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Abstract: The article studies the simulation-based mathematical modeling of bioheat transfer under
the Dirichlet boundary condition. We used complex non-linear dual-phase-lag bioheat transfer
(DPLBHT) for analyzing the temperature distribution in skin tissues during hyperthermia treatment
of infected cells. The perfusion term, metabolic heat source, and external heat source were the three
parts of the volumetric heat source that were used in the model. The non-linear DPLBHT model
predicted a more accurate temperature within skin tissues. The finite element Runge–Kutta (4,5)
(FERK (4,5)) method, which was based on two techniques, finite difference and Runge–Kutta (4,5),
was applied for calculating the result in the case of our typical non-linear problem. The paper studies
and presents the non-dimensional unit. Thermal damage of normal tissue was observed near zero
during hyperthermia treatment. The effects of the non-dimensional time, non-dimensional space
coordinate, location parameter, regional parameter, relaxation and thermalization time, metabolic
heat source, associated metabolic heat source parameter, perfusion rate, associated perfusion heat
source parameter, and external heat source coefficient on the dimensionless temperature profile were
studied in detail during the hyperthermia treatment process.

Keywords: blood perfusion; DPLBHT model; FERK (4,5) method; Gaussian external heat source;
hyperthermia treatment; metabolic heat source; non-linear; skin tissues

1. Introduction

Tumors or cancerous cells are a classical sign of inflammation and can be benign or malignant
(cancerous). In America, nearly 606,880 people were anticipated to die from cancer in 2019, which
translated to about 1660 deaths each day. Cancer is the second most common cause of death in the
U.S., exceeded only by heart disease [1]. Therefore, the study of tumor treatment is required to save
human lives in the world. Several researchers [2–5] studied the therapeutic treatment of bioheat transfer
in skin tissue with the help of mathematical modeling. Mathematical modeling of heat transfer in
biological systems has been a broad field of study for various biologists, physicians, mathematicians,
and engineers [6]. An efficient clarification of the physiological relation between the vascular system
and tissue is necessary in medical science for treating fatal diseases like tumors. Currently, mathematical
models are commonly used to describe the process of hyperthermia, cryosurgery, and many other
techniques for the treatment of tumors. It is mandatory to know the thermal effect in skin tissue during
the hyperthermia treatment process. The size, shape, and location of tumors are important factors for
the treatment process [7].

Several bioheat transfer-based models have assumed the physiological properties of human
beings to be constant, which are not described accurately for hyperthermia treatment of tumors or
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cancer. However, because the inner structure of the human body is inhomogeneous, the physiological
parameters depend on local tissue temperature. Some researchers [8–10] considered the perfusion
term to be a function of the temperature in local tissue. Similarly, some authors [11,12] assumed
a metabolic heat source in their model, and this was also a function of the temperature in local
tissue. The perfusion term and metabolic heat source are both considered a function of temperature
in local tissue, i.e., a realistic-type function, and the external heat source is taken as electromagnetic
radiation [13]. However, the location and shape parameters are not derived very well.

Modeling of the tumor treatment is done by the study of the heat transfer in the biological system.
The treatment of tumors has been broadly studied in pre-clinical models with human clinical trials [14].
The treatment techniques such as hyperthermia, thermal ablation, cryoablation, and cryosurgery are
used for selectively destroying the tumor in living skin tissue. Thermal therapy is an ideal modality
for the treatment of infected cells using different types of external heat sources like electromagnetic
irradiation [6,10,12,13], magnetic nanoparticles (MNPs) [15,16], etc.

Andreozzi et al. (2019) [17] performed a sensitivity analysis of the hyperthermia effects on a
typical transient percolation process in a tumor. In this process, the temperature was raised in a
tumor region according to different categories of thermal therapy. Bioheat transfer was analyzed by
Andreozzi (2019) [18], who took many mechanisms into account, such as thermal conduction in tissues,
convection and blood perfusion, metabolic heat generation, vascular structure, and the change of tissue
properties depending on the physiological condition. A numerically investigated bioheat transfer
model has been used for hyperthermia treatment with the convection term instead of the perfusion
term in the energy conservation equation for tissue and blood [19]. Wang et al. (2015) [20] studied
the temperature distribution within biological organs for therapeutic aspects related to hyperthermia
treatments such as radiofrequency ablation. The accuracy of temperature-based treatment depends on
accurate prediction and control of the temperature in skin tissue [12]. A quantitative analysis of the
relationship between arterial blood and tissue temperature was done by Pennes (1948) [21]. There are
many bioheat transfer models for studying the heat transfer in skin tissue in the existing literature, and
it was found that the commonly used bioheat transfer model for analyzing the temperature distribution
is the Pennes bioheat transfer model [21], which is based on the classical constitutive relation that was
introduced by Fourier, i.e.,

q(r, t) = OT(r, t). (1)

