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ABSTRACT
Influenza is a major public health concern causing millions of hospitalizations every year. The current 
vaccines need annual updating based on prediction of likely strains in the upcoming season. However, 
mismatches between vaccines and the actual circulating viruses can occur, reducing vaccine effectiveness 
significantly because of the remarkably high rate of mutation in the viral glycoprotein, hemagglutinin (HA). 
Clearly, it would be of great interest to determine the potential role of universally conserved epitopes in 
inducing protective immunity. Here, an antibody against the 14-aa fusion peptide sequence at the 
N-terminus of the HA2 subunit (Uni-1) was investigated for its ability to elicit antibody-dependent cellular 
cytotoxicity (ADCC) in vitro and cross-protection against lethal infection in animals. Uni-1, known to 
neutralize influenza type A (IAV) in vitro, was found to induce strong ADCC against diverse influenza viruses, 
including human and avian IAVs and both lineages of type B (IBV). The ADCC effects against human IAVs by 
Uni-1 was comparable to ADCC induced by well-characterized antibodies, F10 and FI6V3. Importantly, mice 
treated with Uni-1 were protected against lethal challenge of IAV and IBV. These results revealed the versatile 
effector functions of this universal antibody against markedly diverse strains of both IAV and IBV.

HIGHLIGHTS
● The fusion peptide is the only universally conserved epitope in both IAV and IBV
● Mono-specific universal antibody induces strong ADCC against human and avian IAV
● Mono-specific universal antibody induces strong ADCC against IBV from both genetic lineages of IBV
● The antibody has bi-functional effector functions against several influenza viruses
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Introduction

Influenza viruses cause 3 to 5 million hospitalizations and 
290,000 to 650,000 deaths annually.1 Although there is 
currently an annual vaccination strategy in place to protect 
against the circulating strains, influenza continues to be 
a major public health burden. Influenza viruses belong to 
the family Orthomyxoviridae and are divided into four 
types, A, B, C, and D.2 Type A (IAV) and B (IBV) cause 
the greatest mortality with seasonal and pandemic out-
breaks, while type C (ICV) can infect children with mild 
respiratory symptoms. The effect of type D (IDV) on 
human health is yet to be understood.3,4 While IBV and 
ICV are mainly restricted to humans, IAVs infect many 
animal species including pigs, dogs, cats, horses, sea mam-
mals, and birds along with humans.5,6 In addition, IAVs are 
categorized into different subtypes based on the hemagglu-
tinin (HA) and neuraminidase (NA) glycoproteins. There 

are at least 18 HA (H1-H18) and 11 NA (N1-N11) subtypes 
among IAV with many variant strains of each subtype 
being species-specific.7,8 Furthermore, the different HA sub-
types fall into two different phylogenetic groups: group 1 
and 2.9 On the other hand, IBV is classified into two 
antigenically distinct lineages, Victoria and Yamagata, 
which co-circulate within the human population.10–13

Influenza viruses encode their own RNA-dependent RNA 
polymerase that results in approximately one error per replicated 
genome.2,14,15 This leads to antigenic drift where errors accumu-
late over time allowing the virus to escape from existing 
immunity.16,17 In addition, novel IAV strains or subtypes to 
which there is no existing immunity in the human population 
could emerge through antigenic shift where the genome is 
reassorted18or transmitted to humans through direct jump 
from other species.19–21 This can potentially lead to major pan-
demics such as the ones in 1918, 1957, 1968 and 2009.22–24
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The HA is one of the major surface glycoproteins of influ-
enza and is divided into two subunits, HA1 and HA2. HA1 has 
the receptor binding site that binds the sialic acid on a cell after 
which the virus is endocytosed, initiating viral replication. The 
fusion peptide in the HA2 subunit is then exposed mediating 
viral and cell membrane fusion, and uncoating of viral 
genome.2 Since the HA is constantly under immune pressure, 
it is prone to high mutation rate. These mutations usually 
occur in HA1 of both IAV and IBV. The HA2 subunit, shielded 
from immune pressures, is highly conserved in both types.25 

Specifically, the fusion peptide at the N-terminus of HA2 that 
facilitates viral and cell membrane fusion is universally con-
served among these viruses.26

IAV and IBV co-circulate within the human population. 
Either type can be dominant in a given season, causing disease 
with comparable severity.27 Current quadrivalent vaccines pro-
vide strain-specific protection against two IAV and two IBV 
strains; the vaccines mainly elicit neutralizing antibodies (nAbs) 
targeting the variable HA1 subunit. As the strains are selected 
several months ahead of the influenza season, mismatch 
between the vaccine seeds and the actual circulating viruses 
could happen, resulting in significant reduction of vaccine 
effectiveness.12,28,29 In a pandemic situation, such delays in 
generating strain-specific reagents for vaccine quantitation and 
production could further delay the deployment of vaccines.

