating the symbolic description of the sequence using
grammar rules.
doi:10.1371/journal.pone.0054843.g001
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2. Methods
2.1 CpG islands and CpG counts. In most of the

vertebrates promoter regions are localized by an atypical structure,

the CpG island (CGIs). CGIs are unmethylated structures of

DNA, spanning about 200 bp or more and are characterised by a

high G+C content of more than 50% and the observed/expected

CPG ratio of 0.60, relative to the bulk DNA. CpG islands are

found in approximately half of the whole mammalian promoters

[44–46] and also estimated to be associated with more than about

60% of human promoter [47]. For this reason, Pederson et al [48]

suggested that CpG island could represent a good global signal for

locating promoters across genomes. At least for mammalian

genomes, CpG islands are good indicators of the presence of a

gene. In our prediction system, we have used the presence or

absence of CpG island as a distinguishing feature for a DNA

sequence.

The G+C content (GC-Con) and observed/expected (o/e) ratio

are defined as follows:

GC{Con~
number of C0sznumber of G0sð Þ

len

and

o=e~
number of CG0s � lenð Þ

number of C0sznumber of G0s

where len represents the length of one segment of a DNA

sequence.

2.2 Features of the DNA sequence. We have focused our

attention only on core promoter regions of human DNA sequences

that extend 50 bp upstream to 50 bp downstream of the TSS. The

few core promoter elements have been detected as of now among

which the most common elements are TATABOX, Initiator (Inr),

Downstream Promoter Element (DPE) and TFIIB recognition

element(BRE) [2]. We have used a CFG to support the design of

core promoter region containing these promoter elements and

feature represented by CpG island. Instead of inferring the

Figure 2. Structural pattern of eight different features for the sequences taken from UCSC table browser of hg19 human genome.
The sequences used here are generated by grammars i.e. predicted as true promoter. The structural profiles are plotted with average value of
window size 3 nt.
doi:10.1371/journal.pone.0054843.g002
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production rules using any machine learning techniques from a set

of training data, our production rules are based on pre-existing

biological knowledge such as, if a sequence contains tatabox that

occurs between 210 to 250 bases upstream relative to TSS, then

it is considered to be a true TATABOX.

2.3 Nonterminal set. In constructing the grammar for core

promoter recognition, we begin by identifying the syntactic

elements used to organize the signature elements in a promoter

region which represents the CFG variables or nonterminal

symbols along with a start symbol and other nonterminal symbols.

The syntactic elements within a promoter region are listed in

Table 1. We use only 6 syntactic elements, each of them are

represented by a single capital letter. The orientation of constructs

is from the left to the right. Nonterminal set consist of one start

symbol S, the variable from which all the derivation initiates. Two

other variables S1 and S2 are also included to the nonterminal set

to generate the promoter sequences having different sequence

signatures. The nonterminal set includes variable T corresponding

to Tatabox, variable I corresponding to Initiator element and

variables D, B, G, C, representing DPE element, BRE, Gap and

CpG island respectively.

For the specific CFG presented in this manuscript, the

nonterminal set is given by N = {S, S1, S2, T, I, D, B, G, C}.

2.4 Terminal set. The next step in developing the grammar

is to recognize the terminal symbols. The terminal set is composed

of regular expressions describing the syntactic elements present in

the nonterminal set. Here we have considered regular expressions

as a symbol to represent the terminal symbol set. A credit

assignment algorithm [49] is used to infer these regular expressions

from a set of sample sequences. To do so a set of regular

expressions is taken for each of the syntactic elements except the

CpG island (presence of CpG island is obtained by the method

described above) and Gap (Gap is identified as any sequence

between two syntactic elements). Strengths associated with each of

these regular expressions are calculated. The system analyses the

test sentences comprising of positive and negative instances (S+ and

S2) and for each of these regular expression, a credit assignment

module assigns a score. As positive instances, we have taken the

true promoter sequences from region 2100 to +50 relative to +1

position from Eukaryotic Promoter Database(EPD) and the

negative dataset comprises of non-promoter sequences of length

151 bp taken from EMBL and EID database. Regular expressions

Figure 3. Structural pattern of eight different features for the sequences taken from UCSC table browser of hg19 human genome.
The sequences used here are not generated by grammars i.e. redicted as nonpromoter. The structural profiles are plotted with average value of
window size 3 nt.
doi:10.1371/journal.pone.0054843.g003
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with highest score are assigned as the putative terminal symbol for

that particular syntactic element or nonterminal symbol.

