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Abstract The category shift literature suggests that rule-
based classiWcation, an important form of explicit learning,
is mediated by two separate learned associations: a stimu-
lus-to-label association that associates stimuli and category
labels, and a label-to-response association that associates
category labels and responses. Three experiments investi-
gate whether information–integration classiWcation, an
important form of implicit learning, is also mediated by two
separate learned associations. Participants were trained on a
rule-based or an information–integration categorization
task and then the association between stimulus and cate-
gory label, or between category label and response location
was altered. For rule-based categories, and in line with pre-
vious research, breaking the association between stimulus
and category label caused more interference than breaking
the association between category label and response loca-
tion. However, no diVerences in recovery rate emerged. For
information–integration categories, breaking the associa-
tion between stimulus and category label caused more
interference and led to greater recovery than breaking the
association between category label and response location.
These results provide evidence that information–integration
category learning is mediated by separate stimulus-to-label

and label-to-response associations. Implications for the
neurobiological basis of these two learned associations are
discussed.

Introduction

An important topic of psychological research is to examine
the cognitive processes that allow people to be Xexible in
their behavior and to adapt to novel or changing situations.
One popular method for examining these processes is to
train people on a task and then to examine the performance
costs and recovery rates associated with various “shifts” in
the nature of the problem. A paradigm that has been used
extensively to study this problem is rule-based classiWca-
tion. In rule-based classiWcation the rule that maximizes
accuracy (i.e., the optimal strategy) is easy to describe ver-
bally and can be learned via an explicit reasoning process
(Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Bruner,
Goodnow, & Austin, 1956; Estes, 1994; Smith & Medin,
1981). Rule-based tasks can be contrasted with informa-
tion–integration, family resemblance, and other types of ill-
deWned classiWcation tasks for which the optimal strategy
involves some implicit integration of information across
stimulus dimensions (Ashby et al., 1998; Milton, Long-
more, & Wills, 2008; Neisser, 1967; Smith & Medin, 1981;
Wills, Noury, Moberly, & Newport, 2006).

In the application most often used in the rule-based shift
literature, one stimulus dimension is relevant, and the par-
ticipant’s task is to discover the relevant dimension and
then to map the diVerent dimensional values to the relevant
categories. We refer to these as one-dimensional rule-based
tasks. Once the one-dimensional rule is learned, the cate-
gory labels might be reversed (a reversal shift), new values
along the same relevant dimension might be substituted (an
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intra-dimensional shift), or a previously irrelevant dimen-
sion might become relevant (an extra-dimensional shift)
(Buss & Buss, 1956; Downes et al., 1989; Goldstone &
Steyvers, 2001; Kendler & Kendler, 1962; Kruschke, 1996;
Robbins, 2007; Wills et al., 2006; WolV, 1967).

One critical Wnding that emerged from early work on
rule-based shifts is that reversal shifts are easier to learn
than extra-dimensional shifts (e.g., Buss, 1953). Kendler
and Kendler (1962, 1968) argued that these data support the
existence of a category representation that mediates
between the stimulus and the category label. Reversal shifts
are easy to learn because the association between the stim-
uli and this intermediate category representation can be
modiWed quickly. While these data are congruent with a
two-association (stimulus-to-category representation and
category representation-to-category label) model, they are
also congruent with a single association attentional model
that assumes that training increases attention to the relevant
dimensions and decreases attention to the irrelevant dimen-
sions (Sutherland & Mackintosh, 1971).

Some of the clearest evidence in support of separate
associations, over a purely attentional explanation comes
from Sanders (1971) and Wills et al. (2006) who compared
performance across full and partial reversal conditions.
Sanders study utilized rule-based categories, whereas Wills
et al. used family resemblance categories. The full reversal
condition was identical to the standard reversal shift para-
digm. However, in the partial reversal condition, the stimu-
lus-to-category label associations reversed for some
stimuli, but not for others. As expected from a two-associa-
tion model, the partial reversal was more diYcult to learn
than the full reversal. Taken together, these studies suggest
that the learning of stimulus-to-category label associations
actually involves learning a stimulus-to-category represen-
tation association and a category representation-to-category
label representation.

