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Abstract: Since late 2019, the beginning of coronavirus
disease 2019 (COVID-19) pandemic, transmission dynamics
models have achieved great development and were widely
used in predicting and policymaking. Here, we provided an
introduction to the history of disease transmission, sum-
marized transmission dynamics models into three main
types: compartment extension, parameter extension and
population-stratified extension models, highlight the key
contribution of transmission dynamics models in COVID-19
pandemic: estimating epidemiological parameters, pre-
dicting the future trend, evaluating the effectiveness of
control measures and exploring different possibilities/

scenarios. Finally, we pointed out the limitations and
challenges lie ahead of transmission dynamics models.

Keywords: compartment model; coronavirus disease 2019;
novel coronavirus pneumonia; SEIR; SIR; transmission dy-
namics model.

Introduction

Infectious diseases are disorders caused by pathogenic
organisms, including bacteria, virus, fungi or parasites.
With appropriate mediums, they can spread between hosts
(plants, animals and humans). The history of mankind is
the one of combating infectious diseases. With the devel-
opment of human civilization, towns and cities were built
and connected. The tighter the connections between hu-
man individuals, the more possible that an infectious dis-
ease would spread.

It is critical to understand how the emerging infectious
diseases transmit in a population, how the natural and
social factors affect the transmission, and whether specific
preventions and control measures will block the trans-
mission path and can protect the susceptible population.
Mathematical modeling has been a central part in the
analysis of the transmission of infectious diseases for more
than 100 years. As far as we know, the earliest mathe-
matical model in infectious disease can be traced back to
eighteenth century. In 1760, Daniel Bernoulli developed a
model for smallpox to assess the effectiveness of vaccina-
tion in healthy people for preventing the smallpox virus.
Later, he revealed the importance of smallpox vaccination,
which extended the median life span by 14 years [1]. In
1906, to better understand the recurrence of measles epi-
demics, Hamer formulated a discrete time model, possibly
the first model to propose that the incidence is related to
the product of the densities of the susceptible and infected
people in a population [2]. In 1911, Rose proposed to use
differential equation models to study the transmission
dynamic of malaria between mosquito and human [3]. His
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research illustrated that if the number of mosquitoes was
reduced below some critical value, the epidemic of malaria
would be controlled. This founding has made him win the
Nobel Prize inMedicine for the second time. In 1927, Kermack
and McKendrick proposed the first transmission dynamics
model—SIR (susceptible, infectious and recovered) model,
also calledKMmodel, to study the bubonic plague in London
from 1665 to 1666 and the plague in the island of Bombay
from 1895 to 1906 [4]. Then, in 1932, they proposed SIR
(susceptible, infectious and recovered) model and, based on
previous works, obtained the epidemic threshold result that
diagnosed whether an epidemic outbreak would occur.

This review will focus on the introduction of the trans-
missiondynamicsmodels, also called compartmentmodels.
We will firstly review the basic definitions of traditional SIR
and SEIR (susceptible, exposed, infectious and recovered)
models. Then, we will review how the SIR/SEIR model have
been developed to account for the characteristics of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
predict future trend and help decisions making.

Transmission dynamics models

The transmission dynamic models of infectious diseases
assume that the population can be partitioned into several
non-overlap compartments. As shown by Figure 1, in a
population, each individual is in one of the three com-
partments, Susceptible (S), Infected (I) and Recovered (R).
At the very beginning of an epidemic, some (maybe only a
few) individuals are infected by some pathogen while
others are not infected but susceptible to the disease. The
susceptible individuals have some probability to be infec-
ted after contacting the pathogen through some medium
(as indicated by the dashed line in Figure 1), while some
infected individualsmay recover after a fewdays and could
not pass the pathogen to other susceptible individuals.

An extension to SIRmodel is the SEIRmodel. As shown
by Figure 2, a status of exposed (E ) individuals in the
incubation period is inserted between S and I to reflect that
it may need some time for an infected individual to build
sufficient ability for onward transmission.

This simple compartmentalization makes it possible to
use a set of simple ordinary differential equations to

capture the dynamic transitions among different infectious
status. For a closed system, the ordinary differential
equations for the SEIR model are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= −βSI
N

dE
dt

= βSI
N

− αE

dI
dt

= αE − γI

dR
dt

= γI

N = S + E + I + R

where S, E, I and R are the numbers in these compartments.

The three per-capital rates included in the transmission

model (α, β and γ) determine the transmission progress

between different diseases status, and can be easily used to

generate important parameters that describe the charac-

teristics of an epidemic. As an example, a crucial parameter

in transmission dynamics models is the basic reproductive

number (R0), which is the number of next generation cases

infected by one infected individual on average when

this infected individual comes into a population where all

individuals are susceptible [1]. If R0>1, the transmission in

the fully susceptible population would be started. If R0<1,

the infectious disease will not spread. R0 of SEIR model is

calculated by

R0 = β
γ

Since 1950s, the theories of transmission dynamics
models have been greatly developed. Transmission dy-
namics models were extended to involve aspects such as
the incubation period of the disease (with or without
infectiousness), quarantine, stage of infection, immunity
(including loss of immunity) of susceptible and infected
individuals, age structure, birth, natural death, population
migration, immunity of prognostic individuals, vertical
transmission, spatial spread, disease vectors and other
conditions and have been used in a variety of human dis-
eases such asmeasles, chickenpox, smallpox and so on [1].

Figure 1: Diagram of a transmission dynamics model (SIR).
S, susceptible; I, infected; R, recovered; β, transmission rate;
1/γ, the infectious period.

Figure 2: Diagram of SEIR model. S, susceptible; E, exposed;
I, infected; R, recovered; β, transmission rate; 1/α, the incubation
period; 1/γ, the infectious period.
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Transmission dynamics models in
the coronavirus disease 2019
pandemic

Since December, 2019, a cluster of pneumonia cases
infected by SARS-CoV-2 was reported in Wuhan and soon
became a Public Health Emergency of International
Concern [5]. Up to December 12, 2021, coronavirus disease
2019 (COVID-19) has resulted in over 269 million confirmed
cases and 5.3 million deaths.

Traditional SEIR model had been applied in the model-
ling of the COVID-19 pandemic. However, the characteristics
of SARS-COV-2 itself, as well as the interventional policies
adapted by governments, limited the use of SEIR model. For
COVID-19, previous studies had developed a series of models
with different extensions which could be categorized into
three categories: compartment extension, parameter exten-
sion and population-stratified model (Table 1).

With the inclusion of additional compartments, it is
possible to account for additional disease stage (pre-
symptomatic, asymptomatic, ascertained and unascer-
tained) and status (mild, moderate, severe and critically
ill). It is also possible to incorporation the information of
interventional policies, such as wearing masks, universal
screening, quarantine and hospitalization, etc.

Extension of SEIR models with
compartments for additional disease status

As an example, previous studies had revealed the infec-
tivity of asymptomatic and presymptomatic cases [6–9].
Some studies developed modified SEIR/SIR model with an
additional compartment representing asymptomatic cases

(A), named SEIAR model (Figure 3), or presymptomatic
cases (P), named SEPIR model (Figure 4) [10–12].

In the SEPIR model, infected individuals in incubation
period are further divided into two compartments: exposed
compartment (E ), exposed but without infectiousness, and
presymptomatic compartment (P) (Figure 4) [12]. For the
two additional compartments of infection, A and P, they
have different transmission rates compared with those
infection with symptom (I): the transmission rate at which
a susceptible individual becomes infected due to contact
with symptomatic infections, β; and the transmission rate
due to infected individuals who were infected without
symptom or in the incubation period, εβ, ε is the relative
transmission factor compared with symptomatic cases.

In the early epidemic of COVID-19 in Wuhan, some
infected cases were indeed unascertained due to lack of
symptoms and the limited screening capacities. Similar to
the SEIAR model, an additional compartment of unascer-
tained cases (U ) was then inserted into the SEIR model,
leading to the SEIRU model [13]. This model was success-
fully applied in the exploration on how many cases were
unascertained due to insufficient nucleic testing capacity
(Figure 5).