The algorithm consists of the following steps:

1. A set of regular expressions is randomly generated for one

syntactic element.

2. All the sequences in S+ and S2 are searched for those regular

expressions.

3. Terminate if all the sentences are correctly searched or all the

regular expressions are being used.

4. Compute the strength of each regular expression.

5. Take the regular expression with highest strength.

6. Repeat the process for the other syntactic elements.

The strength of ith regular expression is calculated by the

expression:

sti~
uz

i {u{
i

� �

fri

where ui
+ is the number of times the ith regular expression is used

for correct recognition (i.e., accepting sentences in S+ and rejecting

sentences in S2) and ui
2 is the numbers of times the ith regular

expression is used for incorrect recognition (rejecting sequences in

S+ and accepting sequences in S2) and fri is the number of times

the ith regular expression is used.

The final regular expression that represents the terminal set of

the syntactic elements is shown in Table 2.

The possible sequences generated from each of the regular

expression representing each part or syntactic elements are

included in a parts library where each of the sequences

representing each part is indexed by a unique identifier. For

example, the regular expression of TATAbox is ta[ta][ta][tag][ta],

from which 24 matching sequences can be generated that

represents the terminal symbols of TATAbox. Terminals t1 to

t24 represents tatabox in the part library whereas b1 to b8 would

point to the BRE elements etc. The terminal symbol representing

the presence of CpG island is represented as c0 and Gap as g0.

2.5 Production rules. In the last step of developing the

grammar we have designed some grammar rules. As stated earlier,

we have used pre-existing biological knowledge to design these

production rules. Table 3 shows a list of production rules or

grammar rules for generating a putative promoter sequence. In

designing the human promoter region the grammar rules are

Figure 4. Structural pattern of eight different features for the nonpromoter sequences taken from EMBL and EID database. The
sequences used here are predicted as true promoters by grammars. The structural profiles are plotted with average value of window size 3 nt.
doi:10.1371/journal.pone.0054843.g004
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utilized in successive steps. The process begins with the start

symbol ‘‘S’’. Several rules can be applied to rule R1 to generate a

promoter region of a sequence such as, rule R2 can be applied to

R1 to generate those promoter sequences having CpG island and

no TATAbox and Initiator. Alternatively, rule R3 and rule R6 can

be applied successively to R1 to generate sequences having CpG

island, TATAbox and Initiator or rule R5 can be used to generate

promoter sequences having CpG island, BRE or TFIIB recogni-

tion element, TATAbox and Initiator and so on. Similarly, rule

R4 can be used for generating sequences without CpG island. The

Figure 5. Structural pattern of eight different features for the sequences taken from UCSC table browser of hg19 human genome.
The sequences used here are not generated by grammars. The structural profiles are plotted with average value of window size 3 nt.
doi:10.1371/journal.pone.0054843.g005

Table 4. Prediction Performance of our proposed method
using grammar rules on two datasets DBTSS and sequences
from UCSC table browser for HG19.

Name of the Database Precision Recall F-measure

DBTSS 0.66 0.57 0.61

Hg19 0.69 0.66 0.67

doi:10.1371/journal.pone.0054843.t004

Table 5. Performance of grammar rule along with eight
structural features of DNA on two datasets.

