
Citation: Olguín, V.; Durán, A.; Las

Heras, M.; Rubilar, J.C.; Cubillos, F.A.;

Olguín, P.; Klein, A.D. Genetic

Background Matters:

Population-Based Studies in Model

Organisms for Translational Research.

Int. J. Mol. Sci. 2022, 23, 7570.

https://doi.org/10.3390/

ijms23147570

Academic Editors: Mauricio A.

Retamal, Rodrigo Del Rio and

Darío Acuña-Castroviejo

Received: 23 May 2022

Accepted: 4 July 2022

Published: 8 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Genetic Background Matters: Population-Based Studies in
Model Organisms for Translational Research
Valeria Olguín 1,†, Anyelo Durán 1,†, Macarena Las Heras 1, Juan Carlos Rubilar 1, Francisco A. Cubillos 2,3 ,
Patricio Olguín 4 and Andrés D. Klein 1,*

1 Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo,
Santiago 7610658, Chile; valeria.olguin.araneda@gmail.com (V.O.); anduranm@udd.cl (A.D.);
mlasherasp@udd.cl (M.L.H.); jrubilare@udd.cl (J.C.R.)

2 Departamento de Biología, Santiago, Facultad de Química y Biología, Universidad de Santiago de Chile,
Santiago 9170022, Chile; francisco.cubillos.r@usach.cl

3 Millennium Institute for Integrative Biology (iBio), Santiago 7500565, Chile
4 Program in Human Genetics, Institute of Biomedical Sciences, Biomedical Neurosciences Institute,

Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
patricioolguin@uchile.cl

* Correspondence: andresklein@udd.cl
† These authors contributed equally to this work.

Abstract: We are all similar but a bit different. These differences are partially due to variations in our
genomes and are related to the heterogeneity of symptoms and responses to treatments that patients
exhibit. Most animal studies are performed in one single strain with one manipulation. However,
due to the lack of variability, therapies are not always reproducible when treatments are translated to
humans. Panels of already sequenced organisms are valuable tools for mimicking human phenotypic
heterogeneities and gene mapping. This review summarizes the current knowledge of mouse, fly,
and yeast panels with insightful applications for translational research.
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1. Precision Medicine in Humans

Precision medicine characterizes diseases at a higher resolution by genomic and
other technologies, providing more accurate targeting of patient subsets with tailored
therapies [1]. To make this possible, large genotyped cohorts with deep clinical annotations
are required to map loci responsible for the phenotypic variability. Common approaches to
gene mapping include genome-wide association studies (GWAS) and linkage analysis in
families of patients with variable disease severity [1]. These studies are time-consuming and
expensive due to recruiting and genotyping costs. Furthermore, it is virtually impossible
with rare diseases to find large cohorts in order to assure statistical significance for the
genomic mapping.

Furthermore, families presenting enough informative individuals with variable symp-
toms are challenging to identify [2]. Strategies using model organisms with various genetic
backgrounds are valuable resources for overcoming these obstacles. In this review, we
describe many panels of organisms and examples of how modeling diseases on them can
accelerate the pace of discoveries toward translational research in humans.

2. Rodents as Model Organisms in Genetic Research: Advantages and Limitations

The advantages of using mouse models in biomedicine have been discussed exten-
sively [3]. Some benefits are the following: (i) the availability of genetic tools for creating
disease models by transgenic, knockout, and knock-in technologies [4–6] (https://www.
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jax.org/research-and-faculty/resources/mouse-mutant-resource/available-models (ac-
cessed on 22 May 2022)); (ii) inbred mouse strains are nearly isogenic, enabling to study
how the same genetic mutation modifies a phenotype of interest in different genetic
backgrounds [7–11]; (iii) mouse tissues are available for omics studies which can be chal-
lenging to obtain from humans [12]. Some limitations include different evolutive pressures
for mice and humans; therefore, some systems, such as the immune system, do not function
similarly in both species [13].

2.1. Hybrid Mouse Diversity Panel

Currently available resources in rodents to find modifiers genes by association studies
can be defined in two categories: (i) reference panels, consisting of inbred strains such as the
Hybrid Mouse Diversity Panel (HMDP) and the Collaborative Cross (CC); (ii) populations
derived from pseudo-random breeding of inbred strains, such as the Diversity Outbred
(DO) and Heterogeneous Stock (HS) (Figure 1).