Penne’s bioheat transfer (PBHT) model predicts the temperature with the infinite speed of propagation,
which is incompatible in the real domain. To unify this, consecutively, Cattaneo [22] and Vernotte [23]
introduced it in 1958, independently; so, the heat flux and temperature gradient are combined with a
constitutive relation, which is given as:

q(r, t + τq) = OT(r, t). (2)

Equation (2) is known as the single-phase-lag (SPL) constitutive relation. Relaxation time (τq) indicates
the lag time due to heat flux. In 1995, Tzou [24,25] introduced his concept in the generalization of the
SPL model by assuming thermalization time due to the temperature gradient, called the dual-phase-lag
(DPL) constitutive relation, i.e.,

q(r, t + τq) = OT(r, t + τT). (3)

where τT is known as the thermalization time, and the combination of the DPL constitutive relation and
energy balance equation is known as the DPLBHT model. For the study of micro-scale responses in
time and to capture the micro-scale responses in space, the DPL bioheat transfer model has been used.
Therefore, in the existing literature, the DPL bioheat transfer model is the most realistic in comparison
with others [26].

Thermal-probes and cryoprobes are used for tumor or cancer treatment. In the DPLBHT model,
the thermal correlation between the cylindrical cryoprobe and skin tissues was studied by Mochnaki
and Machrzak [27]. A relation was developed between the heat transfer in perfused skin tissue with the
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thermal-probe and a local symmetric component of the vascular system [28]. Many authors [8,29–33]
have assumed a non-linear PBHT model with a physiological property such as perfusion rate for
finding the temperature in skin tissues. In reality, These types of models do not give realistic data of the
temperature in skin tissue because they do not consider the relaxation and thermalization time in the
heat flux and temperature gradient, respectively. This is a drawback of this type of nonlinear bioheat
transfer model.

The thermal behaviors of a perfused tissue with two co-current and counter-current vascular
networks were investigated numerically under an interstitial hyperthermia process using both local
thermal equilibrium (LTE) and local thermal nonequilibrium (LTNE) assumptions [34]. Zhang et al. [30]
analyzed the PBHT model under the steady-state condition with the perfusion rate in skin tissues
varying linearly, quadratically, and exponentially with local skin tissue temperature and solved it using
the boundary reciprocity method. The smoothed particle hydrodynamic method was used for the
results of the nonlinear PBHT model with space coordinate-dependent thermal conductivity. Several
researchers studied the temperature distribution in skin tissues using the DPL bioheat transfer model,
undertaking different types of volumetric heat sources. They solved the DPLBHT model using the
finite element Legendre wavelet Galerkin method [15] and used the FERK (4,5) method [10,12,13]
and finite difference-decomposition method [6]. The development of the reconfigurable distributed
multiple-input multiple-output technique in a practical communication environment was proposed by
Do and Haas [35].

In this paper, we propose the highly non-linear DPLBHT equation under the constant boundary
condition, which consists of temperature-dependent metabolism and blood perfusion heat generation,
as well as a Gaussian heat source. This model is very useful for hyperthermia treatment because the
physiological properties of biological skin tissue are considered as a realistic function of local tissue
temperature. These types of physiological properties with a Gaussian heat source have been used in the
DPLBHT model till now. Due to the lower computational complexity and less data storage, combined
with the high accuracy, the problem is converted into a system of ordinary differential equations with
initial conditions using the finite difference scheme. This system of ordinary differential equations with
initial conditions is solved using the RK (4,5) scheme. All parameters such as the location parameter,
regional parameter, and relaxation and thermalization time provide a better understanding of the control
temperature in the hyperthermia condition. The metabolic heat source, associated metabolic heat source,
and external heat source increase as the local skin tissue temperature increases. The perfusion rate,
associated with the perfusion heat source parameters, decreases as the local skin tissue temperature
increases as well.