Given the antigenic variability of HA1, HA2 could be 
explored as a potential target for a universal vaccine. However, 
as it is shielded by HA1, HA2 is less immunogenic.30 While low 
levels of HA2-specific B cells are detected in influenza patients, 
circulating antibodies against the stalk are usually not detectable 
following natural infection in humans.31 Nevertheless, antibodies 
with broad reactivities, i.e. broadly nAbs (BnAbs), targeting highly 
conserved epitopes, mostly in the HA2 domain of diverse influ-
enza viruses from group 1 and/or group 2, could be isolated from 
B cells in the immune repertoire of humans and animals with 
prior exposure to influenza viruses and/or their vaccines.32–34 

Interestingly, most of these reported BnAbs shared the highly 
conserved fusion peptide at the N-terminus of HA2 subunit as 
part of their epitope.34

We previously reported that animals immunized with the 
highly conserved fusion peptide could produce a mono-specific 
antibody capable of cross-neutralizing several subtypes of IAV 
in vitro.26,35 Yet, the neutralizing activity of this antibody was 
moderate compared to other reported antibodies; it remains to 
be seen if this antibody has other effector functions beyond 
neutralization, and, more importantly, whether it could protect 
animals from challenge with lethal doses of IAV and IBV. In 
this study, we reveal that this universal antibody has strong 
antibody-dependent cellular cytotoxicity (ADCC) against 
markedly diverse strains of IAV and IBV, and affords effective 
protection in mice against lethal challenge of IAV and IBV.

Materials and methods

Cells and viruses

Madin-Darby canine kidney (MDCK) cells were grown in 
DMEM (Thermo Fisher Scientific, Waltham, MA) supplemen-
ted with 10% FBS and penicillin-streptomycin. Influenza A/ 

California/7/2009 (H1N1), A/Netherlands/602/09 (H1N1), A/ 
Hong Kong/1/68 (H3N2), A/Equine/Prague/1/56 (H7N7), A/ 
Duck/England/56 (H11N6), B/Victoria/2/87 (Victoria lineage), 
B/Brisbane/60/08 (Victoria lineage), B/Yamagata/16/88 
(Yamagata lineage), and B/Florida/04/06 (Yamagata lineage) 
viruses were generated as follows. Virus was grown in 10-day- 
old embryonated chicken eggs (Canadian Food Inspection 
Agency, Ottawa, ON, Canada) for 3 days at 33°C Eggs were 
cooled down overnight to 4°C Allantoic fluid was harvested, 
centrifuged at 2,000 rpm for 10 min at 4°C and the supernatant 
was sucrose-purified. The purified virus was used for infections. 
The virus titer was determined on monolayers of MDCK cells.

Antibody production

Mono-specific universal antibody against the N-terminal 14-aa 
fusion peptide (GLFGAIAGFIEGGW), denoted Uni-1, was 
generated in rabbits (Covance, Princeton, NJ) as previously 
described.26,36 Uni-1 was then purified using affinity columns 
using the peptide as binding ligand as previously described.26

Antibody-dependent cellular cytotoxicity (ADCC)

MDCK cells, seeded in a 96-well plate and 80–90% confluent, 
were infected at MOI of 5 for 20–24 h in media without TPCK- 
treated trypsin. The next day, purified Uni-1 antibody or pur-
ified rabbit IgG (Sigma-Aldrich, St. Louis, MO) were serially 
diluted and added to the infected cells. Mouse FcγRIV effector 
cells (Promega, Madison, WI) were also added to each well 
(100,000 cells/well). Following a 5-h incubation at 37℃ and 5% 
CO2, Bio-GloTM luciferase assay substrate (Promega, Madison, 
WI) was added. Luminescence values were read in relative 
luminescence units (RLU). ADCC activity was expressed as 
fold induction, a ratio of the RLU of a test sample to the RLU 
of the ‘rabbit IgG’ isotype control. ADCC assays with F10 and 
FI6V3 human monoclonal antibodies were done using Human 
FcγRIIIa effector cells (Promega, Madison, WI).