Table : Extensions of transmission dynamics model.

Type of extension Extending

Compartment extension Asymptomatic
Presymptomatic
Unascertained
Disease severity stage
Hospitalized
Quarantine

Parameter extension Effect indicator for control measures
Time-varying transmission rate
Relative transmission rate of E/A vs. I
Population flow

Population-stratified model Geographical unit
Demographic information

E, exposed; A, asymptomatic; I, infected.

Figure 3: Diagram of SEAIR model. S, susceptible; E, exposed;
A, asymptomatic; I, infected; R, recovered; β, transmission rate;
ε, the relative transmission factor compared with symptomatic
cases; 1/α, the incubation period; σ, the proportion of symptomatic
cases; 1/γ, the infectious period.

Figure 4: Diagram of SEPIR model. S, susceptible; E, exposed;
P, presymptomatic; I, infected; R, recovered; β, transmission rate;
ε, the relative transmission factor comparedwith symptomatic cases.

Figure 5: Diagram of SEIRU model. S, susceptible; E, exposed; I,
infected; R, recovered; U, unascerntained.
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As patients at different disease stage may have
different ability to forward the transmission, another
extension of SEIR model divided the I compartment into
three compartments denoting different disease severities:
infected individuals with mild symptom (Imild), infected
individuals with severe symptom (Isevere) and infected
individuals with critical symptom (Icritical) (Figure 6) [14].

Extension of SEIR models with
compartments for interventions

In addition to different disease status and stages, in-
terventions on the individuals would also change the
transmission dynamics of the infectious diseases. As a
result, a series of models incorporating the information on
hospitalization, even the admission to the intensive care
unit (ICU) had been developed [15, 16]. In these models,
some of the exposed individuals with symptoms would
move to theH compartment to obtain health cares. Some of
the critically ill patients would evenmove to the ICU.While
others with no/mild symptom would enter I compartment
and become recovery naturally (Figure 7) [16].

As a result of strict interventional policies taken
by Chinese government to control the transmission of
SARS-CoV-2, the transmission dynamics had been
changed. To decline the infections of COVID-19, plenty of
non-pharmaceutical interventions (NPIs), especially social

distance strategies, had been implemented [17]. Consid-
ering quarantine strategies, models with quarantine com-
partments were developed. A family of modified SEIR
models, named SEIR+Q, with quarantine compartments
often contains one or more following extension compart-
ments: susceptible people who are quarantined in quar-
antine center or at home (Sq), quarantined individuals in
the incubation period (Eq) and infected individuals quar-
antined (Iq) [18–20]. When implementing the social dis-
tance strategies, some susceptibles would be required to
stay at home for self-quarantine and move to the Sq
compartment. In addition, once susceptible individuals
contacted infections and became infected, some of them
would move to the Eq and Iq compartments once being
tracked and quarantined, while some are not quarantined
and able to be infected and come into the E compartment
(Figure 8). Using the SEIR+Q model, Wei et al. estimated
that nearly 40% of the total infections was unconfirmed
and predicted that on May 31, 2020, the daily new cases in
Wuhan would reduce to 0 [18]. Besides, comprehensive
interventions and control measures implemented in
Wuhan had reduced 19,951 cases by March 30, 2020.

The idea of SEIR+Q model can be easily extended to
account for more types of interventions in one single model.
For instance, to study theeffect ofwearingmasks, Eikenberry
et al. [21] extended SEIRmodelwith a series of compartments
representing individuals wearing masks, Su, Eu and Iu. Be-
sides, Zhao et al. [22] developed an SEIR model dividing the
susceptible people into two compartments, peoplenot taking
self-protection actions and people who had taken self-
protection actions. Furthermore, to explore possible impact
of vaccination, the SEIR models are extended to including a
compartment, Sv, representing individuals vaccinated. There
are evidences that the SARS-Cov-2 virus can survive out of
organisms, thus models with a compartment representing
virus in the environment were also developed to explore the
impact of environment transmission [23, 24]. With different
assumptions, these models could explore the possible
epidemic trend in the future.

Figure 6: Diagram of SEIR model with severity compartments.
S, susceptible; E, exposed; Imild, infected individuals with mild
symptom; Isevere, infected individuals with severe symptom;

Icritical, infected individuals with critical symptom; R, recovered.

Figure 7: Diagram of SEIRHC model. S, susceptible; E, exposed;
I, infected; R, recovered; H, in hospital; C, in ICU.

Figure 8: Diagram of SEIR+Q model. S, susceptible; E, exposed;
I, infected; R, recovered; Sq, quarantined susceptible; Eq, quarantined
latent cases; Iq, quarantined infected cases; Q, quarantined.
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SEIR model with additional specific
parameters

Besides the compartment extensions, parameter exten-
sions are also incorporated to characterize the epidemic in
COVID-19. As an example, an indicator for control measure
is added to the equation for the change rate of the sus-
ceptible population as

dS
dt

= wβIS/N
in which w represents the impact of control measures on
transmission rate, ranging from 0 to 1. Similarly, some
studies set transmission rate as a time-varying variable.

dS
dt

= −β(t)IS/N

One important characteristics of SARS-COV-2 virus is
that infected individuals in incubation period is infectious.
This can be resolved by adding a transmissibility factor to
reflect the fact that asymptomatic cases/presymptomatic
cases/infections in the incubation period may have
different infectivities compared with the transmission rate
of symptomatic cases. Thus, for a SEIR model, the trans-
mission from S to I is now described by following equation

dS
dt

= −β(I + ϵE)S/N
While for a SEIAR model with additional compartment of
asymptomatic individuals, equation representing the
transmission from S to I is now as followed:

dS
dt

= −β(I + ϵE + ϵA)S/N

For the SEPIR model, if a presymptomatic compartment
was added, the E compartment was assumed not infectious
and the transmissionwas shown as the following equation:

dS
dt

= −β(I + ϵP + ϵA)S/N
where ϵ represent the relative transmissibility factor,
ranging from 0 to 1 and often assumed 0.5 or 0.55.

In addition, before the implementation of travel re-
striction, population flow had a great influence on
COVID-19 transmission. Based on mobility data, a series of
studies included time-varying parameters into the ordinary
differential equations representing the inflow and outflow
population in transmission dynamics model. SEIR Models
considering population flow are often described by
following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

=−βI(t)S(t)/N+Sin(t)−Sout(t)
dE(t)
dt

=βI(t)S(t)/N−αE(t)+Ein(t)−Eout(t)
dI(t)
dt

=αE(t)−γI(t)
dR(t)
dt

=γI(t)
N=S(t)+E(t)+I(t)+R(t)+Sin(t)−Sout(t)+Ein(t)−Eout(t)

in which Sin(t) and Ein(t) represent the numbers of inflow
susceptible and exposed individuals at time t, respectively,
while Sout(t) and Eout(t) represent the outflow individuals.
In this model, we assume that the infected individuals with
symptoms, I, would be isolated once they become symp-
tomatic and could not move to other cities.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi(t)
dt

= −βIi(t)Si(t)/Ni(t) + ∑
n

j=1,i≠j
Mji(t) Sj(t)

Nj(t) − Ij(t) − ∑
n

j=1,i≠j
Mij(t) Si(t)

Ni(t) − Ij(t)
dEi(t)
dt

= βIi(t)Si(t)/Ni(t) − αEi(t) + ∑
n

j=1,i≠j
Mji(t) Ej(t)

Nj(t) − Ij(t) − ∑
n

j=1,i≠j
Mij

Ei(t)
Ni(t) − Ij(t)

dIi(t)
dt

= αEi(t) − γIi(t)
dRi(t)
dt

= γIi(t) + ∑
n

j=1,i≠j
Mji(t) Rj(t)

Nj(t) − Ij(t) − ∑
n

j=1,i≠j
Mij(t) Ri(t)

Ni(t) − Ij(t)

Ni(t) = Si(t) + Ei(t) + Ii(t) + Ri(t) + ∑
n

j=1,i≠j
Mji(t) − ∑

n

j=1,i≠j
Mij
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Mathematical model with stratified
populations

In addition to the compartment extension and parameter
extension, another extension to the dynamics model
for COVID-19 pandemic is the population-stratified
compartment model. While most transmission dynamics
models, such as SIR/SEIR model and their extensions,
have been successfully used for small communities or
cities but failed to capture the dynamics at larger area,
and lacked the ability to account for the interactions be-
tween metapopulations via mixing/commuting [25].
Furthermore, the substructure of a population due to
different demographic characteristics, such as age,
gender and occupation, etc., lead to the heterogeneities
on the susceptibility to infection, contact rate, fatality rate
within a population, and so on. Thus, population-
stratified models, also called metapopulation models,
were developed by dividing the population into a series
of smaller units according to geographic location or
demographic structure [13]. As an example, a meta-
population model including information of geographic
location is shown as follows:

Si(t), Ei(t), Ii(t) and Ri(t) denote the number of in-
dividuals belonging to the S, E, I and R compartments of
city i at time t. Mji(t) represents the number of individuals
moving from city j to i at time t and vice versa. In thismodel,
the infected individuals with symptom are also assumed to
be isolated.