This paper is organized into seven sections. In the first section, the introduction of the bioheat
transfer models, some methods, and also the nomenclature are given, which support our proposed
work. Our mathematical problem is formulated in Section 2. In the third section, our mathematically
formulated problem is converted into a dimensionless form. Section 4 describes the solution of the
proposed problem using the FERK (4,5) method. In Section 5, we propose the exact solution of our
problem for a particular case to verify the FERK (4,5) method. The results and discussion are given in
Section 6. The last section consists of the conclusions of the proposed work.

2. Formulation of the Problem

Hyperthermia is a treatment process of tumors and cancer. In this treatment process,
the temperature of the tumor region is kept between 41 ◦C and 46 ◦C, with approximately a time
period of 15 to 60 min [36]. The outer surface of the skin tissue is kept at a fixed temperature T0 = 37 ◦C,
initially, during hyperthermia treatment. The outer surface is heated with a Gaussian heat source
externally. The inner surface of the skin, i.e., r = 0, is insulated, and the temperature of the outer surface
is maintained constant with the help of a cooling pad, which is shown in Figure 1. The tumor region is
indicated by the schematic geometry of the skin tissue, which depends on the probe region parameter rp.
If this parameter increases or decreases, then the location of the tumor in skin tissue changes. This is seen
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in the external heat source. We used a heated metal disc with temperature control and approximated
by the one-dimensional non-linear DPLBHT model in the Cartesian coordinate system under the first
kind (constant) boundary condition. This is a combination of the DPL constitutive relation and also the
one-dimensional energy balance equation. The energy balance equation in one-dimensional form is
written as [21]:

ρc
∂T(r, t)

∂t
= −∇q(r, t) + Qb + Qm + Qr, (4)

where the left-hand side denotes the conduction term in the skin tissue and the first term of the
right-hand side denotes the convection term in the skin tissue. Qb, Qm, and Qr are the perfusion heat
source, the metabolic heat source, and the externally applied heat source term, which is taken as a
Gaussian-type heat source. The metabolic heat source is generated in the body by the intake of food,
and the perfusion heat rate is the heat source that is spent in blood circulation. Still, the Gaussian heat
source is externally applied on the outer surface.

Figure 1. Schematic geometry of the skin tissue with the tumor and probe region.

The blood perfusion Qb indicates convection in the blood. This term removes heat due to the flow
of blood. It was defined by several researchers [10,13,30].

Qb = wb(T)ρbcb( Tb − T), (5)

The perfusion coefficient wb(T) depends on the tissue temperature due to the anatomical structure of
the skin tissue containing blood vessels. wb(T) was taken from Zhang et al. [30]:

wb(T) = wb0 × ea
(

T−T0
T0

)
, (6)

where wb0 and a are the assumed blood perfusion coefficient and associated blood perfusion
coefficient initially.

In Equation (4), Qm indicates the metabolism of the human body. It is the factor that increases
the local tissue temperature. The realistic function Qm of the local tissue temperature was taken from
Mitchell et al. [11]:

Qm = Qm0 × 2β
(

T−T0
10

)
, (7)

where Qm0 and β are the initial metabolic heat source coefficient and the associated metabolic
constant, respectively. T and T0 are the local skin temperature and the initial temperature of the
skin tissue, respectively.

A Gaussian heat source-type expression is curve fitted based on the experimental measurements of
the specific absorption rate distribution in the target region [37]. The selection of a Gaussian distribution
source termed as a spatial heating source helps to determine the hyperthermia position. Therefore,
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that Gaussian-type heat source expression is applied on the outer surface, and it was taken from
Kumar et al. [13]:

Qr = Qr0 eη(r̄−rp)2
, (8)

where Qr0 is the reference value of external heat generation in the tissue; r̄ (= L− r) is the measured
length from the outer surface; L is the length of the tissue temperature. rp is the length of the
probe region.

Now, the energy balanced equation is combined with the approximation of the DPL constitutive
relation of the first order in one-dimensional form, then we obtain the non-linear DPLBHT
equation [13], i.e.,

ρcτq
∂2T
∂t2 + ρc

∂T
∂t

= k
∂2T
∂r2 + kτT

∂3T
∂t∂r2 + Qb

+ Qm + Qr + τq
∂Qb
∂t

+ τq
∂Qm

∂t
+ τq

∂Qr

∂t
, (9)

initially subjected to:

T(r, 0) = T0,
∂T(r, 0)

∂t
= 0. (10)

Physically, the heating/cooling condition at the outer surface r = L was given in [15], i.e.,

T(L, t) = Tw, (11)

and the inner surface is adiabatic [10,12], so that it is defined as:

∂T(0, t)
∂r

= 0. (12)

In the existing literature, the DPLBHT model with a Gaussian heat source in the presence of a
realistic function of the metabolic and perfusion heat generation terms has not been studied till now.
We considered the Gaussian heat source because it helps with the control of temperature during
hyperthermia treatment.