Property

UCSC genome
browser(hg19) dbtss

Recall Prec. F Recall Prec. F

Basestaking
energy

0.83 0.86 0.84 0.82 0.84 0.83

DNA
denaturation

0.82 0.81 0.81 0.81 0.78 0.79

Nucleosome
position

0.73 0.76 0.74 0.69 0.71 0.69

Aphilicity 0.87 0.80 0.83 0.84 0.79 0.81

bDNATwist 0.71 0.79 0.74 0.73 0.70 0.71

Propellertwist 0.80 0.74 0.76 0.77 0.73 0.75

zDNA 0.79 0.81 0.79 0.83 0.82 0.82

Bendability 0.69 0.70 0.69 0.74 0.75 0.74

Basestaking energy gives the best F-measure for all the dataset.
doi:10.1371/journal.pone.0054843.t005
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last step of the design process involves the transformation of the

nonterminal variables to the terminal symbols. Production rules

R14 to R19 of the form variableR terminal1|terminal2|... are

indicating that all the nonterminal variables can be transformed to

any of the terminal symbols separated by |. For instance a variable

I (initiator) can be transformed into any of the terminal sequences

representing initiator in the part library. The design process

completes when all the nonterminal variables are transformed into

the variables. A sequence is represented by a series of terminal

symbols. We can predict that the sequences generated by the

grammar are the putative promoter sequence. A survey of existing

literature reveals that a very small amount of mamalian promoter

contains these primary sequence features [9] such as TATAbox,

BRE, Initiator and DPE. Another complexity exists as the length

of the transcription factor binding sites in promoter sequences are

not fully conserved and differs quite drastically. There exists a

probability of finding these regulatory features elsewhere in

genomes outside the promoter region, resulting in a generation

of high degree of false positive instances. About more than half of

the mammalian promoters contain CpG island making it an

essential feature in predicting a promoter region. So, we have

considered CpG island as an important feature while constructing

the proposed grammar rules. But recognizing the promoters that

do not contain CpG island becomes a non-trivial task. To

eliminate the generation of spurious positive instances, we consider

the structural features of promoter region for correctly predicting

the true promoter sequences.

2.6 Structural Profiles. To calculate the structural profiles

of a DNA sequence, the nucleotide sequences are converted into

sequences of numerical values by replacing each di or tri

nucleotide (depending upon the physio-chemical features used)

with its corresponding structural feature values. The conversion

table, representing different structural features are obtained from

experiments and are summarised by Florquin et al [23]. For

smoothing the raw profile, we use a sliding window approach with

a step size of 1 and a window size of 3 nt respectively. After the

window slides through a sequence, a vector of structural values is

generated as the output. In this communication, propeller twist,

bendability, nucleosomal positioning preferences, DNA denatur-

ation, Zdna, Basestaking energy, bDNAtwist and Aphilicity scores

of all observed di or tri nucleotides in sliding windows are

calculated. Since all of these properties are calculated from

conversion tables using di or tri nucleotide, it is assumed that these

properties are exactly the same as the nucleotide sequence and do

not give any extra information. However, several studies has

shown the correlation between different properties and their main

conclusion is that the properties are largely independent [50,51].

According to Abeel et al, human core promoter region has a

distinct structure that stretches over quite a long distance and it

shows either a large peak or a cleft near TSS region [22]. It is thus

reasonable to assume that in a promoter prediction technique, the

region with a large peak or a cleft is most likely to contain a TSS.

Results and Discussion

To construct the sequence, we apply a set of production rules

starting from S that generates a sequence with a structure

consistent with the grammar rule. It is very necessary to construct

the DNA sequence starting from S through the application of

grammar rules to know whether or not a specific sequence can be

generated by a given grammar. Here parsing is described as the

process of going from a terminal DNA putative promoter sequence

upto reach the final S symbol. By parsing a sequence, it is possible

to verify the design of an input sequence those are generated by a

systematic process using grammar rules. Here, we have used

promoter and non-promoter sequences as input and if the input

sequences are generated by the above mentioned grammar rules,

then we can predict it as a putative promoter sequence. To do the

parsing of the input sequence, first we have undertaken a lexical

analysis of the given sequence to transform it in a number of parts

Figure 6. Genome wide precision and recall comparison with other methods. a) Comparison of genome wide precision value at different
maximum allowed distances from annotated TSS (1000 bp, 500 bp and 200 bp). b) Comparison of genome wide Recall value at different maximum
allowed distances from annotated TSS (1000 bp, 500 bp and 200 bp).
doi:10.1371/journal.pone.0054843.g006

Table 6. Genome-wide promoter prediction performance
comparison of different promoterprediction programs with
maximum allowable distance of 500 bp from annotated TSS.