Besides, an age-structured SEIR model is shown as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi(t)
dt

= −ΛiSi(t)/N(t)
dEi(t)
dt

= ΛiSi(t)/N(t) − αEi(t)
dIi(t)
dt

= αEi(t) − γI(t)
dRi(t)
dt

= γIi(t)
Λi = ∑jβjiIj(t)
N(t) = ∑i(Si(t) + Ei(t) + Ii(t) + Ri(t))

in which Si(t), Ei(t), Ii(t) and Ri(t) denote the number of
individuals in age group i at time t; βji represents the
transmission rate from age group j to i, which would
change along with the contact rate between age group i
and j.

Applications of transmission
dynamic models in the pandemic of
COVID-19

As of July 05, 2021, we identified 1095 articles on PubMed
by using a keyword of “((COVID-2019) OR (ncov-2019) OR
(COVID-19) OR (2019-nCoV) OR (novel coronavirus) OR
(SARS-CoV-2)) AND ((transmission dynamics model) OR
(compartment model))”. Applications of transmission dy-
namics models could be categorized into the following
classes: epidemiological parameter estimation, trend pre-
diction, control measure evaluation and possibility
exploration (Table 2).

Estimation of infectious parameters at early
stage of the COVID-19 epidemic

A key parameter in transmission dynamics models is the
basic reproductive number (R0), which representing the
average number of next generation cases infected by one
infected individual introduced into the population in
which all people are assumed susceptible [1]. The effective
reproductive number, Re, or time-varying reproductive
number, Rt, is defined to be the average number of next
generation cases produced by one infected individual
during the infectious period, which would change by time t
after the initial infected cases introduced [26].

Table : Applications of transmission dynamics models in
COVID-.

Objectives

Epidemiological param-
eter estimation

–

Trend prediction Predicting confirmed cases
Predicting hospitalized cases
Predicting deaths

Control measure
evaluation

Reduction on transmission

Reduction on cumulated cases
Reduction on hospitalizations

Possibility exploration Simulating different assumptions about
interventions
Exploring long-term transmission dy-
namics in different assumptions
Simulating different assumptions of
vaccination
Exploring the start time of epidemic
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At the beginning of SARS-CoV-2 epidemic, knowledge
of the epidemiologic characteristics and the virus is
limited. Transmission dynamics model can be used derive
the epidemiologic characteristics and biologic features,
such as R0, epidemic doubling time and the infectiousness
of asymptomatic infections.

Published on January 31, 2020, just 8 days after the
“lockdown” of Wuhan city, Wu et al. used a modified SEIR
model using the reported data before Jan 25, 2020, as well
as population flow information. The model they used also
included some parameters obtained through prior infor-
mation and experiences. They estimated that 75,815 people
(572 reported) that had been infected in Greater Wuhan
area before Jan 25, 2020, and warned that it is possible that
several large cities, including Beijing, Shanghai, Guangz-
hou, Shenzhen and so on, had imported hundreds of
infections from Wuhan before the “lockdown” [27]. The
ordinary differential equations they used are as following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= S(t)
N

(R0

DI
I(t) + z(t)) + LI,W + LC,W(t) − (LW , I

N
+ LW ,C(t)

N
)S(t)

dE(t)
dt

= S(t)
N

(R0

DI
I(t) + z(t)) − E(t)

DE
− (LW , I

N
+ LW ,C(t)

N
)E(t)

dI(t)
dt

= E(t)
DE

− I(t)
DI

− (LW , I

N
+ LW ,C(t)

N
)I(t)

In the above equations, S(t), E(t) and I(t) were the num-
ber of susceptible, exposed and infected individuals at time t;
DE and DI were the average incubation period (assumed
6 days according to that of SARS-CoV and MERS-CoV) and
infectious period (the serial interval minus the average in-
cubation period, 8.4 days–6 days = 2.4 days) [28]; LW,I is the
daily average number of international outbound air pas-
sengers from Wuhan, while LI,W is that of international
inbound air passengers; LW,C is the daily number of all do-
mestic outbound travelers fromWuhan and LC,W is that of all
domestic inbound travelers; R0 divide DI represent the
transmission rate; z(t) was the zoonotic force of infection. In
this model, R0 was estimated as 2.68 (95% CI: 2.47–2.86),
while the epidemic doubling timewas 6.4 days (95%CI: 5.8–
7.1). In addition, other early studies had estimated R0 of
COVID-19 in Italy before February 22, 2020 and in Germany
before March 15, 2020 were 3.6 (95% CI: 3.49–3.84) and 3.4
(95% CI: 2.4–4.7) respectively [29, 30].

At the early stage of the epidemic in China, although the
infectiousness of asymptomatic or mild symptomatic cases
had been proved, the infectiousness andproportion of these
infections in China and how they would contribute to the
spread of COVID-19 remains unknown [31–33]. Thus, Li et al.
combined the mobility data, and developed a meta-
population model stratified population by geographic units

and simulating spatio-temporal dynamics of COVID-19
among 375 Chinese cities, using the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi
dt

=−βI
r
i Si
Ni

−μβI
u
i Si

Ni
+θ ∑

n

j=1,i≠j
Mij

Sj
Nj − Iri

−θ ∑
n

j=1,i≠j
Mji

Si
Ni − Iri

dEi

dt
= βI

r
i Si
Ni

−μβI
u
i Si

Ni
−Ei

Z
+θ ∑

n

j=1,i≠j
Mij

Ej

Nj − Iri
−θ ∑

n

j=1,i≠j
Mji

Ei

Ni − Iri
dSri
dt

= αEi

Z
− I

r
i

D

dSui
dt

= (1−α)Ei

Z
− I

r
i

D
+θ ∑

n

j=1,i≠j
Mij

Iri
Nj − Iri

−θ ∑
n

j=1,i≠j
Mji

Iri
Ni − Iri

Ni =Ni +θ ∑
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documented infected, undocumented infected and total
population in city i [13]. In this model, Iui and Iri represents
infected individuals who are asymptomatic or mildly
symptomatic and unreported and individuals whose
symptoms are severe enough to be detected. Similar to
extension of SEIR models we mentioned at Section 3.3, the
transmission rate of undetected individuals is reduced by a
factor μ, the same as ϵ in Section 3.3.Mij denotes the daily
number of people traveling fromcity j to city i. To correct for
underreporting of human movement, a multiplicative fac-
tor θ, greater than 1, is included in the equations. In-
dividuals in the compartment are assumed to be isolated
and cannot move between cities. In conclusion, this model
is a combination of three different extensions, a compart-
ment extension (Iu), a parameter extension (μ the same as ϵ)
and geographic units.

Indeed, Li’s model not only included additional
compartment for unascertained cases, but also incorpo-
rating additional parameters for transmission and sub-
populations, as we have introduced above. According to
this study, Re at the beginning of the epidemic (10–23 Jam,
2020), the same as R0, is 2.38 (95% CI: 2.03–2.77) and un-
detected infections, had 55% transmission rate (μ)
compared with detected infections (95% CI: 46%–62%).
Besides, this model also estimated the median the incu-
bation and infectious periods are 3.69 and 3.47 days,
respectively, providing references for further studies; and
only 14% (95%CI: 10%–18%) infections inmainland China
were detected and reported during January 10–23, 2020.