3. Conversion of the Problem into Dimensionless Form

One way of breaking away from the quantitative features of the corresponding model is to rewrite
the equation in terms of non-dimensional quantities. The proposed DPLBHT equations reduces in
terms of non-dimensional quantities. These types of studies allow an easy and direct comparison of the
proposed mathematical model. Therefore, the non-dimensionless variables with similarity criteria was
introduced in [13]:

x =
r
L

, Fo =
kt

ρcL2 , Foq =
kτq

ρcL2 , FoT =
kτT

ρcL2 ,

θ =
T − T0

T0
, Pf =

√
wb0cbρb

k
L, Pm =

Qm0L2

kT0
,

Pr =
Qr

kT0
L2, α = 0.1× T0 × β, η1 = η × L,

x̄p = 1− xp. (13)

Upon using Equation (13), then Equations (9)–(12) can be reduced as follows:

Foq
∂2θ

∂F2
o
+ Θ

∂θ

∂Fo
=

∂2θ

∂x2 + FoT
∂3θ

∂Fo∂x2 + P2
f (θb − θ) eaθ

+ Pm × 2αθ + Pr exp(η1(x̄− xp)
2), (14)
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where Θ =
[
1− (a(θb − θ)− 1)FoqP2

f eaθ − FoqPmα log(2) · 2αθ
]
, initially subjected to:

θ(x, 0) = 0 and
∂θ(x, 0)

∂Fo
= 0. (15)

The outer boundary condition:
θ(1, Fo) = θw, (16)

and the inner boundary condition is taken as insulated:

∂θ(0, Fo)

∂x
= 0. (17)

Our problem transformed into dimensionless form is solved using the finite element Runge–Kutta(4,5)
method. The detail of this method is described in the following section.

4. Finite Element Runge–Kutta (4,5) Method

The FERK (4,5) method consists of two techniques: (i) discretization in space coordinates using the
finite difference scheme [38]; then our proposed problem is reduced to a system of ordinary differential
equations (ODEs); and (ii) another scheme, RK (4,5) [39], is used for the solution of the ODEs. These
are described in the following subsection.

4.1. Discretization Technique in Space Coordinates

We discretize the finite range of space coordinates [0,1] into l + 1 discrete points, i.e., 0 = x0 <

x1 < x2 < x3 < · · · < xi < · · · < xl < xl+1 = 1, where xi+1 = xi + h, and h is the constant length of
the subinterval of domain [0, 1], which is equal between any two nodes. The approximation of the
second order derivative is defined as:

∂2θ(x, Fo)

∂x2 |x=xi =
θi+1(Fo)− 2θi(Fo) + θi−1(Fo)

h2 , 1 ≤ i ≤ l.

Using the central finite difference formula, Equations (14)–(17) are reduced to the following form:

Foq
d2θ1

dFo2 = −Θ1
dθ1

dFo
+

(−29θ1 + 38θ2 − 9θ3)

21h2

+
FoT

h2
d

dFo
(−29θ1 + 38θ2 − 9θ3) + P2

f (θb − θ1)× eaθ1

+Pm × 2αθ1 + Pr × exp(η1(x̄1 − xp)), (18)

Foq
d2θi
dFo2 = −Θi

dθi
dFo

+
(θi+1 − 2θi + θi−1)

h2

+
FoT

21h2
d

dFo
(θi+1 − 2θi + θi−1) + P2

f (θb − θi)× eaθi

+Pm × 2αθi + Pr × exp(η1(x̄i − xp)), 1 < i < n, (19)

Foq
d2θn

dFo2 = −Θn
dθn

dFo
+

(θw − 2θn + θn−1)

h2

+
FoT

h2
d

dFo
(θw − 2θn + θn−1) + P2

f (θb − θn)× eaθn

+Pm × 2αθn + Pr × exp(η1(x̄n − xp)). (20)
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with initial conditions:

θi(0) = 0 and
dθi(0)

dFo
= 0, 0 ≤ i ≤ n, (21)

where Θi =
[
1− (a(θb − θi)− 1)FoqP2

f eaθi − αFoqPmlog(2)× 2αθi
]

, 1 ≤ i ≤ n.