Mouse studies

All animal procedures were approved by the National Research 
Council of Canada Animal Care Committee and performed in 
accordance with institutional guidelines. Eight-week-old 
female BALB/c mice (Charles River, Saint Constant, QC) 
were intraperitoneally treated with 0.5 mL Uni-1 rabbit 
serum 2 h before infection, and 0.25 mL serum 1 day and 3  
days post-infection. A control group received serum collected 
from the same rabbit prior to peptide immunization. Mice 
were intranasally challenged with 500 PFU of purified A/ 
Netherlands/602/09 or 3.75x105PFU of purified B/Victoria/2/ 
87 in 25 µL. All mice were monitored daily for weight loss and 
clinical score from the time of first treatment until 14 days 
post-challenge. A clinical score was assigned where: 0 means 
healthy; 1 means ruffled fur but lively; 2 means sick with ruffled 
fur and slowing activity; 3 means very sick with ruffled fur, 
hunched with very little activity, showing respiratory distress 
and eyes squeezed shut; 4 means moribund; and 5 means dead. 
Clinical score of 3 was set as the endpoint and mice were 
euthanized.
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Statistical analysis

Statistical analysis was conducted using Mann–Whitney test 
when appropriate using GraphPad Prism 8 (San Diego, CA) 
software. Tests were performed at a 5% significance level. Area 
under the curve (AUC) in Figure 1 and 2 was calculated using 
GraphPad Prism 8 (San Diego, CA) software with a baseline 
of 1.

Results

The universal antibody demonstrates ADCC effects 
against diverse strains of IAV and IBV in vitro

The current study was done to investigate a universal antibody 
(designated as Uni-1) targeting the most conserved 14-aa 
region at the N-terminus of HA2, which is nearly 100% con-
served. Indeed, Uni-1 is capable of recognizing HA from all 
IAV and IBV subtypes.26,36 Notably, while Uni-1 could neu-
tralize diverse subtypes of IAV by inhibiting the pH-dependent 
fusion of viral and cellular membranes,35 it was not clear if 
Uni-1 could mediate other effector functions or protect ani-
mals from lethal viral infection.

We sought to determine if Uni-1 could mediate ADCC as 
ADCC has been increasingly recognized in providing protec-
tive immunity against influenza infection.37–42 For the target 
viruses in this study, we chose H1N1 and H3N2 as they are 
IAV subtypes circulating in recent years, while H7N7 and 
H11N6 are avian virus strains. For IBV, viruses from both 
genetic lineages were used. Specifically, MDCK cells were 
infected with several strains of IAV, including H1N1, H3N2, 
H7N7, and H11N6, and IBV, including B/Victoria (Victoria 
lineage), B/Brisbane (Victoria lineage), B/Yamagata (Yamagata 
lineage), and B/Florida (Yamagata lineage) before incubation 
with Uni-1 and FcγRIV effector cells.27

As shown in Figure 1, Uni-1 demonstrated strong ADCC 
activities against cells infected with all IAV strains tested 
(Figure 1). Specifically, over 10-fold increase in ADCC activity 
was observed against the human H1N1 and H3N2 IAV strains 
with an AUC of 15.5 and 6.7, respectively, while at least 3- to 
6-fold induction was detected against the two avian IAV strains 
with an AUC of 1.3 for H7N7 and 1.6 for H11N6 (Figure 1). 
Furthermore, Uni-1 also induced ADCC against 4 strains of 
IBV derived from either Victoria or Yamagata lineages 
(Figure 2). The AUC for B/Victoria, B/Brisbane, B/Yamagata, 
and B/Florida is 1.1, 1.4, 1.7, and 1.3, respectively (Figure 2). 
While the different magnitude of ADCC amongst the strains 
tested is likely due to various factors including the differed 
susceptibility of the particular cell lines used in the study (see 
more in Discussion), these results revealed the marked breadth 
of ADCC activity elicited by Uni-1 against IAV and IBV.