Figure 1. Breeding schemes for inbred (CC) and outbred (HS and DO) mice populations: Inbred
founder strains for each panel are indicated in the right box. CC and DO populations share the same
eight founder strains, five of which are standard laboratory inbred strains, while three are wild-
derived strains. Colors represent the genotypes of strain chromosomes. The first steps include the
combination of all eight founder genomes (outcrosses). CC is then generated as a recombinant inbred
(RI) after multiple brother–sister breeding. HS and DO panels were developed as high-diversity
outbred panels by over 40 generations of random outcrosses. DO was created from partially inbred
Collaborative Cross (CC) mice. Quantitative phenotyping can be performed in the strains and used for
gene mapping. Some signals in chromosomal locations will probably pass the threshold of significance
(red line) in the LOD plot. The functional relevance of these variants can be assessed in animal models
such as knockout mice and induced pluripotent stem cells (iPSC) derived from patients.

https://www.jax.org/research-and-faculty/resources/mouse-mutant-resource/available-models
https://www.jax.org/research-and-faculty/resources/mouse-mutant-resource/available-models
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HMDP is a large panel of approximately 100 commercially available (https://www.
jax.org (accessed on 22 May 2022)) and fully sequenced (www.sanger.ac.uk/science/data/
mouse-genomes-project (accessed on 22 May 2022)) inbred strains: ~30 classical inbred
strains and ~70 recombinant inbred (RI) strains derived mainly from crosses between
C57BL/6J and DBA mice and A/J and C57BL/6J mice [14].

Advantages of using the HMDP panel are the following: (i) their genomes are known
(http://mouse.cs.ucla.edu/mouseHapMap/ (accessed on 22 May 2022)); thus, it is un-
necessary to spend funds performing this step; (ii) HMDP possesses ~4 million common
single-nucleotide variants (SNVs), which is similar to the number present in humans [15];
(iii) high-resolution association mapping [14], which is at least an order of magnitude
higher than in linkage analysis; (iv) it is possible to integrate gene mapping with other
omics (transcriptomics, proteomics, and metabolomics data) [12]; (v) commercially avail-
able (from The Jackson Laboratory, Harlan, and others); (vi) sufficient bioinformatics tools
for data mining of complex mouse and human disease traits, such as the Systems Genetics
Resource (SGR) (http://systems.genetics.ucla.edu (accessed on 22 May 2022)); (vii) servers
to perform association mapping and statistical power simulation, which are also available
in R to run them in house [16].

The HMDP also has limitations. For example, extensive linkage disequilibrium (LD)
blocks are observed, both within and between chromosomes, probably as a result of
the selection of allelic combinations conceding higher fitness during the inbreeding [17].
Consequently, regions in LD can lead to false-positive associations in GWAS analyses.
Although the HMDP has a high mapping resolution, the statistical power to detect the
effect of loci is small (estimated at 50% to variants explaining 10% of the trait variance) [14].
Since most loci contributing to a complex trait have an effect size below 5% [18], variants
with subtle effects cannot always be detected by the HMDP. Power can be enhanced by
including additional inbred and RI strains and performing meta-analyses from other panels
such as the CC or traditional crosses [19].

An exciting application of the use of mouse panels in translational research comes from
crossing the classical Alzheimer’s disease (AD) mouse model (5XFAD) bearing mutations
in APP and PSEN1 with 28 different strains of the BXD panel (AD-BXD). The F1 represents
isogenic lines that were studied in a controlled environment. The AD-BXD panel mimicked
several signs of the AD patients, including phenotypic variation in disease onset and
severity. As in humans, the Apoe allele significantly affected spatial memory and other
behavioral tests in the AD-BXD panel. Furthermore, hippocampal gene expression in the
severe and mild lines agrees with transcriptomic changes observed in patients [20].

2.2. The Collaborative Cross (CC) Panel

The CC is a large panel of RI mouse strains obtained through systematically outcross-
ing eight founder strains, followed by randomized breeding [21]. The founder strains of
the CC include five of the widely used classical inbred laboratory strains (A/J, C57BL/6J,
NOD/ShiLtJ, 129S1/SvImJ, and NZO/HILtJ), as well as three wild-derived strains descen-
dent of three M musculus subspecies (WSB, Castaneous, and PWK) (Figure 1). These eight
strains have been fully sequenced and carry ~45 million SNVs, four times more than those
of classical laboratory mouse strains [22].