4.2. Runge–Kutta (4,5) Scheme

Let:
d

dFo

(
Foq

dθi(Fo)

dFo

)
=

dΨi(Fo)

dFo
. (22)

Thus, Equations (18)–(21) are reduced to the following form:

dθi(Fo)

dFo
=

Ψi(Fo)

Foq
, 1 ≤ i ≤ n, (23)

dΨ1(Fo)

dFo
= −θ1

Ψ1(Fo)

Foq
+

(−29θ1 + 38θ2 − 9θ3)

21h2

+
FoT

21h2Foq
(−29Ψ1 + 38Ψ2 − 9Ψ3) + P2

f (θb − θ1)× eaθ1

+Pm × 2αθ1 + Pr × exp(η1(x̄1 − xp)), (24)

dΨi(Fo)

dFo
= −Θi

Ψi(Fo)

Foq
+

(θi+1 − 2θi + θi−1)

h2

+
FoT

h2Foq
(Ψi+1 − 2Ψi + Ψi−1) + P2

f (θb − θi)× eaθi

+Pm × 2αθi + Pr × exp(η1(x̄i − xp)),

1 < i < n, (25)

dΨn(Fo)

dFo
= −θn

Ψn(Fo)

Foq
+

(θw − 2θn + θn−1)

h2

+
FoT

h2Foq
(−2Ψn + Ψn−1) + P2

f (θb − θn)× eaθn

+Pm × 2αθn + Pr × exp(η1(x̄n − xp)), (26)

with initial conditions:

θi(0) = 0, and (27)

Ψi(0) = 0, (28)

where Θi =
[
1− (a(θb − θi)− 1)FoqP2

f eaθi − αFoqPmlog(2).2αθi
]

, i = 1, 2, 3, . . . , n.
The typical type of ODEs are computed with the help of the RK (4,5) technique. The proposed

technique is very efficient for calculating the non-dimensional temperature of our problem.
MATLAB-2018 and DEV-C++ software were used for all computational work.

5. Exact Solution

In order to justify the validity of the results, the exact solution is required. In the present non-linear
DPLBHT model in Equation (13), when we assumed the associated blood perfusion constant a = 0,
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associated metabolism parameter α = 0, and external heat source Pr = 0, then this model was reduced
to the following form:

Foq
∂2θ

∂F2
o
+
[
1 + FoqP2

f

] ∂θ

∂Fo
=

∂2θ

∂x2 + FoT
∂3θ

∂Fo∂x2 + P2
f (θb − θ) + Pm, (29)

subject to the initial conditions:

θ(x, 0) = 0 and
∂θ(x, 0)

∂Fo
= 0. (30)

boundary conditions:
θ(1, Fo) = θw, (31)

and symmetric conditions:
∂θ(0, Fo)

∂x
= 0. (32)

Taking the Laplace transform and then its inversion technique, the solution of Equation (29) under
the initial condition (30) and boundary conditions (31) and (32) turns out to be:

θ (x, Fo) = θw

(
cosh(Pf x)
cosh(Pf )

+
∞
∑

n=1

eSn1Fo cosh(MSn1x)
Sn1(Sn1−Sn2)

+
∞
∑

n=1

eSn2Fo cosh(MSn2x)
Sn2(Sn2−Sn1)

)
+
(

Pf
2θb + Pm

)(
Pf
−2 − cosh(Pf x)

Pf
2 cosh(Pf )

−
∞
∑

n=1

eSn1Fo cosh(MSn1x)
Sn1(FoqSn1

2+(1+Pf
2Foq)Sn1+Pf

2)(Sn1−Sn2)

)
−
(

Pf
2θb + Pm

)( ∞
∑

n=1

eSn2Fo cosh(MSn2x)
Sn2(FoqSn2

2+(1+Pf
2Foq)Sn2+Pf

2)(Sn2−Sn1)

)
, n = 1, 2, 3, . . . ,

(33)

where rn = 1 + Pf
2Foq + (2 n− 1/2)2 π2FoT, Sn1 =

−rn+
√

rn2−4 Foq(Pf
2+(2 n−1/2)2π2)

2Foq
, Sn2 =

−rn−
√

rn2−4 Foq(Pf
2+(2 n−1/2)2π2)

2Foq
, MSn1 =

FoqSn1
2+(1+Pf

2Foq)Sn1+Pf
2

1+FoTSn1
and MSn2 =

FoqSn2
2+(1+Pf

2Foq)Sn2+Pf
2

1+FoTSn2
.