Methods Precision Recall F-measure

FirstEF 0.42 0.41 0.41

Eponine 0.69 0.29 0.40

EP3 0.64 0.39 0.48

ProSOM 0.57 0.40 0.47

Proposed Method 0.68 0.59 0.63

doi:10.1371/journal.pone.0054843.t006

CFG and Structural Profile in Promoter Prediction
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or tokens, where each token represents a signature in the sequence

such as Tatabox, Initiator, DPE, BRE and Gap sequences. We

take the sequences from the part library except the regular

expression for gap or G. Sequences from the part library are

compared with start or leftmost sequence of the input. If the part

does not match the start of the sequence, the next part in the list is

evaluated and so on. At the end of the process, if no part matches

the beginning of the input sequence, then the beginning sequence

is considered as the region that represents the gap sequence and

the rest of the sequence is analyzed in the same way. At the end of

the scan, it may so happen that no part matches the input

sequence. In that case the input sequence is rejected which means

the input sequence cannot be tokenized and the sequence is

considered as a non-promoter sequence. It may also be possible

that several matches of a part will be found in a sequence. In that

case, all the matches are recorded as the multiple interpretation of

the token representing that part in the part library. Some of these

tokens are true promoter signatures but some others are

coincidental matches. We shall consider those tokens, starting

from which we can derive the start symbol (S) according to the

grammar rules. For the CpG island, we have only considered the

presence or absence of CpG island in the input sequence and the

presence of CpG island is denoted as c0 as the token of CpG

island. Next, we have developed a customised parser that parses

the input strings in a left to right bottom up manner by converting

the input string into a series of nonterminal variables to obtain the

start symbol S through the production rules in Table 3. Finally,

the resulting sequence is processed according to the order of the

production rules. If we can annotate the start symbol S starting

from the input string through the production rules, then the

sequence is accepted as a promoter sequence. Fig. 1 illustrates the

process of generating the start symbol from input sequence using

grammar rules.

Precision, Recall and F-measure are used to evaluate the

system’s performance towards its predictive efficacy. The true

promoters are considered as positive data and true non-promoters

are considered as negative data. For the data, which are predicted

as positive, the real positive ones are called true positives (TP),

while the others are called false positives (FP). For the dataset

which are predicted as negative, the real positive ones are called

false negative (FN), while the others are called true negatives (TN).

The formula of precision, recall and F-measure are given below.

preision(pr)~
TP

TPzFP
, recall~

TP

TPzFN
and

F{measure~
2 � pr � recall

przrecall
.

In order to validate our method, we have used the grammar

rules in Table 3 to annotate the test sequences. Test sequences

comprise of 25000 true promoter sequences taken from UCSC

table browser for RefSeq gene sequences of hg19 human genome

and same number of non-promoter sequences taken from EID and

EMBL database. Non-promoter sequences are combination of

sequences from Intron, Exon and 39 UTR regions of DNA

sequences. Each of these sequences is 1201 bp long. For true

promoter sequences taken from UCSC table browser, we have

considered the region between 1000 bp upstream and 200 bp

downstream of 59 UTR as true promoter region and retrieved it.

Of these sequences, the grammar rule can annotate 66.7% true

promoters. Among true promoters, 54.7% sequences obey the

rules that contain CpG island and remaining 12% data don’t have

CpG island. Remaining 33.3% true promoter sequences cannot be

generated by the grammar rules. So there exist a high percentage

of false negative instances. Further, we have taken the non-

promoter sequence dataset among which 71.23% true non-

promoters are truly predicted and the remaining 28.77% data are

predicted as true promoters showing a high percentage of false

positive instances. To validate the result, we have also taken the

sequences from dbtss database. Here, we have considered the

same number of non-promoter sequences as in dbtss dataset.