To further explore the nature and Xexibility of rule-based
classiWcation and to build upon the seminal work of Sand-
ers (1971) and Wills et al. (2006), Kruschke (1996) exam-
ined rule-based shift learning when the initial classiWcation
required an exclusive-or (XOR) rule on two dimensions
with a third irrelevant dimension. A number of shifts were
examined, including reversals, shifts to a one-dimensional
rule on a previously relevant dimension, shifts to a one-
dimensional rule on a previously irrelevant dimension, and
shifts to a new XOR rule on one previously relevant and
one previously irrelevant dimension. Kruschke reported
that relearning was fastest in the reversal condition, fol-
lowed by the shift to a one-dimensional rule on a relevant
dimension, a shift to a one-dimensional rule on a previously
irrelevant dimension, and a shift to a new XOR rule.

Based on these results, Kruschke proposed that dimen-
sions relevant during training have heightened attention at

transfer, making it easier to learn new categories based on
the same relevant dimensions. Kruschke also proposed that
training strengthens category representations, which makes
transfer easier when only the category label changes (e.g.,
as in a reversal) compared to transfer that requires learning
new category representations. This latter principle is related
to the notion of “mediating responses” proposed by (Ken-
dler & Kendler, 1962) to account for the ease of reversal
shift learning (i.e., the notion that a category representation
exists that mediates between the stimulus and category
label).

To account for these data, Kruschke (1996) proposed a
four-layer connectionist model (AMBRY) that included an
input, exemplar, category representation, and category
response layer. In his original ALCOVE model, the cate-
gory representation and category response layers were
combined (Kruschke, 1992). By separating the category
representation/response layer into a category representation
layer that receives input from the exemplar layer, and a
fourth response layer that receives input from the category
representation layer the model can account for the diVeren-
tial eVects of shift manipulations that aVect the exemplar-
to-category label connections by changing the set of stimuli
associated with the category representation (e.g., shifts to
one-dimensional rules or a new XOR rule) from shifts that
aVect the category label-to-response connections (e.g.,
reversals). For ease of exposition, we refer to the stimulus
(or exemplar) to category label connections as the Stimulus-
to-Label associations, and the category label-to-response
connections as the Label-to-Response associations.

The focus of the current study is on determining whether
the stimulus-to-label and label-to-response associations
thought to characterize rule-based classiWcation, are also
associated with implicit information–integration classiWca-
tion. Experiments 1 and 2 examine conditions in which
each category label is associated with a single stimulus
cluster. This approach eVectively sidesteps the issue of
whether the stimulus-to-label association can be decom-
posed into a stimulus-to-category representation associa-
tion and category representation-to-category label
association, ala Sanders (1971) and Wills et al. (2006). We
took this approach to focus instead on dissociating the stim-
ulus-to-label and label-to-response associations in informa-
tion–integration category learning. Experiment 3 examines
a situation similar in spirit to that taken by Sanders (1971)
and Wills et al. (2006). In the General discussion, we
address the possibility that classiWcation might be charac-
terized by at least three sets of learned associations: stimu-
lus-to-category representation, category-representation-to-
category label, and category label-to-category response.

Rule-based classiWcation is an important domain within
which to study the eVects of shifts on performance because
rule-based classiWcation is ubiquitous in daily life, and
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because it recruits a general form of explicit learning. Even
so, other types of classiWcation that seem to depend on
implicit, rather than explicit learning are common in the
real-world. One that has been studied extensively in the cat-
egorization literature, but to date has not been examined
using shift procedures (however, see Wills et al., 2006), is
the information–integration classiWcation task (Ashby
et al., 1998; Maddox & Ashby, 2004).

Information–integration category structures are those in
which optimal accuracy requires integrating information
from two or more stimulus dimensions (usually expressed
in diVerent physical units). An example of information–
integration categories composed of circular sine-wave grat-
ings is shown in Fig. 1. The optimal strategy (denoted by
the solid diagonal line) could be verbalized as “respond A
when the orientation is greater than the bar width; other-
wise respond B,” but this is impossible to comprehend
because it compares dimensions expressed in incommensu-
rable units. It is impossible to directly compare an orienta-
tion, measured in degrees with a bar width, measured in
inches, and to determine when one is “greater than” the
other.