We also tested well-studied antibodies, F10 and FI6V3, for 
their ADCC activity (Figure 1). F10,32 a human monoclonal 
antibody (mAb) that binds group 1 HA’s, elicited 15- to 18-fold 
induction of ADCC against H1N1 and H11N6 with an AUC of 
38.2 and 34.4, respectively. FI6V3, another human mAb that 
binds both group 1 and 2 HA’s,43 elicited 14- to 23-fold induc-
tion of ADCC against H1N1 and H3N2 with an AUC of 28.1 
and 46.5, respectively. As expected, neither F10 nor FI6V3 
induced any ADCC against B/Victoria since these antibodies 
have not been shown to bind IBVs. Overall, the fold induction 
of ADCC elicited by Uni-1 against some of the IAV strains 
tested, specifically H1N1 and H3N2, are comparable to the 
levels observed with F10 and FI6V3 (Figure 1). However, it is 
important to note that since F10 and FI6V3 are human anti-
bodies, human ADCC reporter cells were used whereas mouse 
reporter cells were used in the Uni-1 ADCC assays, which may 
explain the observed differences in the ADCC activities. 
Nonetheless, these results collectively suggest that universal 

Figure 1. Uni-1 induces ADCC against several human and avian strains of influenza A. MDCK cells were infected at MOI of 5 for 20–24 hours in media without TPCK. 
Infected cells were then incubated with purified Uni-1 antibody or rabbit IgG along with Promega mFcγriv effector cells for 5 hours prior to detection with luciferase 
substrate. Fold induction of ADCC over isotype control is shown for human strains, A/California/7/2009 (H1N1) and A/Hong Kong/1/68 (H3N2), and avian strains, A/ 
Equine/Prague/1/56 (H7N7) and A/Duck/England/56 (H11N6). Purified human monoclonal antibodies, F10 and FI6V3, were also tested along with Promega FcγRIIIa 
effector cells. N = 3 per virus per antibody treatment group; data shown is mean ± SEM representative of 3 independent experiments.
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antibodies, such as Uni-1, F10, and FI6V3, could inhibit influ-
enza viruses through neutralization and Fc effector functions 
(ADCC).

Uni-1 effectively protects mice from lethal challenge of IAV 
and IBV

Having observed the broad functionality of Uni-1 in vitro, we 
sought to determine its protective ability in vivo. To this end, 
BALB/c mice were treated with Uni-1 once before and twice 
after viral challenge with lethal doses of IAV (500 PFU of A/ 
Netherlands/602/09) or IBV (3.75x105PFU of B/Victoria/2/87). 
While 80% of mice in the control group succumbed to the IAV 
and IBV infections, 75% and 100% of the Uni-1 treated mice 
survived the IAV and IBV challenge, respectively (Figure 3(a, 
b)). The survival data was in agreement with the changes in 
body weight during the course of infection. Specifically, 
although both the Uni-1 treated and control mice showed 
similar body weight loss in the first few days after the challenge, 
the Uni-1 treatment prevented the mice from further weight 
loss from Day 6 post-challenge with both IAV and IBV 
(Figure 3(c,d)). The protective effects of Uni-1 were further 
confirmed with clinical scores (Figure 3(e,f)), with Uni-1 treat-
ment resulting in significantly reduced clinical presentations in 
mice challenged with either IAV (p = 0.0441) or IBV (p =  
0.0002).

Discussion

While heterosubtypic immunity against influenza is mainly 
mediated by cross-reactive cytotoxic T lymphocytes 
(CTLs),44,45 which target conserved epitopes in the viral inter-
nal proteins such as nucleoprotein and matrix protein,46–48 

cross-reactive antibodies against HA and BnAbs have also 
been long reported,34,49–52 with viral epitopes identified in 
either HA1 or HA2 or both.32,33,53,54 BnAbs targeting HA1 
mainly inhibit the viral replication through disrupting the 
binding of the HA protein with sialic acids receptor of the 
cells, while HA2-targeting BnAbs prevent viral entry through 
either hindering the pH-dependent conformational change 
or stabilizing the prefusion conformation of the HA 
protein.32–34,46–52,55–57 Given the much higher conservation 
rates in the HA2,26,58 BnAbs targeting the stem are more 
broadly reactive, with conformational epitopes found to 
involve at least three distinct parts of the HA protein, i.e. 
the HA1, HA2 and the fusion peptide at the N-terminus of 
the HA2 subunit.32–34,58–63

In this brief communication, we further characterized Uni- 
1, a mono-specific antibody targeting the N-terminal 14-aa of 
the fusion peptide, which is the only universally conserved 
sequence among all influenza viruses.26 We previously 
reported that it could inhibit multiple strains of IAV at the 
fusion step of viral entry.25,35 One of novelties of this current 
work is that we unraveled a functional feature of Uni-1 in 