The genomes of the CC panel are known (http://csbio.unc.edu/CCstatus/CCGenomes
(accessed on 22 May 2022)), which is helpful for genetic association studies. Haplotypes
can be easily visualized or reconstructed as a mosaic of the genomes of the founders [23].
Parental strains capture approximately 90% of the genetic diversity seen in the Mus mus-
culus species [24]. This high genetic diversity significantly reduces false candidate loci.
Additionally, randomized breeding substantially increases mapping resolution by reducing
population structure effects [25]. CC strains have been used to map quantitative trait loci
(QTLs) to less than 5 Mb intervals [26]. Online tools are available to perform GWAS and
linkage analyses [27]. Several aspects of human genetics and behavioral factors can be
modeled in this system, including the heterogeneities observed in neurodevelopmental
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disorders such as autistic spectrum disorders (ASDs) [28]. The CC panel allowed the
discovery of novel candidate severity modifiers of ASD, e.g., Bai3, considered a potential
target for pharmacological intervention [28].

Some considerations associated with using the CC panel are the following: (i) unique
outlier phenotypes can arise in large studies, probably due to the complex genetic regu-
latory networks involving multiple loci with epistatic interactions [29]; in such cases, the
preferred approach for identifying causal genes is traditional F2 analysis or backcrosses [30];
(ii) because identifying loci could be time-consuming, it is suggested to perform a pilot
study and expand as necessary [29]; (iii) creating a panel like the CC can generate breed-
ing complications and infertility, mainly caused by genomic incompatibility introduced
by the wild-derived strains. For that reason, the initial CC project aimed to produce
1000 strains but finished with only ~100 and inspired the creation of the Diversity Outbred
(DO) population.

CC lines have been used for genetic association studies of many complex traits. QTL
mapping for 15 metabolism- and exercise-related traits revealed five significant loci for body
weight, some of which overlapped with previous human studies [31]. Gene mapping of
rotarod (exercise) performance and body weight identified 45 loci, many of them related to
neurological disorders and obesity in humans, suggesting a link between physical activity
and neurodegeneration [32]. A study of glucose tolerance response in the CC panel identi-
fied, only in female mice, a genomic region comprising 51 genes. This study highlighted sex
differences in glucose response which should be considered in human studies [33]. The CC
panel is also a valuable and reliable resource for studying host–pathogen interactions [29].
For example, to map genetic modifiers affecting the severity of Pseudomonas aeruginosa lung
infections, 39 CC lines were inoculated with this pathogen. The phenotypic variability was
enormous, ranging from complete resistance to lethality. It is particularly relevant to study
the resistant lines since they have the biological secrets to design novel therapies for the
susceptible. Genomic mapping and functional validation identified dihydropyrimidine
dehydrogenase (Dpyd) and sphingosine-1-phosphate receptor 1 (S1pr1) as modifier genes.
In a cohort of patients with cystic fibrosis, two SNVs in the S1PR1 gene are associated
with Pseudomonas aeruginosa infection [34], again indicating the translational relevance of
multigenetic background studies in animal organisms.

2.3. Heterogeneous Stock and Diversity Outbred Populations

Both HS and DO are high-diversity outbred mice populations. The HS was established
by breeding eight inbred strains and then outbreeding them in either a circular strategy or
using random crosses (Figure 1) to minimize inbreeding [35]. After 50 or more generations,
the HS-generated mice were a genetic mosaic of the founders’ haplotypes [36,37]. On
the other hand, the DO was established from partially inbred CC lines and is maintained
indefinitely through pseudorandomized fashion non-sibling mating [38] (Figure 1). Since
the DO is derived from the same eight founders as the CC, it presents the same allelic
diversity as the CC strains. It can be used as a complementary tool in genetic association
studies [39].