We expect that the eVects of category shifts on informa-
tion–integration classiWcation might be fundamentally
diVerent than on rule-based classiWcation for at least two
reasons. First, Ashby, Ell, and Waldron (2003) already
examined the eVects of switching the response keys after an
initial training period in rule-based and information–inte-
gration classiWcation. Note that such a switch disrupts the
label-to-response mapping, but not the stimulus-to-label
mapping. Switching the keys caused no interference for
rule-based categories, but had a large eVect for informa-
tion–integration strategies. Thus, at least in this one study, a
manipulation that aVected the category label-to-response
association diVerentially aVected rule-based and informa-
tion–integration categories. The goal of the current study is
to replicate and extend this eVect to diVerent types of rule-
based and information–integration categories, and to extend

this to manipulations that aVect the stimulus-to-category
label associations.

Second, there is much evidence that information–inte-
gration classiWcation recruits diVerent cognitive and neural
systems than rule-based classiWcation. BrieXy, rule-based
classiWcation appears to recruit explicit executive processes
that are mediated primarily within frontal cortex, whereas
information–integration classiWcation recruits implicit pro-
cedural-learning systems that are largely mediated by the
striatum, a brain region known to be directly involved in
motor and response learning (Filoteo et al., 2005; Nomura
& Reber, 2008; Nomura et al., 2007; Poldrack & Foerde,
2008; Poldrack et al., 2001; Seger, 2008; Seger and Cin-
cotta 2005, 2006). It is likely that the eVects of category
shifts will diVer as a function of the cognitive and neural
systems that sub-serve rule-based and information–integra-
tion categorization.

In summary, by applying shift manipulations to informa-
tion–integration classiWcation we extend our understanding
of the eVects of category shifts to non-verbal forms of clas-
siWcation in particular, and to more implicit forms of learn-
ing in general. In addition, this approach allows us to
determine whether the two-association (stimulus-to-label
and label-to-response) model that characterizes rule-based
classiWcation also characterizes information–integration
classiWcation.

Overview of present studies

The overriding goal of this research was to conWrm the
existence of separate stimulus-to-label and label-to-
response associations, hypothesized in previous work
(Goldstone & Steyvers, 2001; Kendler & Kendler, 1962;
Kruschke, 1996), in conjunctive, rule-based learning and to
determine whether these same set of learned associations is
present in information–integration category learning. The
results from three experiments are reported. Experiment 1
examined two types of category shifts in rule-based classiW-
cation learning and can be thought of as an extension of
Kruschke (1996). Experiment 2 was a direct replication of
Experiment 1 except that rule-based categories were
replaced with information–integration categories. Impor-
tantly, the rule-based and information–integration category
structures used in Experiments 1 and 2 are related by a sim-
ple linear rotation in the stimulus space. Thus, the two-cate-
gory structures are equivalent on a number of important
properties including within and between category coher-
ence, optimal accuracy, etc. Experiment 3 examined a
diVerent information–integration category structure to test
the generalizability of the Experiment 2 results.

During pre-change training in Experiment 1, participants
learned four-categories that could be classiWed with a con-
junctive rule. The stimuli comprising each category were

Fig. 1 An example of category structures that might be used in an
information–integration category learning task. The optimal decision
bound is indicated by the diagonal line
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lines that varied in length and orientation. A scatterplot of
the stimuli is displayed in the top of Fig. 2, along with the
optimal decision bounds. The open and Wlled squares and
triangles denote the stimuli from four separate stimulus
clusters. Note that the task is conjunctive and rule-based
because the rule is easily verbalized as: give one response
to short, shallow angle lines, another to short, steep angle
lines, a third to long, shallow angle lines and a fourth to
long, steep angle lines.

The assignment of stimulus clusters (from Fig. 2) to cat-
egory labels and response locations in the various condi-
tions is outlined in Fig. 3. In Fig. 3, the “Stimulus Cluster”
column denoted the symbol associated with each of the four
clusters of stimuli. The “Category Label” column denotes
the labels, A–D, and the “Response Location” column

denotes the buttons on the computer keyboard that are used
throughout the experiment (“Z”, “W”, “/” and “P”). The
assignment of stimulus clusters-to-category labels is
denoted by the lines connecting each stimulus cluster to
each category label. The assignment of category labels-to-
response locations is denoted by the lines connecting each
category label to each response location.