As a large number of infected individuals but without
or with mild symptoms were unascertained, picturing the
dynamics of COVID-19 during the early stage is critical for
making monitoring and control strategies, assessing the
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possibility for future transmission in areas which imported
several cases, as well as early warning and prevention of
possible COVID-19 outbreaks. Kucharski et al. [34] con-
structed an SEIR model with three more compartments,
asymptomatic cases, symptomatic but unreported cases
and confirmed cases, and considering international travel.
The study found that time-varying Rt in Wuhan was 2.35
(95% CI 1.15–4.77) on January 16 and declined to 1.05 (95%
CI: 0.41–2.39) on January 31. Besides, they also estimated
that once four or more infected individuals came into one
location, the epidemic would potentially begin.

Trend prediction

With increasing knowledge of SARS-CoV-2, a series of
models were proposed to predict the future trend of the
COVID-19 epidemic. However, the prediction of the “exact”
number of cases is impossible due to limited information of
the virus, the disease, the environment and the population.
As an example, we will never know how many people are,
or had been, infected actually. The powerful control mea-
sures, as well as the improved health habits (more frequent
to wash hands, wearing masks in public areas, etc.) of
people,make the predictions evenmore difficult [35]. Thus,
we believe that the value of predictions made by trans-
mission dynamic models is to provide possible trend given
the current epidemic situations and future interventional
policies and measures. Predictions cannot tell us what
must happen in the future but can warn us what will
happen if something had been/not been changed.

Predictions on the number of confirmed cases

Using data up to February 12, 2020, Wei et al. modeled the
cumulated confirmed cases in three regions,Wuhan, Hubei

exceptWuhan andChina exceptHubei, by using a SEIR+CAQ

model (SEIR with Infected Components, Asymptomatic
infected and Quarantined individuals, Figure 9) [36]. Their
results showed that the pandemic in China except Hubei
and Hubei except Wuhan had reached the peak on
February 1, 2020 or February 2, 2020, while the peak time of
Wuhan was February 9, 2020. They predicted that under
prevention and control measures during the model was
constructed, there would be 80,417 (actually 79,215) accu-
mulated confirmed cases in China up to February 29, 2020.

Yang et al. [37] modified the SEIR model by adding a
move-in and a move-out compartments. They predicted
that there would be a peak on February 20, 2020 with
cumulative active infections of 42,792 (95% CI: 30,149–
52,941), and the end of the pandemic is expected to be in
late April, 2020,with totally 59,578 (95%CI: 39,189–66,591)
cases in Hubei province. Besides, the study also predicted
the peaks of accumulated active infections of Guangdong
province and Zhejiang province would be 1,202 (95% CI:
1,042–1,340) and 1,172 (95% CI: 1,004–1,314) by February
20, 2020, while the accumulated active infections in
mainland China will reach the peak at 59,764 (95% CI:
51,979–70,172) on February 28, 2020. Furthermore, based
on the predictions, the cumulated cases in Hubei province,
Guangdong province, Zhejiang province and mainland
would finally reach 59,578 (95% CI: 39,189–66,591), 1,511
(95% CI: 1,097–1,948), 1491 (95% CI: 1,066–1,851) and
122,122 (95% CI: 89,741–156,794).

Wang et al. [38] proposed a SEIQRD model with three
compartments for quarantined individuals and an addi-
tional compartment for deaths, to model the trend of
epidemic using the cumulative confirmed cases between
January 10 and February 4, 2020 in China. They predicted
that the pandemic in mainland China would reach its peak
around February 11 with a peak size of 4,066 (95% CI:
3898–4472) daily confirmed cases, and reach the end
around May 18, 2020.

At the early stage of pandemic, a large number of
modeling studies were focused on epidemic in China. After
outbreaks of SARS-CoV-2 in countries beside China, a se-
ries of predictive studies on future epidemic trend in these
countries were also reported. According to Gatto’s study,
up to March 25, 2020, the cumulative number of infections
in Italy was approximately 733,000 individuals, while
Fanelli and Piazza reported that the peak number of active
confirmed cases in Italy would be about 26,000 around
March 21, 2020 [29, 39].

Besides, compartment models with various extensions,
such as compartment of unascertained infections [40, 41],
virus in the environment [24], quarantine [41–45], compart-
ment of taking infection prevention actions [22], the effect of

Figure 9: Diagram of SEIR + CAQmodel. S, susceptible; E, exposed;
I1, infected individuals with mild symptom; I2, infected individuals
with severe symptom; I3, infected individuals with critical symptom;
R, recovered; Sq, quarantined susceptible; Eq, quarantined latent
cases; Iq, quarantined infected cases; C, infected components;
A, asymptomatic infected; Q, quarantined.
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control measures [46], as well as other extensions [47–50],
were constructed and make contribution on the early
warning of COVID-19 spread.

Predictions on the number of hospitalized cases

Transmission dynamics model could also be used to pre-
dict the patients in hospital so as to provide information
about the demand for medical resources. By using a
modified SEIR model incorporating additional compart-
ments of individuals in different disease stages, quaran-
tine, hospital and ICU, as well as considering different
transmission rates associated with different ages, Tuite
et al. predicted that inOntario, Canada, 56% (95%CI: 42%–
63%) individuals would be infected. Their model also
predicted that, in Ontario, Canada, there would be 107,000
(95% CI: 60,760–149,000) cases in hospital (non-ICU) and
55,500 (95% CI: 32,700–75,200) cases in ICU at the peak
time [51]. To predict the demand of ICU bed and future
hospital occupancy in Switzerland, Zhao et al. [52] built a
platform based on two different SEIR model and simulated
hospital occupancy under a series of epidemic scenarios.
Similarly, Verma et al. [53] developed a modified age-
structure SEIR model to predict future demand for hospital
resources in India.

Predictions on death toll

Transmission dynamic models with a compartment of
deaths are also able to predict the number of deaths. Based
on data in Italy up to May 15, 2020, Fanelli et al. [39]
developed the SIRDmodel, an extension of SIR model with
a compartment of dead individuals (D), and predicted that
the cumulated number of deaths would be about 18,000 in
the final. Besides, Cui et al. predicted that the final size of
deaths inWuhanwould be 3,206 by amodified SEIRmodel
incorporating quarantine strategies. In addition, based on
SIHRD model, SIR model with hospitalized (H) and dead
(D) compartment, Cuadros et al. estimated that therewould
be 1,421 deaths in Ohio, US, as of May 10, 2020 [54].

Policy evaluation

To control the transmission of COVID-19, governments have
taken kinds of intensive non-pharmaceutical interventions.
In order to take effective and prompt measures in potential
future epidemics, it is important to evaluate how the in-
terventions strategies influence the transmission of
COVID-19 [55]. Transmission dynamics models can be
applied to estimate the effectiveness of non-pharmaceutical

interventions, such as travel restrictions between cities,
social distancing measures inner cities. The effects of con-
trol measures are often estimated by comparing values of
transmission parameters (contact rate, transmission rate,Re
andRt, etc.) before introducing the interventions to that after
introducing the interventions, or comparing the observed
numbers (cases, hospitalizations and death, etc.) to the
expected number without the interventions.

Evaluation on the effect of blocking transmission

On January 23, 2020, after confirming transmission of
COVID-19 between human, Chinese government immedi-
ately implemented unprecedented cordon sanitaire in
Wuhan. All transportation paths to and from Wuhan had
been shut down. Later, public health “level 1” emergency
response was implemented all over China [56].

To evaluate the effect of “level 1” emergency response
in China cities and Wuhan travel ban, Tian et al. added a
parameter on control effect in a SEIR model. Based on
Tian’s study, R0 in Wuhan before January 23 was 3.15 (95%
CI: 3.04–3.26), and reported that the implementation of
“level 1” emergency response and Wuhan travel ban had
reduced 3%–69% transmission in provinces except Hubei
and avoided 96% new cases (nearly 450,000) outside
Wuhan up to February 19, 2020 [57].