There are several advantages of using HS or DO mice compared to classical inbred
mice. The outbred randomized mating increases the number of additional recombination
sites compared to those of classically inbred mice; thus, each HS or DO mouse has a
unique genome, which is a mosaic of the original eight founder lines, resembling human
heterozygosity and allows high-resolution genetic mapping [39]. HS and DO mice have
been used to finely map to intervals of 2.7 Mb [40] and less than 2 Mb [39], respectively. In
addition, outbred animals are more vigorous and less prone to both early and late recessive
allelic effects [41]. This genetic variability within both HS and DO populations results in
a high degree of phenotypic variability; thus, outbred models enable the fine mapping
of many phenotypic traits. Since the founders of CC and DO lines include wild-derived
strains, unique behaviors can be observed compared to classical laboratory strains and
represent a valuable tool for genetic behavior association studies [22]. A repository of
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DO QTL studies can be shared between laboratories (https://dodb.jax.org (accessed on
22 May 2022)). Lastly, the founders of the HS and DO populations have been sequenced [42],
reducing time and expense in locating the sequences.

Alternatively, some considerations must be made in the case of HS and DO mice. Since
each outbred animal is genetically and phenotypically distinct, each HS and DO mouse
requires genotyping and haplotype reconstruction to perform each QTL analysis [38]. High-
resolution mapping can be achieved with these panels, but analyzing many animals is
necessary for sufficient statistical power, which is not always possible [43]. Candidate
modifiers of wild behaviors can be identified with outbred mice. However, it is challenging
to validate in these panels because each animal has a unique genotype, in contrast to inbred
lines [44].

An interesting translational study using the DO panel identified a diagnostic biomarker
for human tuberculosis (TB). By applying machine learning algorithms to multidimensional
data, the authors discovered CXCL1 as a putative biomarker of TB in the serum of mice. The
biomarker was further validated in samples derived from human patients, discriminating
active TB from latent infection and non-TB lung disease [45]. This study highlights the
relevance of using population-based strategies to accelerate human biomarker discovery,
validation, and testing.

3. Drosophila melanogaster as a Model Organism in Genetic Research: Advantages
and Limitations

In addition to mouse models, Drosophila melanogaster has attracted many scientists.
Flies are small, easy to manipulate in the laboratory, and cheap to maintain. They have a
short life span (2 week generation interval) and produce many offspring. Flies show com-
plex behaviors, including sleep, aggression, addiction, and social behavior [46]. Notably,
about 70% of human disease-associated genes have a Drosophila ortholog [47]; its genome
is fully sequenced and well annotated. It can be genetically modified using chemical and
insertional mutagenesis, gene-specific mutations, or editions using CRISPR [47,48]. These
characteristics support its use as a model system to study human diseases. As expected,
the use of Drosophila for human research has limitations; for instance, the fly does not
possess hemoglobin [49] and, thus, cannot be used for studying human pathologies related
to this system.

3.1. Drosophila melanogaster Genetic Reference Panel (DGRP)

The DGRP is a collection of 205 inbred Drosophila melanogaster strains derived from a
single natural population. Inseminated females were collected from the farmer’s market
in Raleigh, NC (USA), and their offspring were subjected to 20 generations of complete
sibling mating [50] (Figure 2). The DGRP is a public resource available at the Bloomington
Drosophila Stock Center (http://fly.bio.indiana.edu (accessed on 22 May 2022)) built for
genomic association analyses. Currently, their genomes are available, and each line has
minimal genetic variation [50]. Repeated measurements within each line are possible,
enabling accuracy to increase the statistical power in GWA analyses. Since the DGRP is
a publicly available resource, it allows different laboratories to correlate phenotypes on
the same genotype and understand the pleiotropic effects of DNA variants and genes on
multiple quantitative traits. Unlike the human genome, the fly genome has a structure
with low LD between closely linked polymorphisms [51], which is favorable for accurate
association mapping; thus, significant associated SNVs are likely causal or very near to
a causal variant [52]. Lastly, experimentation in Drosophila has fewer ethical concerns
compared to rodent models.

As with all study models, there are some limitations in DGRP that should be consid-
ered. Firstly, genetic variation between the lines is a snapshot of the population from which
they were derived; therefore, DGRP does not represent all the possible variations of the
species. Secondly, the 205 lines usually provide enough statistical power to detect common

https://dodb.jax.org
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variants with moderate to large effects [53,54], but the statistical power is still limited for
rare variants (minor allele frequency (MAF) < 0.05) [51].