During pre-change training in the three experimental
conditions, Control, Category Label and Response Loca-
tion, a Wxed stimulus-to-category label and category label-
to-response location mapping was used (see Fig. 3 for
details). During post-change training in the Control condi-
tion the same stimulus-to-category label and category label-
to-response location mappings were used. Two versions of

Fig. 2 Categorization conditions used for Experiments 1 and 2. The
stimuli used in all conditions from Experiment 1 are displayed in the
top panel. The stimuli used in all conditions from Experiment 2 are dis-
played in the bottom panel. Solid lines denote the optimal decision
bounds, and the open squares, Wlled squares, open triangles, and Wlled
triangles denote the stimuli
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the Category Label condition were examined. Only version
A is depicted in Fig. 3. In the Category Label(A) condition,
the association between stimulus clusters and category
labels was changed during post-change training so that
stimuli originally assigned to categories A, B, C, and D
were now assigned to categories B, A, D, and C, respec-
tively (see Fig. 3). In the Category Label(B) condition, the
association between stimulus clusters and category labels
was changed during post-change training so that stimuli
originally assigned to categories A, B, C, and D were now
assigned to categories C, D, A, and B, respectively (see
Fig. 3). Note that the lines connecting the stimulus cluster
to the category label are diVerent in the Category Label
conditions than in the Control condition. These instantia-
tions of the category label manipulation represents a four-
category analog of a reversal shift. Importantly, although
the stimulus-to-category label associations were modiWed
in the Category Label condition, the response locations on
the computer keyboard associated with category label A
(the Z key), B (the W key), C (the / key), and D (the P key)
remained unchanged. This lack of change in the category
label-to-response location assignments can be seen in Fig. 3
by noting that the lines connecting the category label to the
response location do not diVer across the Category Label
and Control conditions.

Notice that the Category Label(A) manipulation
switches the stimulus-to-category label associations along
the orientation dimension. The Category Label(B) manipu-
lation switches the stimulus-to-category label associations
along the length dimension. By examining both conditions,
we eVectively counterbalanced this factor. We took the
same counterbalancing approach with respect to the
response location manipulation (see below). To anticipate,
the performance proWles for the A and B versions of the
experimental manipulation did not diVer statistically and
thus we collapsed across this factor when describing the
major Wndings.

Two versions of the Response Location condition were
also examined. In the Response Location(A) condition, the
category label-to-response location associations changed
during post-change training so that the buttons “Z”, “W”, “/
”, and “P” that were originally associated with category
labels A–D, respectively, changed in such a way that but-
tons “Z”, “W”, “/”, and “P” were now associated with cate-
gory labels B, A, D, and C, respectively. In the Response
Location(B) condition, the category label-to-response loca-
tion associations changed during post-change training so
that the buttons “Z”, “W”, “/”, and “P” were now associ-
ated with category labels C, D, A, and B, respectively. Note
that the lines connecting each category label with each
response location diVer across the Response Location and
Control conditions. Importantly, although the category
label-to-response location assignments were modiWed in

the Response Location condition, the stimulus-to-category
label associations remained unchanged. This lack of change
in the stimulus-to-category label assignments can be seen in
Fig. 3 by noting that the lines connecting the stimulus clus-
ter to the category label do not diVer across the Response
Location and Control conditions.

Several comments are in order regarding the Category
Label and Response Location conditions. First, note that in
both conditions, the stimulus-to-response associations that
were developed during pre-change training were broken
during post-change training so that each stimulus cluster
required a diVerent button press post- versus pre-change.
Thus, a model that assumes a single (stimulus-to-response)
association would predict no performance diVerence across
the Category Label and Response Location conditions,
because both conditions break the learned stimulus-to-
response association.