Tang et al. reported that, adopting the most severe
prevention and control measures and highest level of
detection and treatment, the contact rate would have a
reduction of 80.2%, decreasing from 14.781 to 2.9253 [19].
By assessing the effect of control measures on reduction of
contact rate, Tang et al. estimated that public health
measures taken in Ontario, Canada since February 26, 2020
had reduced 80.1% contact rate, from 11.58 to 2.20 [58].
Besides, the change ofRewas alsowidely used to assess the
effect of control strategies [57–67]. Similarly, the reduction
of transmission rate can also indicate the effect of
interventions [62, 68–74].

On February 12, 2020, an updated clinical diagnostic
criteria—patients without positive nucleic acid test could
be diagnosed as confirmed cases if they have clinical and
radiological characteristics typical of COVID-19—was
implemented in Hubei Province, resulting in a rapid
increment of cases inWuhan in short time [75]. In addition,
a second round of universal symptom survey was taken
during February 17 to 19, 2020. Under this condition, Wei
et al. extended SEIR transmission dynamics model by
considering three quarantined compartments (SEIR+Q) to
evaluate the effects of these major interventions [18]. The
effect of control measures can be estimated by comparing
the expected trend with observed trend of cumulated
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clinical confirmed cases. According to this study, nearly
40% infected cases was unconfirmed before February 12,
2020 and the updated clinical diagnostic criteria and two
universal symptom surveys had reduced 19,951 cases by
March 30, 2020.

Evaluation on the effect of reducing cases

Comparing the trend of cumulated cases with and without
implementing intervention and control measures is a
widely used method to evaluate the effect of these control
measures [69, 76–80]. To picture the COVID-19 dynamics in
Wuhan, Hao et al. extended the SEIR model with three
additional compartment, presymptomatic infectiousness
(P), unascertained cases with no or mild symptoms (A) and
case in hospital (H ), and modeled the outbreak divided
into five periods according to different degrees of in-
terventions from January 1, 2020 [12]. The estimated R0 was
3.54 (3.40–3.67) and the ascertained rate of infections in
Wuhan before January 23, 2020 was 0.15 (0.13–0.17). The
public health interventions had reduced 92% transmission
since January 23, 2020. If no interventions had been
implemented in Wuhan, the total number of infections
would be 6,302,694 (6,275,508–6,327,520) on March 8,
2020. By comparing the expected number to that observed
(49,912), the effect of control measure was estimated.

Besides, quarantine strategies had also contributed a
lot to control the COVID-19 transmission. Zu et al. [81]
based on adynamicsmodel reported that, since January 23,
2020, the quarantine measures in mainland China had
avoided 99.85% total confirmed cases and 99.84% deaths.

Evaluation the effect on reduction on hospitalizations

Gatto et al. [29] proposed an extended SEIR model
with presymptomatic, hospitalized, asymptomatic/mildly
symptomatic and quarantined compartments to assess the
effectiveness of emergency containment measures initi-
ated in Italy. According to their study, containment mea-
sures in February had avoided 226,000 hospitalizations
(95% CI: 172,000–347,000) as of March 25, 2020. Further-
more, the implementation of all containment measures in
Italy had reduced 45% (95% CI: 42%–49%) transmission
and avoided 6,490,000 hospitalizations (95% CI:
4,810,000–10,100,000) as of March 25, 2020.

Forecasting of future possibilities

Transmission dynamics models based on SIR/SEIR frame-
works are able to simulate various transmission trends

under different settings so as to guide future policies. With
better understanding of SARS-CoV-2 characteristics and
the influence of interventions estimated by models, it is
logical and reasonable to make simulation on the possi-
bilities in the future. Disease-specific or intervention-
specific parameters in transmission dynamics models can
be modified based on knowledge of underlying trans-
mission process to explore what would happen under
different assumptions of disease characteristics and in-
terventions [35]. At early dynamics, biological features and
epidemiological characteristics of SARS-CoV-2 had not
beenmeasured and dynamics models were used to explore
the possible value of this parameter, such as the latent
period, the relative transmission rate of exposed, pre-
symptomatic or asymptomatic infections, the duration of
infectiousness, generally represented by an estimation
with a range, reflecting uncertainty. Estimating the un-
known parameters can provide references for experiments.
Predicting the future trend of epidemic is also a form of
exploring possibility by simulating the possible future
trend conditional on currentmeasures andparameters [35].
Besides, when assessing the control measures, comparing
the trend with interventions (observed) with the trend
without interventions (expected), is a commonly used
method to measure the effect of interventions.

Simulating different assumptions about interventions

In SIR/SEIR models and their extensions, interventions
can be included by adding additional compartments or
transmission parameters, which makes it possible for the
models to be uses to explore and estimate the influence of
different assumptions of interventions. Using transmission
dynamics model, scientists can not only make prediction
on what would happen if a control measure were or were
not taken, but also understand how a change in interven-
tion would affect the epidemic by assuming different effect
size and implementing time of interventions. Further, as
many studies have already reported the effect of control
measure in transmission which had been implemented,
scientists can then understand what would happen if
control measures were lifted and how to control the
epidemic in a long term without damaging economy and
health systems.

Different effect of intervention
Based on the fitted transmission dynamic models in one
place, we can explore the possibility of outbreaks in other
cities and whether the outbreak can be controlled and how
to achieve. Kucharski et al. [34] found that a city will have a
probability of 50% of COVID-19 outbreak if at least four
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cases were imported. By assuming different effect of quar-
antine strategies implemented in Wuhan on inter-city and
inner-city mobility reduction on Jan 23, 2020, Wu’s simula-
tion indicated that the influence of inter-city mobility
reduction on COVID-19 transmission was negligible, while
inner-city mobility reduction could delay the peak of
confirmed cases, flatten the curve and reduce the magni-
tude [27]. Zhao et al. [82] simulated the future transmission
by an improved SEIRmodel with different assumed effect of
interventions and emphasized the importance of control
strength, control time and an awareness of self-protection,
such as facemask and wash hands. Other studies had also
explored the future epidemic with assumed effect of in-
terventions or different quarantined proportion of exposed
individuals [20, 22, 39, 42, 83–95]. Wang et al. simulated the
trend of cumulated deaths with assumed Re and death rate
in different stages of control [96].

Different time of intervention
The implementing time of intervention and control mea-
sures had a great influence on transmission of COVID-19
and, by assuming different time introducing an interven-
tion, transmission dynamics models could help under-
stand what would happen when implementing the
intervention at different time. According to Yang et al.,
5 days later the introduction of interventions was, there
would be a huge increase in transmission rate and the total
epidemic size by the end of April will be 351,874 cases,
while total epidemic size would have been only 40,991 if
5 days earlier the interventions were introduced, suggest-
ing that the importance of implementation time of
containment measures [37]. Assuming implementing
different interventions in Germany, Dehning et al. divided
the epidemic into several stages according to interventions
and simulated the possible future trend under diverse
control scenarios [30]. Similar to Yang et al., Dehning et al.
reported that the timepoint of introducing social distance
strategies been advanced or delayed by just five days
would cause a three times difference at least in cumulated
cases.

In New York, US, a series of social distance strategies
had been introduced since March 12, 2020. According to
Alagoz’s study, in which COVAM, an extension of SEIR
considering the stages of COVID-19 and age structure, was
constructed to explore the effect of social distancing
measures [97]. Oneweek earlier social distancingmeasures
were introduced, the total number of cases inNewYork city
would reduce from 203,261 to 41,366 up to May 31, 2020,
while the number of confirmed cases would increase to
1,407,600 if interventions were implemented 1 week later.

Different start time of lockdown and quarantine is also
significantly important for the disease controlling and a
series of studies had proved that the delay of lockdown and
quarantine strategies would lead to catastrophic
results [42, 65, 74, 79, 93, 98, 99]. Besides, Wang et al.
simulated the scenarios assuming different opening time of
the “Huoshenshan” hospital, a quarantine hospital built in
9 days, and found that delayed opening the “Huoshen-
shan” hospital would greatly increase themagnitude of the
outbreak by about 80.1% higher than the real data by
March 6, 2020 [99].