Figure 2. Generation of Drosophila melanogaster Genetic Reference Panel (DGRP) and Advanced
Intercross Population (DGRP-AIPs). The DGRP corresponds to a sequenced panel derived from
a natural fly population of Raleigh, NC (USA), and it was generated through 20 generations of
full-sibling mating. The AIPs lines were derived from the DGRP by round-robin crossing and were
then remapped.

3.2. DGRP for Mapping Physiological and Pathophysiological Traits

The DGRP has been used for GWA mapping of many different quantitative physi-
ological traits, including food intake and sleep behavior [55,56]. Food intake is essential
to animal fitness, and 25 modifiers with human orthologs were found [55]. Interestingly,
diversity in mitochondrial haplotypes can directly mediate phenotypic variation in food
intake [57]. Sleep has been increasingly explored in recent years with this model [56]. Flies
resemble mammalian sleep and have become an important model species for identifying
sleep regulation mechanisms. Analogous to human sleep studies, a DGRP GWAS high-
lighted signals in the EGFR, Wnt, Hippo, and MAPK signaling pathways, suggesting that
genes affecting variation in this trait are conserved [58]. DGRP studies revealed the genetic
architecture of nutrient stores (glucose, glycogen, glycerol, protein, triglycerides, and wet
weight) [59], developmental plasticity [60], and circadian cycle [61].

The DGRP has been used to identify candidate modifiers of retinal degeneration [62]
and neurodegeneration in a Parkinson’s disease (PD) model [63]. PD is a highly variable
neurodegenerative disorder where variable manifestations range from cognitive distur-
bances, motor alterations, and sleep and speech abnormalities to cellular pathological
changes such as the formation of Lewy body inclusions and neuronal death [64]. The
leucine-rich repeat kinase 2 gene G2019S mutation (LRRK2 G2019S) penetrance is incom-
plete and varies among ethnic populations. In the Ashkenazy Jewish population, the low
penetrance (26%) of the G2019S mutant phenotype suggests that other factors, such as the
genetic background, the environment, and their interaction, act as modifiers of the variable
phenotype [65,66]. In this regard, it has been reported that introducing the LRRK2 G2019S
mutation in the DGRP results in considerable variability in the locomotor phenotype among
backgrounds [63]. Gene mapping revealed 177 candidate modifier genes enriched in path-
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ways involved in the neuronal outgrowth. The study suggests a link among LRRK2, neurite
regulation, and neuronal degeneration in PD [63].

3.3. Lines Derived from DGRP and DSRP

A limitation of the DGRP is its low statistical power [51], which motivated the de-
velopment of DGRP-derived advanced intercross populations (AIPs). These correspond
to lines generated by crossing parentals DGRP for many generations, which were then
remapped [67]. By successive crossings of a subset of parentals lines, it is possible to
increase the recombination rate and, consequently, the statistical power compared to the
DGRP [52]. Furthermore, the extreme QTL mapping strategy in AIPs can be used to resolve
the statistical limitations of the DGRP for rare variants (MAF < 0.05). Extreme QTL map-
ping refers to selecting individuals from the extremes of the phenotypic distribution for a
trait (resembling a case–control study). Flies are pooled and sequenced, which is cheaper
than sequencing all individuals of the initial population. This allows identifying alleles
that segregate differentially among the distribution extremes (causal variant or in LD with
it) [68,69]. The discovery of rare variants in DGRP will occur at higher frequencies in the
AIPs after an extreme QTL mapping strategy.

A less applied strategy to increase the mapping power is to use DGRP and another
panel for cross-validation, such as the Drosophila Synthetic Population Resource (DSPR).
This collection of 1700 inbred lines is derived from 15 isogenic founder lines created from
geographically distinct Drosophila populations [70]. However, some studies in both AIPs
and DSPR lack overlap with candidate genes found in DGRP, probably due to the different
genetic architecture or genetic variants between the panels.

4. Saccharomyces cerevisiae as a Model Organism in Genetic Research: Advantages
and Limitations

Saccharomyces cerevisiae, the budding yeast, has gained prominence as a model or-
ganism in quantitative genetics because it has several experimental and biologically ad-
vantageous features. For example, it has a small and compact genome of approximately
12 million bp in haploids (about one two-hundredth of the human genome). It contains
fewer introns and a lower proportion of intergenic sequences than higher eukaryotes [71].
Furthermore, it is easy to cultivate and maintain in large population size in the laboratory.
In addition, two-thirds of all yeast genes share at least one domain of significant homology
with human genes, and about 30% of known genes involved in human diseases have yeast
orthologs [72].