Second, it is important to note also that the stimuli that
cluster together into a single group (or category) remained
unchanged in all conditions. Only the category label associ-
ated with each group of stimuli (Category Label condition),
or the response button associated with that label changed
(Response Location condition). Thus, these manipulations
diVer from the intra- or extra-dimensional shifts typically
used in the literature because those shifts actually change
the structure of the categories and the nature of the optimal
decision bound. These manipulations also diVer from the
partial shift manipulations used by Sanders (1971) and
Wills et al. (2006) because all stimuli originally trained to a
particular category label, either remain the same (as in the
Response Location condition) or all change (as in the Cate-
gory Label condition). In this way, our two manipulations
are identical with respect to the input and output states of
the system in the sense that the optimal decision bounds
remain the same (although the stimulus-response mappings
change), and the stimulus-response mappings for all stimuli
in each stimulus cluster change in the same way. Compar-
ing performance across the Category Label and Response
Location conditions will provide a powerful empirical test
to determine whether processes associated with each of
these two mappings diVers under these fundamental but
fairly subtle manipulations.

Whereas the single, stimulus-response association model
predicts no diVerence in the performance proWle across the
Category Label and Response Location conditions, the two-
association model (stimulus-to-label association and label-
to-response association) could predict a larger performance
cost for the category label manipulation relative to the
response location manipulation or vice versa. Although the
speciWc category label and response location manipulations
outlined in Fig. 3 have not been examined in the literature,
the most likely prediction to follow from the extant litera-
ture (Kruschke, 1996; Wills et al., 2006) is that the cost
123



224 Psychological Research (2010) 74:219–236
associated with the category label manipulation will be
larger than that for the response location manipulation.

We turn now to Experiment 1 that examines the eVects
of category label and response location manipulations on
four-category conjunctive rule-based classiWcation learn-
ing.

Experiment 1

In Experiment 1, participants learned the four-category
conjunctive rule-based task described in the top of Fig. 2.
Participants in the Control, Category Label and Response
Location conditions completed three 100-trial pre-change
training blocks, followed by three 100-trial post-change
transfer blocks. Experiment 1 extends Kruschke (1996) to
category shift conditions that break the stimulus-to-cate-
gory label associations (Category Label condition) or cate-
gory-label-to-response location associations (Response
Location condition).

Methods

Participants

One hundred and eleven participants completed the study
and received course credit for their participation. All partic-
ipants had normal or corrected to normal vision. Each par-
ticipant served in one condition. To ensure that only
participants who performed well above chance were
included in the post-change performance analyses, a learn-
ing criterion of 40% correct (25% is chance) during the
Wnal pre-change block was applied. All but ten participants
met the performance criterion (Control N = 20; Category
Label N = 40; Response Location N = 41), with approxi-
mately equal numbers of participants completing the A and
B versions of the Category Label and Response Location
manipula4ions.

Stimuli and stimulus generation

The stimuli are displayed in Fig. 2, and were generated by
drawing 25 random samples from each of four bivariate
normal distributions along the two stimulus dimensions
with means along the x dimension of 80, 80, 120, and 120
and along the y dimension of 80, 120, 80, and 120 for cate-
gories A–D, respectively. The variance along the x and y
dimension was 100 and the covariance was 0 for all catego-
ries. The random samples were linearly transformed so that
the sample means and variances equaled the population
means and variances. Each random sample (x, y) was con-
verted to a stimulus by deriving the length (in pixels) as
l = x, and orientation (in degrees counterclockwise from

horizontal) as o = y ¡ 30. These scaling factors were cho-
sen to roughly equate the salience of each dimension. Opti-
mal accuracy was 95%. The 100 stimuli were randomized
separately for each participant in each block during the pre-
change trials for all conditions and for the post-change
Control and Response Location condition trials. For the
post-change Category Label condition trials, the same stim-
uli were used, but the category labels were changed in the
way depicted in Fig. 3.

Procedure

Participants were randomly assigned to one of the Wve
experimental conditions: Control, Category Label(A or B)
or Response Location(A or B). Each condition consisted of
3, 100-trial pre-change training blocks, followed by 3, 100-
trial post-change transfer blocks with a participant-con-
trolled rest period between each block.