6. Results and Discussion

In the proposed computational work, the temperature profile in the skin tissue was computed
from the highly non-linear DPLBHT model whenever the outer boundary was kept at a fixed initial
temperature. The proposed mathematical model consisted of a temperature-dependent perfusion
term and also a temperature-dependent metabolic heat source, the physical function of both terms
being experimentally validated. The results are shown graphically in Figures 2–11. Those parameters
whose values differed from the reference values of the non-dimensional parameters to calculate the
non-dimensional temperature profile in the skin tissue with a finite length are given in the following
Tables 1–5 .
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Table 1. Physiological properties of skin tissues.

Parameters Units Numerical Values References

ρ kg/m3 1000 [6]
c J/kg ◦C 4000 [32]
cb J/kg ◦C 3340 [6]
k W/m ◦C 0.5 [34]
L m 0.05 [10]
T0

◦C 37 [31]
Tw

◦C 37 [31]
τq s 28 [10]
τT s 20 [10]
Tb

◦C 37 [32]

Table 2. Metabolic properties of skin tissues.

Parameters Units Numerical Values References

Qm0 W/m3 0.17 [11]
β ◦C−1 2.15 [13]

Table 3. Blood perfusion properties.

Parameters Units Numerical Values References

wb0 s−1 3.075× 10−3 [13]
a – 2.15 [13]

Table 4. External heat source properties of the targeted region.

Parameters Units Numerical Values References

Qr0 W/m3 5.17× 105 [13]
η m−1 −127 [10]
rp m 0.005 [10]

Table 5. Numerical value of the parameter used in the thermal damage function.

Parameters Units Numerical Values References

A s−1 3.11× 1098 [15,40]
δE J mol−1 6.75× 105 [15,40]
R J mol−1 K−1 8.314 [15,40]

6.1. Comparison of the Exact and Numerical Solutions

The FERK (4,5) method was applied to find the numerical results of the proposed highly non-linear
DPLBHT model. The proposed technique unified the essence of the RK (4,5) method with more
efficiency and less local error [38,39]. The accurate feasibility of the present numerical scheme was
shown by comparing it with the exact solution under a particular case of the non-linear DPL bioheat
transfer equation in skin tissues. The comparison of the FERK (4,5) method with the exact solution is
shown in Figure 2, and we observed high accuracy with less computational complexity, being merits
of the proposed method.
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Figure 2. Comparison of the exact solution and the FERK (4,5) solution at x = 0.9.

6.2. Effect of Fo and x

Figure 3 shows the temperature profile with respect to the dimensionless space coordinates and
also with dimensionless time. Figure 3a is considered a targeted point at x = 0.5. The temperature
profile was approximately 0.24 ≈ 45.88 ◦C, where the hyperthermia temperature lied between 41 ◦C
and 46◦C for 15 to 60 min. Therefore, the infected or tumorous cells died for different values of Fo.
The graphs are drawn for x = 0.9 when dimensionless time Fo = 0.01. Then, the temperature profile
was less and Fo = 0.015, and then, the temperature profile reached the hyperthermia temperature.
Figure 3b demonstrates the temperature profile along Fo for different values of the non-dimensional
distance coordinates. The region x = 0.8 and 0.9 reached the hyperthermia region. In this case,
x = 0.9 was the targeted region, so that the temperature at that position was 0.24 ≈ 45.88. Therefore,
the temperature in the skin tissue achieved the hyperthermia temperature (41 ◦C to 46 ◦C) in the
tumor region.
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Figure 3. (a) Plot of the dimensionless temperature profile vs. the dimensionless space coordinates for
different values of dimensionless time at xp = 0.1. (b) Plot of the dimensionless temperature profile vs.
dimensionless time for different values of the dimensionless space coordinates at xp = 0.1.