Among true promoter sequences taken from dbtss database,

57.25% sequences are generated by grammar rules and 42.75%

data cannot be generated using grammar rules showing the

existence of a high percentage of false negative instances. To

remove the false positive and false negative instances, we have

incorporated the structural features of the promoter regions in a

DNA sequence. According to several previous studies, human core

promoter adopts a specific structure that stretches over a long

range along the sequence i.e., it adopts to either a large peak which

represents highly stable region or a cleft representing highly

unstable region near the TSS site in the DNA sequence [22].

Abeel et al has shown in their study [22] that over a long range

distance in the DNA sequence, the structural profile either

gradually decreases or increases a few hundred base pairs in the

upstream and downstream region of the TSS site with a high peak

or cleft at TSS. Among the structural profiles Bendability,

Nucleosomal position, Bending Stiffness, Propellertwist, DNADe-

naturation and ProteinDeformation shows a high peak near TSS

region and Aphilicity, BaseStaking, ZDNA and bDNATwist shows

a cleft near TSS position. They indicated this region to be a

putative promoter area. Abeel et al have also shown the

relationship between structural profiles and known promoter

elements, such as Tatabox, Initiator (which is mostly found at

position +1 i.e., itself the TSS position), DPE and BRE [22]. They

have demonstrated that the structural profile shows a specific peak

and cleft in presence or absence of these primary sequence

elements. For example, structural profiles are very similar for the

promoters with or without the initiator (Inr) motif except a

remarkable difference. For Inr containing promoters, a significant

peak is visible on position 21, upstream of the TSS cleft, while this

peak is missing in the promoter lacking the Inr motif. Based on

these findings of the previous researchers, we have incorporated

some rules that represent the features of a human core promoter

region.

If a sequence is annotated by the grammar rules as shown in

Table 3, then we have checked for all the structural profiles of that

sequence. If the structural profiles show a high peak or cleft near the

true TSS region, we have predicted the sequence as a promoter. We

have also considered the structural profiles of that sequences which

are not generated using the grammar rules; because, not all the

promoters contain the signature elements in the sequences. This

would minimize the false negative instances. In this case, if the

structural profiles show the peak or cleft as per Abeel et al [22], we

will predict it to be a promoter region. Sequences predicted as non-

promoters if they are not generated by the grammar rules and also if

the structural profiles of these sequences are not as that of a promoter

region. In our method, the maximum allowed distance of the peak or

cleft from the true TSS site is kept 500 bp for calculating the F-

measure in contrast with other methods where the maximum

allowed distance is 500 bp,1000 bp and 2000 bp [19,20,22]. Fig. 2
shows the structural properties of the DNA sequences taken from

true promoter database that are generated by the grammar rules of

Table 3. The figure shows a high peak or cleft near TSS

corresponding to the structural features. The structural features of

the true promoter sequences that are not generated by the grammars

are shown in Fig. 3. The two figures clearly show the characteristic

curve of structural features which represents a promoter sequence

i.e., both the figures show a high peak and cleft near TSS region.

Fig. 4 represents the structural features for the sequences taken from

CFG and Structural Profile in Promoter Prediction
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true non-promoter database, generated by grammar rules and Fig.5
shows the structural features for the true non-promoter sequences

not generated by the grammar rules. Fig. 4 and Fig. 5 explains the

typical characteristic curve corresponding to the non-promoter

sequences i.e., both the figures do not show any high peak or deep

cleft in the curve. Table 4 illustrates the precision, recall and F-

measure of sequences generated by the grammar rules for the two

databases (dbtss, UCSC genome browser). Table 5 shows the

prediction performance using grammar rules along with structural

features. From these two tables, we may conclude that the

performance of the system improves if we use both grammar rules

and structural profiles to predict true promoters and non-promoters.