During the Pre-Change blocks of all conditions, partici-
pants were told that they were to categorize lines on the
basis of their length and orientation, that there were four
equally likely categories, and that high levels of accuracy
could be achieved. At the start of each trial, a Wxation point
was displayed for 1 s and then the stimulus appeared. The
stimulus remained on the screen until the participant gener-
ated a response by pressing the “Z” key for category A, the
“W” key for category B, the “/” key for category C, or the
“P” key for category D. None of these four keys were given
special labels. Rather the written instructions informed par-
ticipants of the category label to button mappings, and if
any button other than one of these four was pressed, an
“invalid key” message was displayed. Following the
response, the word “correct” was presented if their response
was correct or the word “incorrect” was presented if their
response was incorrect, along with the correct category
label. Once feedback was given, the next trial was initiated.

The Post-Change Control participants completed three
additional 100-trial transfer blocks. Following pre-change
training, post-Change Category Label and post-Change
Response Location participants were instructed that the
stimuli associated with each category label had changed,
the assignment of categories to buttons had changed, or
both, and that they would have to learn the task from trial-
by-trial feedback. The then completed three additional 100-
trial transfer blocks.

Results

We Wrst focus on standard statistical analyses of the accu-
racy data and then we consider model-based analyses.
Three accuracy measures were examined. First, we exam-
ined pre-change performance to verify that no diVerences
emerged across the three conditions, with an emphasis on
123
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performance during the Wnal pre-change block. Second, we
examined the cost associated with transfer by subtracting
accuracy in the Wrst post-change block from accuracy in the
Wnal pre-change block. For more Wne-grained detail, we
also examined the cost based on the Wrst 50 post-change tri-
als, as opposed to the full 100-trials in the Wrst post-change
block. The larger the cost the greater the immediate impact
on performance of the Category Label or Response Loca-
tion switch. Third, for the Category Label and Response
Location conditions, we examined recovery by subtracting
accuracy in the Wrst post-change transfer block of 100-trials
from accuracy in the Wnal post-change transfer block of
100-trials. The larger this value the greater the performance
recovery during transfer.

Accuracy analyses

Pre-change performance The learning curves for all three
conditions across the three pre- and three post-change
blocks are shown in Fig. 4a. A three condition £ three pre-
change block ANOVA was conducted to determine
whether there were any pre-change performance diVer-
ences. The block eVect was signiWcant F(2, 196) = 97.94,
p < .001, �2 = .500], but the condition eVect [F(2, 98) =
.094, ns, �2 = .002] and the interaction [F(4, 196) = .28, ns,
�2 = .006] were both non-signiWcant. Most importantly,
there were no diVerences across conditions in the Wnal pre-

change block [F(2, 98) = .019, ns, �2 = .000]. Thus, pre-
change training performance was equated across condi-
tions.

Cost The performance costs are displayed in Fig. 4b. The
cost was signiWcantly larger than zero in the Category
Label condition [t(39) = 4.65, p < .001], but did not diVer
from zero in the Response Location [t(40) = 1.73, p = .091]
or Control conditions [t(19) = .98, p = .339]. The main
eVect of condition on the performance cost was signiWcant
[F(2, 98) = 4.39, p < .05, �2 = .082]. In addition, the cost
was signiWcantly larger in the Category Label condition
than in the Response Location condition [t(79) = 2.69,
p < .01] and than in the Control condition [t(58) = 2.06,
p < .05]. The costs did not diVer signiWcantly across the
Control and Response Location conditions (t < 1.0).

When we focused on the Wrst 50 post-change trials in
determining the cost, we observed performance costs of
.010, .084, and .049 in the Control, Category Label and
Response Location conditions, respectively. In this case the
cost was signiWcantly larger than zero in both the Category
Label [t(39) = 5.52, p < .001] and Response Location con-
ditions [t(40) = 4.29, p < .001], but not in the Control con-
dition (t < 1.0). The main eVect of condition on the
performance cost was signiWcant [F(2, 98) = 5.43, p < .01,
�2 = .100], but the costs did not diVer signiWcantly across
the Category Label and Response Location conditions

Fig. 4 a Proportion correct 
(averaged across participants) 
from Experiment 1. b Cost 
determined by subtracting post-
change block 1 performance 
from pre-change block 3 perfor-
mance. c Recovery determined 
by subtracting post-change 
block 1 performance from post-
change block 3 performance. 
Standard error bars included
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[t(79) = 1.87, p = .065]. The cost was larger in the Category
Label condition than in the Control condition [t(58) = 2.99,
p < .01], but was not signiWcantly larger in the Response
Location condition than in the Control condition
[t(59) = 1.92, p = .06]. Despite the lack of signiWcance
between the Category Label and Response Location costs
based on the Wrst 50 post-change trials, there is a clear trend
toward a larger cost in the Category Label condition (.084)
relative to the Response Location condition (.049), and
toward a larger cost in the Response Location condition rel-
ative to the Control condition (.010).