Rong et al. and Zu et al. simulated delay in diagnosis
would have great influence on the disease transmission
based on new dynamics models [23, 81]. Besides, a few
studies indicated the more media reports of COVID-19, the
slower the spread of COVID-19, possibly as a result of
increasing awareness of self-protection caused by media
reports [100–102].

Exploring feasible dynamic intervention strategy
Governments have taken different interventional policies
to combat against the pandemic of COVID-19. While strict
control strategies are essential to slowing down the trans-
mission of virus in a short term, the negative impacts of
these strategies, including economic risks, increasing of
unemployment, health system collapse, etc., have become
to emerge in the long-term [103]. In this situation, trans-
mission dynamics models could be applied to explore the
possible consequences of different decisions before they
were implemented and optimize the comprehensive stra-
tegies balancing the preventions and controlmeasures and
economy severely damaged by sustained and strict in-
terventions. As an example, the relaxation of social dis-
tance strategies may have the risk of the resurgence of the
epidemic. Aleta et al. [104] proposed a response system
based on dynamics model with compartments of different
stages of infection and indicated that, to control the
transmission, lifting social-distancing interventions would
require high ability of contact tracing and testing. To
explore a more feasible intervention strategy, Tuite et al.
developed a dynamic interventions strategy which can be
introduced and lifted in response to real-time state of the
epidemic. Their simulations indicated that the dynamic
interventions strategy is an effective and more feasible
control strategy [51].

While NPIs could effectively reduce the infections and
prevent the overburden of the health systems, these pro-
longed suppression measures are unsustainable and have
adverse influence on economy in most countries. Thus,
understanding how and when to relax the NPIs so as to
minimize the damage to the economics while keep the

Guan et al.: Transmission dynamics model and the COVID-19 epidemic 99



epidemic under control becomes an important issue.
Chowdhury et al. [16] modelled the impacts of different
types of interventions on ICU admissions and the number
of deaths in 16 worldwide countries. They proposed that a
dynamic cycles of 50-day strong interventions, keeping Rt

below 0.5, and then 30-day relaxation could sufficiently
keep ICUdemandswell under the national capacities for all
countries. Further, another study also proved the efficiency
of “on-off” policies alternating between the introduction
and relaxation of strict social distancing [105]. In addition,
Kennedy et al. also modeled 48 possible future scenarios
considering several social-distance strategies including
mitigation, stepping-down strategy, intermittent strategy
and constant strategy [106]. They proposed a stepping-
down approach every 80 dayswhich couldmost effectively
reduce the transmission over a two-year period, prevent a
second outbreak and keep the number of ICU demands per
day well under the threshold of current capacities.

Explore the possibility and strategy of reopening
In May, 2020, the prevention and control measures of
COVID-19 in Canada had achieved initial success. Whether
it is appropriate to relax some distancing measure and
resume economic activities becomes a new consideration.
Tang et al. [58] performed simulations on de-escalation of
control measures in Ontario, Canada and explored the
possibility of reopening. They warned that the less social
distance strategies maintained, the more exposed contacts
(maybe unrealistically high) should be effectively tracked
and isolated to keep Rt<1. Another study had simulated
lifting social-distancing requirements in the US and ob-
tained similar conclusion [107]. Di Domenico et al. [108]
evaluated the impact of lift strategies in COVID-19 trans-
mission in Île-de-France by an age-structured SEIR model
with compartments of severity of diseases, hospitalized
and ICU. A similar study for epidemic in India simulated
the trend after removing lockdown [109]. Several studies
had also explored the possible trend of reopening social
distance strategies [54, 81, 91, 110–114].

Exploring the influence of wearing masks on COVID-19
epidemic
Masks are widely used to protect the susceptibles. How-
ever, there is still controversy on whether to recommend to
wearing masks for general public in some western coun-
tries. Transmission dynamics models with a compartment
representing individuals or a parameter of the effect of
masks on transmission had been developed to estimate
how themasks can protect us from COVID-19. According to
Dai’s study, only extremely strong interventions (reducing
90% transmission of COVID-19, equal to all people wearing

N95 respirators) could sufficiently prevent the trans-
mission of COVID-19 [77]. Eikenberry et al. [21] designed a
modified SEIR model with several compartments of in-
dividuals wear masks in public. In their study, for regions
where the transmission rate was high, such as New York,
17%–45% deaths over two months could be prevented and
there would be a 34%–58% decrease on peak daily death
rate, if 80% individuals wear moderately (50%) effective
masks, even there are no other changes in epidemic dy-
namics. Besides, for regions with low or decreasing trans-
mission rate, very weakly (20%) effective masks also have
value to some extent on prevention. Similarly, masks have
also contributed to avoid deaths. Worby and Chang based
on a modified SEIR model with three compartments of
presymptomatic cases, asymptomatic cases and symp-
tomatic cases simulated the scenarios of different supply
and demand of medical resources. When the medical re-
sources are shortage, providing masks with high effect to
infected individuals and the elder could achieve the
optimal outcome of deaths. They also reported that wear-
ing masks, even homemade facemasks offering 5% pro-
tection, universally in public could cause a 10% reduction
on Rt and a 3%–5% reduction in deaths [115]. Other studies
had also proved the effect of wearing masks using various
transmission dynamics models [116].

Exploring feasibility of novel control strategy
Transmission dynamics model can also be used to explore
the feasibility of a new control strategy. Weitz et al. [117]
proposed a new approach, named shield immunity, which
can be implemented together with social distancing, to limit
transmission. The core concept of the shield immunity is to
deploy the recovered individuals who have immunity to
SARS-CoV-2 back into the community, and these individuals
substitute susceptible individuals to contact with infectious
individuals, relatively lowering the contact rate of suscep-
tible individuals and infections. They conducted simula-
tions using a modified SEIR model in different transmission
scenarios and provided evidences on the effectiveness of
shielding. Furthermore, another study by Kabir et al. [118]
combined theories of transmission dynamics models with
the concept of behavioral dynamics and proved the feasi-
bility and availability of shield immunity. Besides, reducing
the possibility of superspreading events was also a consid-
erable and valuable option to alleviate the need for strict
social distancing strategies [119]. To reduce transmission of
COVID-19 and hospital burden, Reimer proposed Clinical
prediction rules using five clinical variables to identify in-
dividuals who would be most possibly infected by
SARS-CoV-2 and, with the help of a stochastic SEIR
compartmental model of transmission, they confirmed the
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effectiveness of those rules on delaying the peak time and
reducing the peak number and final number of infections
over the pandemic [120].

Tomitigate the impact of the limitedmedical resources,
Upadhyay et al. [67] proposed a strategy of age-targeted
testing, deploying more testing resources on the most
possibly vulnerable age groups. Based on an age-structured
SIQR model, SIR model with a quarantine compartment,
they found that, in India, increasing testing in the 15–40
years age group, the most infected age group, could help
efficiently reduce the infected cases. Similarly, Wilder
et al. [121] reported that targeted shelter for 50% individuals
in a single age group may substantially lower the trans-
mission, and they also highlighted the role of between-
population variation in formulating interventions. In addi-
tion, there are studies using compartmentmodels to explore
optimal control designs [122–129].

Some countries were aiming for herd immunity, such as
Sweden and the United Kingdom. Brett and Rohani [130]
built an age-structured SEIR model for UK to explore the
prerequisite conditions of herd immunity. According to their
study, to achieve herd immunity, social distance should be
reducedat the exact rate to re-increase the transmission and,
in this case, the proportion of individuals who have immu-
nity against SARS-CoV-2 would increase. Herd immunity
required that social distance which is influenced by NPIs
needs to be gradually lifted and highly controlled in a long
period—too quickly the NPIs are lifted, the medical system
and medical resources would face great challenges; too
slowly, the epidemic would come to an end without
achieving herd immunity. Therefore, complete herd immu-
nity is possibly impractical.