One of the main advantages of yeast for quantitative genetics studies is its large
genetic map. S. cerevisiae exhibits high meiotic recombination rates, with an average of
about 90 crossovers per meiosis, allowing precise quantitative phenotyping [71,73,74]. The
homologous recombination in yeast is highly efficient, facilitating the deletion of sequences
or genes in vivo [72,75]. This efficient recombination permitted the generation of the first
complete deletion mutant strain collection using gene replacement with the G418 resistance
gene (KanMX) cassette in the reference S. cerevisiae strain [76]. Since then, similar panels
have been available in different genetic backgrounds, demonstrating the high degree of
genetic background dependencies for different phenotypes [77,78]. Yeasts have less genetic
complexity than flies and rodents. Thus, it is easier to study the effect of a single gene
because of the reduced genetic redundancy [79].

4.1. Analysis of Segregating Populations from Pairwise Crosses

QTL mapping in yeast has been the primary approach to uncovering genetic variants
responsible for phenotypic differences between genetic backgrounds. Identifying QTLs
has been achieved by analyzing segregating populations from pairwise crosses, mainly
through linkage or bulk segregant analysis (BSA) [80,81]. Linkage mapping in yeast
involves mating two or more haploid parental strains that show phenotypic variation
and then phenotyping and genotyping a panel of recombinant offspring obtained from
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these crosses. Recombination breaks allow causal loci to segregate with the phenotype
of interest, and QTLs are identified using statistical tests [80,82]. The BSA also involves
crossing two or more parental strains and subsequent phenotyping of their recombinant
offspring [83]. However, the BSA method uses selective genotyping of subsets of segregants,
commonly the extremes of the phenotypic distribution [84]. Typically, segregants undergo
selective environmental pressure, where large pools are constructed. One expresses the
trait of interest (selected pool), and others are not selected (control pool) or exhibit the
opposite phenotype. After genotyping each marker, genetic regions of allelic enrichment
are predicted as QTLs that contribute to the attribute of interest [85]. These approaches from
pairwise crosses have been successfully applied to map yeast genetic variation responsible
for nitrogen utilization [86], metabolic fluxes, ethanol tolerance [87], and high-temperature
fermentation [88].

Most crosses constructed in yeast have involved the reference laboratory strain S288c
or its derivatives crossed against a wild or fermentative isolate [89]. However, these strains
only harbor a small fraction of the phenotypic variation of natural populations and have
mosaic genomes of the founder strains [84,90]. Therefore, studies using biparental crosses
provide a poor understanding of the relationship between the genetic background and the
QTLs. These studies lack resolution since few generations are used; consequently, they are
unable to reveal the complete architecture of polygenic traits. Moreover, laboratory strains
often contain artificial auxotrophic markers that confound mapping experiments [91].
Investigators have recently established advanced-generation multi-parent populations
(MPPs) in yeast to overcome these problems (Figure 3).

Figure 3. Cross design of SGRP-4X and 18F12 mapping populations. Haploid founder strains used
for generations of these populations are indicated in the right box. Ax and Bx indicate the Mat a and
Mat α haploid founder strains, respectively.
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4.2. Multi-Parent Populations (MPPs)

Yeast MPPs comprise large populations with thousands to millions of individuals
obtained from two main steps. Firstly, several (inbred or isogenic) founder strains from var-
ious geographical origins are crossed, and then the intercross of the resulting population is
subsequentially crossed for several generations [81]. Large segregating populations are then
used for mapping QTLs. The first MPP in yeast was established by Cubillos et al. [92] by
crossing four strains representative of the main S. cerevisiae lineages (Y12 strain as represen-
tative of the SA lineage, YPS128 of the NA lineage, DBVPG6044 of the WA, and DBVPG6765
of the WE lineage) for 12 generations. The SGRP-4X contains 165 sequenced segregants,
representing recombined genetic mosaics of the founder strains. Later, Linder et al. [93]
extended this approach and created 18F12v1 and 18F12v2, two outbred MPPs derived from
a cross of 18 genetically diverse founder strains, with each strain derived from the SGRP
collection [84,92,93].