6.3. Effect of xp

Figure 4 demonstrates three-dimensional graphs such as a, b, c, d, and e. These graphs were
drawn for different values of location parameter xp. This shows that if xp were changed, then the
location of the tumor also changed in the skin tissue. Figure 4a–e are drawn for different values of
xp = 0.1, 0.3, 0.5, 0.7, and 0.9. From this parameter, we heated the appropriate targeted point. In a
similar way, we also clearly see in Figure 5 that the position of parameter xp = 0.1, 0.3, 0.5, 0.7, 0.9
was heated with the hyperthermia temperature approximately in the nbd.of 0.25 ≈ 46 ◦C. From
Figures 4 and 5, we see that the position of hyperthermia depended on the location parameter xp.
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Figure 4. Three-dimensional plot of dimensionless temperature vs. the dimensionless space coordinates
and dimensionless time for different values of the location parameters: (a) xp = 0.1, (b) xp = 0.3, (c)
xp = 0.5, (d) xp = 0.7, and (e) xp = 0.9.
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(c)

(d)

(e)
Figure 5. Contour plot of dimensionless temperature vs. the dimensionless space coordinates and
dimensionless time for different values of the location parameters: (a) xp = 0.1, (b) xp = 0.3, (c)
xp = 0.5, (d) xp = 0.7, and (e) xp = 0.9.

6.4. Effect of η in the Contour Plot

Figure 6 shows the effect of the regional parameter η when the values of η decreased, then the
width of infected or cancerous cells decreased. From regional parameter, we confirmed accordingly
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the width of tumorous cells (see Figure 6). We chose the value of η according to the width of the tumor
area. The regional parameter helped in the accurate heating of the cancerous cells, and the region
was controlled by it. The regional parameter was very important for the hypothermia treatment of
the tumor.

(a)

(b)

(c)
Figure 6. Contour plot of dimensionless temperature vs. the dimensionless space coordinates and
dimensionless time for different values of cancerous region parameters: (a) η = −27, (b) η = −127, and
(c) η = −227.
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6.5. Effect of Foq and FoT

In Figure 7, the effect of the relaxation time in heat flux is shown. The value of the temperature in
the local tissue increased as dimensionless time increased from zero to 0.03 and, after that, constant
at the targeted region at 0.9. Therefore, we can say that a significant effect of Foq was shown in the
targeted region. In Figure 8, we show the effect of lag time FoT due to the temperature gradient.
The value of the temperature profile decreased with the lag time FoT in between dimensionless time
zero to 0.3 at x = 0.9. However, in comparison to FoT , Foq was more effective in the targeted region.
Therefore, FoT and Foq in the hyperthermia position played a vital role because the internal cells were
very sensitive, and it was very effective with a small amount of temperature increase.
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Figure 7. Plot of dimensionless temperature vs. dimensionless time for different values of dimensionless
lag time due to heat flux parameters.
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Figure 8. Plot of dimensionless temperature vs. dimensionless time for different values of dimensionless
lag time due to the temperature gradient.

6.6. Effect of Pm and α

The effects of the metabolic heat source and its associated parameter are shown in Figure 9.
In Figure 9a, we find that the value of the temperature profile increased with the metabolic heat
source, and also, we observe that Pm increased, then the temperature profile was constant. Similarly,
the value of the associated metabolic coefficient increased as the temperature profile remained constant.
Therefore, both Pm and α affected the hyperthermia temperature.
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Figure 9. Plot of dimensionless temperature vs. dimensionless time for different values of (a)
dimensionless metabolic heat coefficient Pm and (b) associated metabolic heat parameter α.

6.7. Effect of Pf

Figure 10 shows the effect of the blood perfusion coefficient and the associated blood perfusion
parameter. The value of Pf decreased as the temperature profile increased (seen in Figure 8a), and the
value of α increased as the temperature profile decreased. The effects of Pf and β were both meaningful
to maintain the hyperthermia temperature at the hyperthermia position.

6.8. Effect of Pr and η

In Figure 11, we see the effect of the external heat source, as well as the cancerous cells’ region
parameter. We observed the value of Pr and η to increase as the temperature profile increased (seen in
Figure 9a,b). The external heat source in the cancerous cell region, the location parameter, was present
in the external heat source, which was a type of Gaussian heat source. Therefore, all these parameters
had a more significant effect at the position of hyperthermia.
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Figure 10. Plot of dimensionless temperature vs. dimensionless time for different values of (a)
dimensionless blood perfusion heat source coefficient Pf and (b) associated blood perfusion heat source
parameter a.
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Figure 11. Plot of dimensionless temperature vs. dimensionless time for different values of (a)
dimensionless external heat source coefficient Pr and (b) associated external heat source parameter η.
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6.9. Effect of Damage Integral Function (Ω)

We can see that the temperature of the skin tissue increased rapidly along with the increase in the
value of reference heat source Qr0. Therefore, the thermal damage in normal tissue may have occurred
by the heating with the external heat source. The thermal damage function Ω was established by
Henriques and Moritz [41], which is given as follows:

Ω(t) =
∫ t

0
A exp

(
−δE

R(T + 273)

)
ds, (34)

where δE is the energy of the initiation of irreversible ablation; A is the frequency constant; R is the
universal gas constant; and T (= T0 + T0 × θ) is the local tissue temperature, which is taken from
Equation (13).