Exploring long-term transmission dynamics

To explore the future of COVID-19 transmission, Kissler
et al. [14] simulated the long-term trend of the COVID-19
epidemic based on a modified SEIR model considering
meteorological factor, immunity, and cross-immunity for
beta-coronaviruses OC43 and HKU1. According to the
study, the recurrent outbreaks of SARS-CoV-2 is highly
seasonal variated. Depending on the duration of immunity,
SARS-CoV-2 dynamics in the future would occur once a
year, once two years, sporadically, which means the
pandemic would enter into seasonally regular circulation,
or, only if the immunity to SARS-CoV-2 is permanent,
never. Besides, they reported social distance strategiesmay
be necessary up to the end of 2022 to prevent critical care
capacity from being overburden.

Simulating different outcomes after vaccination

Vaccination is one of the key methods to terminate the
pandemic of COVID-19, makes it important to make sense
of how vaccine would influence the dynamics of COVID-19
in the future. Saad-Roy et al. [131] developed a modified
model SIR model with additional compartments repre-
senting individuals who have immunity (Figure 10) for a
series of immune scenarios to explore futures for COVID-19
transmissionwith andwithout vaccines. TheODEs of Saad-
Roy’s model are as following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSP
dt

= μ−β(t)SP(IP +αIS)−μSP − svaxνSP
dIP
dt

= β(t)SP(IP +αIS)−(γ+μ)IP
dR
dt

= γ(IP + IS)−δR−μR
dSS
dt

= δR+δvaxV −ϵβ(t)SS(IP +αIS)−μSS − svaxνSS
dIS
dt

= ϵβ(t)SS(IP +αIS)−(γ+μ)IS
dV
dt

= svaxν(SP +SS)−(δvax +μ)V

(16)

In this model, six compartments are included: fully
susceptible, SP; partially immune, SS; and fully immune, R;
vaccinated, V; primary infected, IP; secondary infected, IS. α
and ε represent varying degrees of transmission of second-
ary infections and susceptibility of Ss relative to primary
infections. ν is a constant fraction representing the fully and
partially susceptible populations are vaccinated each week
(thus entering the vaccinated class V). 1/δvax represent
vaccinal immunity duration. Full immunity from natural

Figure 10: Modified model flowchart that incorporates a vaccinated
class V and reinfection classes. SP, fully susceptible individuals;
SS, partially immune individuals; R, fully immune individuals;
V, vaccinated individuals; IP, primary infected cases; IS, secondary
infected.
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infection is assumed to wane at rate δ, while immunity from
vaccinewane at rate δvax. The natural birth rate μ is assumed
equal to the natural death rate. svax is a binary variable
representing vaccination is introduced or not.

By assuming different values of immunity of secondary
infections to SARS-CoV-2, ε, natural immunity duration,
1/δ, vaccinal immunity duration, 1/δvax, and so on, this
model simulated likely complex COVID-19 dynamics in the
future and found that even an imperfect vaccine could
contributed to control COVID-19 transmission, reduce
subsequent peaks of clinically severe cases, and, if the
number of susceptible individuals vaccinated reached a
threshold, the outbreaks could be suppressed within 5
years. However, they also suggest that, a sustained im-
munization strategy is necessary to avoid greater outbreaks
in the future.

At present, the beneficial effect of vaccine on COVID-19
transmission have beenwell recognized. However, vaccine
for SARS-CoV-2 was still in severe shortage in many
developing countries, raising the question that how to
prioritize and allot available vaccine [15]. Bubar et al.
developed an age-stratified SEIR model accounting for age
structures in different countries to evaluate and generate
vaccine prioritization strategies for SARS-CoV-2 [132]. After
comparing five age-stratified prioritization strategies
prioritized vaccines to different age groups, the study re-
ported that prioritizing highly effective vaccine to in-
dividuals ages 20–49 years could minimize cumulative
incidence, while prioritizing vaccine to individuals older
than 60 years will have better effect on reducing mortality
and years of life lost. Besides, if a vaccine has poor efficacy
in older adults, vaccine prioritized to younger age groups
would be more effective. Accounting for the seropreva-
lence and individual serological testing, further priority
given to seronegative individuals could make better use of
the available doses.

Identifying the start time of epidemic

By inserting the different possibilities of start time of the
epidemic in themodel, transmission dynamics model could
be used to make estimation on the potential start time of an
outbreak. On June 11, 2020, a local case was confirmed after
56 days of zero daily new cases in Beijing. Later, on June 15,
there were totally 106 cumulated new cases. According to
the case report, the earliest onset date of cases was June 4,
indicating that the transmission had started even earlier. To
explore the possible start time of this resurgent epidemic
and estimate the effect of interventions, Wei et al. [69]
developed an SEIR model assuming different start time of

the epidemic to fit daily onset infections before June 12,
when the interventions had not been introduced. They
inferred that the start time of the re-emerged COVID-19
epidemic in Beijing was between May 22 and May 28, with
the highest probability on May 25 (23%).

Similarly, Peirlinck et al. [73] proposed a SEIIR model,
with an addition compartment of asymptomatic cases, and
explored the most probable origin date of epidemic in
Santa Clara County, the US, by the Nelder–Mead optimi-
zation method. They found that the initial outbreak date of
epidemic in Santa Clara County could be traced back to
January 20, 2020.

In addition to the above applications, transmission dy-
namics models have also contributed to other aspects in
COVID-19 studies, such as estimating the treatment effects of
antiviral drugs, exploring the possibility of reinfection, pre-
dicting the imported or exported cases of a specific country,
exploring the possibility of COVID-19 outbreak in one
country or region if there were imported cases [133–135]. For
epidemics due to imported cases, similarly, transmission
dynamics model could be used to explore how many initial
infections transmittedSARS-CoV-2,whichwouldhelp tofind
chains of transmission.

Limitaions of transmission
dynamics models

Insufficient data limited the accuracy of
model

It is a huge challenge to forecast future trends of emerging
infectious diseases timely, accurately and reliably, espe-
cially at the early stage of the epidemic. In an ongoing
epidemic, often there will be insufficient data for model
construction andvalidation [136]. In studieson theCOVID-19
epidemic, the most common used indexmay be the number
of confirmed cases. However, at the early epidemic, nucleic
acid testing capacity was insufficient, resulting in appre-
ciable quantity of undetected cases and a delay from being
infected to be confirmed. Even in Beijing, the capital of
China, there was also a 2-day delay from infection to be
confirmed in early 2021 (Figure 11). Thus, it is possible that
modelsfitting the pandemic using data of confirm casesmay
generate biased estimation of crucial epidemiological pa-
rameters, and should be interpreted with caution. When
fitting a transmissiondynamicsmodel, a reliable typeofdata
is the number of onset cases developing symptoms. Besides,
considering the inflow and outflow population of a city
during an epidemic, mobility data is also needed.
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Limited knowledge of COVID-19 resulting in
wrong structures of model

The accuracy of a transmission dynamicmodel is related to
the knowledge of the SARS-CoV-2 virus itself. At the
beginning of COVID-19 pandemic, scientists had limited
information about the biologic features of transmission.
For example, some early models ignored the incubation
period which is defined as the interval from being infected
to developing symptoms. Meanwhile, some studies inser-
ted important parameters (e.g. the length of incubation
period) in their models by borrowing information from
SARS and MERS epidemics, which took the risk of ignoring
the differences among the three kinds of virus. Nearly all
early models ignored the reinfection of COVID-19, while
recent studies revealed the possibility [137]. Furthermore,
the infectiousness of asymptomatic cases and infected in-
dividuals in incubation periodwas ignored in early studies,
which would result in biased results. Although early
models are imperfect, they play an important role in un-
derstanding the characteristics and dynamics of COVID-19
at the beginning of epidemic.