MPPs in yeast are robust mapping resources due to multiple founders and rounds
of recombination in many individuals that increase both the genetic and the phenotypic
diversity, s well as the linkage block resolution of the QTL mapping compared to biparental
F1 or F2 populations. In fact, in yeast, it has been shown that only a few rounds of meiosis
are sufficient to obtain spaced near-genic resolution [94]. Association mapping in MPPs
provides more equilibrated allelic frequencies than biparental populations, increasing
knowledge about the population structure [95]. Integration of this information in the QTL
analysis can reduce the probability of obtaining false-positive results, thus demonstrating
yeast as an accurate model system to identify dozens to hundreds of genes underlying
phenotypes of interest.

4.3. Genome-Wide Association Studies (GWAS) in S. cerevisiae

GWAS utilizes the variation in large populations of unrelated individuals to provide
insights into the causes of common complex traits. However, in 2012, only 36 S. cerevisiae
genomes were available from the Saccharomyces Genome Resequencing Project, hampering
GWAS studies in yeast. This situation motivated the development of a project to describe
whole-genome sequence variation in numerous yeast populations (http://1002genomes.u-
strasbg.fr/ (accessed on 22 May 2022)). Today, more than 2000 genomes isolated from a
wide range of locations (including Australia, Europe, Russia, Vietnam, and South Africa)
are available [96]. Thus, investigators can conduct GWAS in this model organism [97].

The success of GWAS in S. cerevisiae is a result of high diversity among natural isolates
relative to humans [96], low linkage disequilibrium (extended in an average half-life
of <3 kb) [98], and relatively simple quantification of phenotypes in hundreds to thousands
of individuals. However, GWAS in yeast is affected by a large population structure [84,98],
leading to limited statistical power and spurious associations. The increment in the number
of genotyped individuals is comparable to other model organisms enabling GWAS to
describe copy number variants (CNV) as having a more significant phenotypic effect than
SNV in yeast and laying the foundation for GWAS in the species [99].

Many of the phenotypes addressed in yeast are directly related to the cell-autonomous
features of human diseases, including neurological conditions such as Parkinson’s dis-
ease [100]. Thus far, most of the disease genome-wide screenings in S. cerevisiae have
deleted one gene at a time. To our knowledge, the genomic variability of yeast isolates is
starting to be used for modeling human phenotypic variabilities. In the field of longevity
and environment, a study in which 58 natural yeast strains were used led to identifying
RIM15 and SER1 as longevity genes under caloric restrictions [101].

In the future, we expect to observe increased research using panels of organisms,
where a combination of variants can be identified. This technique could be feasible in the
short term for diseases that can be mimicked pharmacologically and in the medium term
for disorders that can be reproduced genetically.

http://1002genomes.u-strasbg.fr/
http://1002genomes.u-strasbg.fr/
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5. Practical Considerations and Concluding Remarks

Each of the discussed organisms and panels has advantages and disadvantages for
human translational research. In addition to the already mentioned ones, researchers should
consider practical factors for deciding the best model for each project. Some relevant factors
are presented in Table 1.

Table 1. Practical considerations for choosing model organisms and their panels. The references are
shown in brackets. When deciding the best model for a project, variables such as the percentage of
homolog genes to human disease-causing genes, costs, and the possibility of automatization should
be considered.

Mus musculus Drosophila melanogaster Saccharomyces cerevisiae

Genome size (kb) 2,725,521 [102] 180,000 [103] 12,070 [104]
Percentage of homolog genes to human

disease-causing genes 99 [105] 70 [47,106] 60 [107]

Costs to keep the panels High Medium Very low
Complex behaviors Yes Yes No

Discovery of cell-autonomous processes Yes Yes Yes
Speed for throughput screenings and

automatization of measurements Slow Fast Very fast

In conclusion, the consequences of a genetic mutation can be strongly modified by the
biological background in which it operates. For example, a loss-of-function mutation may
be well tolerated in one genetic context and lethal in another. The most resistant individuals
have the biological secrets useful for developing therapies for the most susceptible ones.
Human studies are challenging; they can take a long time due to the recruitment of large
cohorts, and genomic sequencing is expensive. Instead, modeling diseases in already
sequenced panels of diverse model organisms followed by gene mapping and validation in
smaller human cohorts can speed up translational research and precision medicine for both
common and rare diseases.
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