Jiang et al. [40] solved Equation (34) using the difference method, and it is given as follows:

Ω(i) =
n

∑
i=0

A exp
(

−δE
R(T0(1 + θ(i)) + 273)

)
M t, (35)

where i indicates the time step when the node temperature was above the threshold; and n indicates
the final time step.

Xu et al. [42] studied a formula of the probability of the thermal damage of normal tissue surrounding
the tumor region, which is given as:

P(i) = 1− e−Ω(i), (36)

where P is the probability of the thermal damage of normal tissue surrounding the tumor region.
The result was calculated when the value of the time step was 0.001 s [40], which is presented in

Table 6. The numerical result showed that the thermal damage of normal tissue in the target region
increased as the value of the external heat source increased. We also observe from Equation (35) that
when the value of thermal damage was in the neighborhood of zero, then the probability of the normal
tissue damage was near zero, i.e., no thermal damage of the normal tissue during the hyperthermia
treatment.

Table 6. Thermal damage of the normal tissue during the hyperthermia treatment.

Value of Qr0 Thermal Damage of Normal Tissue Approximate Value of P

5.17× 105 2.4985× 10−10 0
5.17× 105 2.8665× 10−11 0
5.17× 105 3.2429× 10−12 0

Due to the above description, we can say that the method is very beneficial for medical science
and will benefit the user.

7. Conclusions

A highly non-linear DPLBHT model was analyzed under the constant boundary condition in
the presence of perfusion and metabolic heat sources, which were a realistic function of temperature.
The external heat source was considered as a Gaussian heat source-type function, which consisted of
a region of cancerous cells as a parameter, the location parameter. The results of this study are given
as follows:

• The finite element RK(4,5) method was applied for the solution of the highly non-linear DPLBHT
model and showed high accuracy with less computational complexity.

• The effect of the temperature profile on the different points was analyzed for a different times for
the hyperthermia time.
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• The effect of regional parameter η was that when the values of η decreased, then the width of
the infected or cancerous cells decreased. The value of Pr and η increased as the temperature
profile increased.

• We observed that the relaxation time Foq was more effective in the targeted region in comparison
with the thermalization time FoT .

• As the value of the temperature profile increased, the metabolic heat source increased, but the
perfusion rate decreased.

• Graphs were drawn for different values of location parameter rp, then the situation of the targeted
region was identified with the help of this parameter.

• We also calculated the probability of the thermal damage of the normal tissue surrounding the
tumor and found no thermal damage of the normal tissue during hyperthermia treatment.

From the above observations, we concluded that the presented highly non-linear DPLBHT model
played a vital role in the hyperthermia treatment of infected cells.
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Nomenclature

T temperature of tissue, ◦C
Tb arterial blood temperature, ◦C
Tw wall temperature at the outer boundary, ◦C
q heat flux, W/m2

r space coordinates, m
rp length of probe region, m
L length of tissue, m
t time, s
τq phase lag due to heat flux, s
τT phase lag due to temperature gradient, s
c specific heat of tissue, J/kg ◦C
cb specific heat of blood, J/kg ◦C
ρ density of skin tissue, kg/m3

k thermal conductivity of tissue, W/m ◦C
ωb0 reference blood perfusion term, s−1

Qm0 reference metabolic heat generation, W/m3

β associated metabolism constant, ◦C−1

η antenna constant associated with the location of the probe region, m−1

δE energy of initiation of irreversible ablation, J mol−1

A frequency constant, s−1

Dimensionless Variables and Similarity Criteria

x dimensionless space coordinates
Fo Fourier number or dimensionless time
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Foq dimensionless phase lag due to heat flux
FoT dimensionless phase lag due to temperature gradient
θ dimensionless local tissue temperature
θb dimensionless arterial blood temperature
θw dimensionless wall temperature at boundary
Pf dimensionless blood perfusion coefficient
Pr dimensionless external heat source coefficient
Pm dimensionless metabolic heat source coefficient
α associated metabolism constant
a associated blood perfusion constant
Ω thermal damage integral function
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