No models are completely accurate

Most of the transmission dynamics model for COVID-19 did
an excellent job in reproducing past epidemic evolution
but not in predicting future epidemic [138]. A review pub-
lished in 2020 evaluated the deviations of predictions of
published COVID-19 studies. They found that of the seven
reviewed studies which made totally eight short-term

predictions of infections which predict the future number
of infections within 15 days, and only five of eight pre-
dictions were within the ±50% range around the true
values. For 23 long-term predictions in 19 reviewed studies,
only five of 23 predictions were higher the ±100% range
around the true values [139]. Besides, this review summa-
rized eight studieswhich predicted the peak time of regions
in China and 40% of these peak time predictions had de-
viation days greater than or equal to 5 days compared with
the actual peak time.

With increasing knowledge of SARS-CoV-2, more so-
phisticated models with extending compartments and
parameters would be developed to better picture the dy-
namics of COVID-19 epidemic. However, given the same
dataset of cases, more sophisticatedmodelsmay not bemore
reliable and accurate, especially in prediction [140]. Simple
models are easy to estimate the parameters but are possibly
naive and unrealistic, while complex models may be more
realistic but may contain parameters which are hard to esti-
mate and obtain and may be overfitting [136, 140]. An overfit
model cannot be generalized beyond the observed sample
data. Setting fixed values of parameters, such as incubation
period and protective effects of vaccine, based on virus
studies and epidemiological studies seems a good way to
reduce parameters need to be estimated.When formulating a
transmission dynamicsmodel for COVID-19, it is necessary to
decide which compartments and parameters to include and
which to omit depending on the questions to be answered.

In the current studies, model diagnostics for trans-
mission dynamics models are largely lacking. As Johnson
and Omland state, “Parsimony is, in statistics, a trade-off
between bias and variance” [141]. A goodmodel is a proper
balance between underfitting and overfitting. When
considering a collection of models, Akaike Information
Criterion (AIC) would be a reliablemodel selectionmethod,
which accounting for the goodness of the fit and the prin-
ciple of parsimony [142].

The effect of exact intervention is hard to
estimate but can in theory

It’s difficult for transmission dynamics models to estimate
the effect of exact single intervention on COVID-19 trans-
mission. The effects of control measures are often esti-
mated by comparing values of transmission parameters,
such as transmission rate, Re and Rt, etc., before intro-
ducing interventions to that after introducing interventions
or comparing the observed numbers (case, hospitalization
and death, etc.) to the expected number without the
interventions. Nevertheless, the spacing time between

Figure 11: Delay from symptomatic onset to laboratory confirmation
in Beijing.
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implementing several interventions is so close that it’s
difficult to estimate the individual effects of exact in-
terventions [143]. Besides, the effects of control measures
estimated by transmission dynamics models often contain
the effect of human behavior change. As an example, when
there is a lot of infection in the society people would be
more careful and take self-protection actions dampening
the transmission of COVID-19. Estimating this effect is
extremely difficult. Thus, adding more parameters in
modelling can improve the accuracy of model fitting
theoretically, although it may not be possible for some
factors and parameters to be realized in the early stage of
an epidemic.

Understanding the values of
transmission dynamics model

Indeed, as a result of complex, rapidly changing and inten-
sive interventions, quickly evolving virus, increasing un-
derstanding of SARS-CoV-2 and capability of diagnosis and
treatment, predicting the future trend of the epidemic pre-
cisely, especially in a long future, is nearly impossible [144].
As an example, unless there is travel restrictions in some
region, noone canaccuratelypredict how the sizeof the total
population will change in the future due to inflow and
outflow population, leading to the uncertainty when we
want to predict whether an outbreak of COVID-19 would
occur if an infected individual entered the susceptible pop-
ulation. In addition, the extent of protective immunity and
how long the recovered individuals would be protected
remain uncertain. Failure to ascertain of how many in-
dividuals have been infected with no or mild symptoms also
limits our ability to predict the future of COVID-19 pandemic.

Even predictions for the next 15 days are possibly not
totally accurate due to rapidly changing situation, espe-
cially in the early pandemic. Nearly all the predictions are
fitting the theoretical trend in the future under current
settings of parameters. But given the considerable uncer-
tainty due to underlying disease, climate and behavior
change, not to mention the uncertainty over exactly what
and when interventions would be implemented, the tra-
jectories of the epidemic were quite different [145]. For
example, on February 5, 2020, the National Health Com-
mission of the People’s Republic of China announced the
release of the tentative fifth revised edition of the Diagnosis
and Treatment Plan for COVID-19 which resulted in a
dramatically increase of the number of daily new cases of
COVID-19 in China. This huge increase of confirmed cases
as a result of change in diagnostic criteria is impossible to

be forecasted by any models whatever data they used and
whatever structure they had. Although more complex
structure and parameters could help models reduce the
bias of model fitting, we should be aware of the risk of
overfitting. Meanwhile, in the early stage of epidemic, with
limited knowledge of virus and cumulated data, it is almost
impossible to have a stable solution. Some models may
even fail to converge if too many parameters are specified
in the model.

Given the same dataset of cases, a complexmodel may
not be more reliable. At the beginning of a pandemic, the
knowledge of disease was limited and a simple model
would be more reliable. With increasing knowledge of vi-
rus and data, the simple model could be expanded with
extending compartments and parameters and answered.
Which parameter and compartment to be added is
depending on the questions. For example, when studying
the effect of control measures, a parameter representing
the reduction on transmission rate or contact rate is
needed. Transmission dynamics models with different
compartments and parameters may lead to similar
outcome in short-term predictions but not to do so in long-
term predictions. For future prediction, it is appropriate to
onlymake short-term predictions, fewer than 15 days in the
future, as a result of fast-changing situations, such as the
implementing of interventions and so on, and report
predictive intervals for the model. Besides, accounting
for the various situation, models with time-varying
parameters such as transmission rate would be more
reliable.

Understanding what models cannot predict is some-
times more important than understanding what they
can [35, 145]. We summarized the values of transmission
dynamics models into three categories:
– Early warning of the epidemic. By using the accu-

mulated data during an outbreak, transmission dy-
namic models could be established. Even at the early
stage of an outbreak when almost nothing of the
novel pathogen was known, the models could help to
explore possibility of epidemiological features and
estimate related parameters with a reasonable range to
facilite virologic studies and provides references for
following studies [146].With the increasing knowledge
of SARS-CoV-2, mathematical models could be modi-
fied to fit the data and then predict the future trend of
epidemic, such as the peak time and size, hospitali-
zation needs, and so on. Although all these predictions
could not be completely accurate, these predictions
could give early warnings that how large the number
of cumulated cases would be in the future under cur-
rent condition when no more interventions were

104 Guan et al.: Transmission dynamics model and the COVID-19 epidemic



implemented. For example, at the beginning of
epidemic, Li’s model had already estimate that the
infectiousness of infected individuals with no or mild
symptom is 55% infectiousness of cases with severe or
critical symptom [13]. With the estimated transmission
parameters including transmission rate, incubation
period, etc., scientists can make early warning about
the epidemic. At the end of the pandemic, the model
could be used to explore the probability of resurgence
if a series of interventions were lifted.

– Decision Supporting. Making decisions are always
difficult, especially in an epidemic in which thousands
even millions of people may be affected by the de-
cisions. Strict control measures may save lives, but
destroy economics and social stability. With the fitted
transmission models, scientists can identify the in-
fluences of different parameters on transmission. We
can then specify different values of the parameters so
as to emulate how the disease will spread and how the
epidemic will develop under different scenarios of
control measures. It is also possible for us to obtain the
optimal control strategies which balance the burden of
economy and health system and controlling COVID-19
transmission. Thus, themodels would be helpful when
making “evidence-based” decisions.

– Policy Evaluation. After the implementation of
comprehensive prevention and control measures,
compartment models could also assist to quantitatively
assess the effectiveness of these control measures by
comparing the expected number and observed number
of cases or the reduction on transmission rate so that
the control measures could be adaptively adjusted in
time when necessary, as well as explore appropriate
control strategies. After the epidemic is over, the cost-
effectiveness of prevention and control measures can
be evaluated to provide evidence for government to
establish an epidemic emergent response system [147].

To summary, we proposed that the core values of trans-
mission dynamics models are not only to predict, but also
to explore various possibilities of the epidemic.

All models are wrong, but some are useful.

– George E. P. Box, statistician
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