All the structural features show a good balance between precision

and recall. Grammar rules along with basestaking energy yields the

best F-measure followed by Aphilicity. So grammar rule in

conjunction with basestaking energy as structural feature is used

for comparison of our method with existing promoter prediction

tools.

Comparison with existing promoter prediction methods
To evaluate the prediction performance of our method, we have

compared our method with four other open access human

promoter prediction programs. We have selected these four

methods among a number of promoter prediction tools because

they have performed well in the previous comparative studies. The

methods are FirstEF [52], Eponine [14], Ep3 [22] and ProSOM

[53]. All these methods are free and publicly available. FirstEF is

based on discriminant analysis to find potential first donor sites

and CpG-related and non-CpG-related promoter regions. Ep3

uses large scale structural properties of DNA to locate promoter

regions in whole genome sequence and ProSOM utilizes self-

organizing maps to distinguish promoters from non-promoter

sequences.

To avoid a biased evaluation of different promoter prediction

methods, the performance comparison is conducted on the CAGE

dataset. We apply our method and other methods to predict

promoter on human genome. For our method, the DNA sequence

of each chromosome is divided into a series of windows of length

1201 bp and step size 200 bp by sliding the window over the

sequence. If a segment is predicted as promoter by our method, a

possible TSS is marked. The noticeable TSS candidates falling

within 1000 bp are merged into a cluster and the predicted output

is the average of all the candidates in the cluster. Next the

prediction result is evaluated with reference to the annotated TSS

set of CAGE dataset. If a predicted TSS is within 500 bp of a true

TSS position, then it is considered as a True TSS position i.e., true

positive (TP). If a annotated TSS is not found in this region it is

predicted as false negative (FN) and a prediction that lies inside the

gene but not within the maximum allowable distance from true

TSS, is false positive (FP). All the prediction methods used for

comparison are tested with their default setting provided by their

developers as the optimal parameters. The empirical results of

comparisons are shown in Table 6. To obtain unbiased result, we

have also conducted the experiment with maximum allowable

distance of 1000 bp and 200 bp. The precision and recall results of

several promoter prediction methods at different maximum

allowable distance from annotated TSS are shown in Fig. 6. All

promoter prediction methods except FirstEF give high precision

values which indicate that the number of false positives is low.

While Eponine has a considerably high precision but recall is very

low leading to a low F-measure. On the contrarary, FirstEF

achieves a balanced precision and recall but it shows a lower

precision than others. EP3 and ProSOM also show a high

precision and low recall but the balance of precision and recall is

better than Eponine. From Table 6 and Fig. 6 we observe that

the method proposed by us yields the best result with reasonably

high and balanced precision and recall values resulting in yielding

the best F-measure among all the methods. To sum up, our

method outperforms all the methods used here for comparison for

all the maximum allowed distances from annotated TSS and it can

effectively distinguish promoter and non-promoter regions com-

pared to other existing promoter prediction programs on a

genome-wide scale.

Conclusion

In this communication, our analysis on promoter and non-

promoter sequences gives an interesting finding from both

structural and sequence perspective. The structural patterns are

different for promoter and non-promoter sequences and the

promoter region has a specific structural pattern. We have also

shown that context free grammar rules can be generated to

annotate a promoter region using pre-existing biological knowl-

edge. Using these grammar rules, we are able to categorize the

promoter and non-promoter sequences. Based on the above

findings, we have developed a new method that utilizes context

free grammar rules and structural features that can effectively

predict promoter region. In contrarary to other methods, our

method provides a good balance between precision and recall

values and consequently improves the prediction accuracy for the

whole genome level.

Our method is well-suited for human promoter prediction.

Furthermore, our method can be applied for other species also. As

a future work, we are trying to infer the grammar rules using

different soft computing approaches for the promoter regions of

other species and also for different genomic sites and protein

sequences for which we don’t have any pre existing knowledge

relative to the structure of the sequence elements.
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