Figure 2. Uni-1 induces ADCC against several circulating strains of influenza B from both lineages. MDCK cells were infected at MOI of 5 for 20–24 hours in media 
without TPCK. Infected cells were then incubated with purified Uni-1 antibody or rabbit IgG along with Promega mFcγriv effector cells for 5 hours prior to detection with 
luciferase substrate. Fold induction of ADCC over isotype control is shown for strains from the Victoria lineage (top), B/Victoria/2/87 and B/Brisbane/60/08, and the 
Yamagata lineage (bottom), B/Yamagata/16/88 and B/Florida/04/06. N = 3 per virus per antibody treatment group; data shown is mean ± SEM representative of 3 
independent experiments.
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ADCC against influenza viruses from a wide range of subtypes 
or genetic lineages. The diversity of viral targets against which 
Uni-1 was able to induce ADCC effects is underscored by the 
wide range of viruses analyzed in the experiments, including 
human and avian IAV as well as two genetic lineages of IBV. 
This finding is in agreement with our recent observation where 
a HA2-based prototype universal vaccine with the N-terminal 
deleted resulted in a significant reduction in ADCC effector 
functions as well as in vivo protection.27 Moreover, Uni-1 was 
not found to neutralize IBV in vitro but both groups of IAV.35 

Here, Uni-1 was found to induce significant ADCC response 
against IBV (Figure 2) and provide complete protection in 
mice against a lethal challenge (Figure 3(b)), suggesting effec-
tor functions of Uni-1 are sufficient to fully protect the mice 
from lethal challenge by IBV. However, Uni-1 appeared to 
inhibit IAV through both neutralization and effector functions, 
which could be the main mechanisms underlying the full 
protection of the animals against lethal IAV challenge 
(Figure 1 and 3a).

While the breadth of ADCC effects exerted by Uni-1 is clear 
in this study, we are not really surprised by the seemingly 
differed magnitudes of ADCC effects on different virus strains; 

indeed, as such phenomena regarding broadly reactive antibo-
dies against influenza have been well documented, i.e., 
sequences outside the conserved region could contribute to 
the difference by affecting the accessibility of the antibodies 
to the ADCC epitopes.32,43,64–74 While these previous observa-
tions, along with our results presented here, underline the 
potential challenge for the designing of universal vaccines in 
general,66 epitopes targeted by non-neutralizing antibodies 
with anti-viral effector functions are more conserved, mean-
ingfully informing the rationale designing of universal influ-
enza vaccines.75,76

It should be mentioned that antisera, not purified Uni-1, 
was used in the in vivo challenge studies due to technical 
difficulties of purifying large quantities of Uni-1 antibodies 
using peptide-affinity columns, an observation likely resulting 
from the extreme hydrophobic nature of the peptide.26 While 
higher yield antibodies could be generated using recombinant 
techniques to express the antibodies in cell cultures, the use of 
pre- and post-immunized sera, which has been well character-
ized for antigenic specificity,26,36 should be sufficient to deter-
mine the anti-viral effects of the antibodies.

Figure 3. Treatment with Uni-1 provides effective cross-protection in mice against lethal challenge of influenza a and B viruses. BALB/c mice were intraperitoneally 
treated with Uni-1 serum once before and twice after an intranasal challenge with A/Netherlands/602/09 (A, C, and E) or B/Victoria/2/87 (B, D, and F). Mice were 
monitored for 14 days post-challenge. Survival (A and B), weight (C and D), and clinical score (E and F) are shown. Clinical scores were assigned daily based on the 
criteria outlined in the Materials and Methods section. Data shown is mean ± SEM; n = 5 per group.
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In short, BnAbs targeting conformational or linear epitopes 
in the HA2 could also exert their inhibitory effects through 
effector mechanisms such as ADCC,37,42,73 which is one of the 
key effector functions in the control of viral replication.37–42,77,78 

Here, we found that Uni-1, a mono-specific antibody targeting 
the universally conserved linear epitope, could induce strong 
ADCC and in vivo protection, a new observation consistent 
with our recent vaccine studies showing deletion of the fusion 
peptide could reduce the ADCC as well as weaken the vaccine 
efficacy induced by a HA2 vaccine.27 The ADCC activity, along 
with neutralizing activities,25 could collectively contribute to the 
effective protection of animals from lethal challenges of both 
IAV and IBV as presented in this short report.
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