Recovery The recovery data for the Category Label and
Response Location conditions are displayed in Fig. 4c.
Recovery was signiWcant in the Category Label
[t(39) = 2.59, p < .05], and Response Location conditions
[t(40) = 3.91, p < .001]. Even so, the diVerence in the mag-
nitude of recovery across the two conditions was not statis-
tically signiWcant [t(79) = .263, ns].

The most important Wnding is that the cost was larger in
the Category Label condition than in the Response Loca-
tion condition regardless of whether we focused on the Wrst
50 post-change trials or the Wrst 100 post-change trials. This
diVerence did reach statistical signiWcance based on the full
100-trial analyses, and revealed a clear trend based on the
Wrst 50-trial analyses. Taken together, these analyses sug-
gest that manipulations that break the learned association
between stimuli and category labels have a larger adverse
eVect on performance then manipulations that break the
learned association between category labels and responses.
This supports a two-association model of rule-based classi-
Wcation as suggested by the data from several researchers
(e.g., Kendler & Kendler, 1962; Kruschke, 1996; WolV,
1967). In addition, the cost was signiWcantly larger than
zero in the category label condition for both the 50- and
100-trials analyses. This suggests that a four-category vari-
ant of a reversal shift does lead to a performance cost.
Finally, the eVect of the response location manipulation
was shorter lived, leading to a signiWcant cost when we
focused on the Wrst 50 post-change trials, but not when we
focused on the Wrst 100 trials. This suggests that recover
begins more quickly following a response location manipu-
lation than following a category label manipulation. Ashby
et al. (2003) found no performance cost during the Wrst 50
post-change trials in a “button-switch” analog of our
response location manipulation using a two-category one-
dimensional rule-based task. Although further work is
needed, the current data suggest that a button switch cost
does emerge when the rule is conjunctive, and four-catego-
ries are relevant (see Maddox, Lauritzen, & Ing, 2007 for a
related Wnding).

The accuracy-based analyses support for the claim that
two associations characterize rule-based classiWcation (e.g.,

Kendler & Kendler, 1962; Kruschke, 1996; WolV, 1967),
and extend this to a conjunctive rule-based tasks. Even so,
it is important to determine whether the manipulations had
any eVect on the strategy that participants used to learn the
categories. Our previous work with button switch manipu-
lations suggests that participants will likely use rule-based
decision strategies pre- and post-change in this task because
the optimal strategy is rule-based (Ashby et al., 2003; Mad-
dox & Ashby, 2004; Maddox et al., 2007). To address this
issue decision bound models were Wt on a block by block
basis separately to the data from each participant (Maddox
& Ashby, 1993). As expected, and in line with previous
work (Ashby et al., 2003; Maddox et al., 2007), we found
an overwhelming majority of the data sets were best Wt by
rule-based models. In fact, across all three conditions and
all six blocks of trials, in no case did the percentage of data
sets best Wt by a rule-based model fall below 92%.

Discussion

We examined the performance cost and recovery rate asso-
ciated with experimental manipulations that broke the
learned stimulus-to-category label association (Category
Label condition) or the learned category label-to-response
location association (Response Location condition). Most
importantly, the magnitude of the cost was larger (signiW-
cant based on the Wrst 100 post-change trials and showing a
strong trend based on the Wrst 50 post-change trials) when
the stimulus-to-category label association was broken than
when the category label-to-response location association
was broken. Despite the larger cost in the former case, the
recovery rates did not diVer statistically across conditions.
In addition, participants were found to use rule-based strat-
egies throughout the pre-change and the post-change per-
formance blocks. These data lend support to proposals that
there are at least two separate associations that are involved
in rule-based classiWcation learning. We turn now to an
experiment that examines the eVects of identical Category
Label and Response Location manipulations on informa-
tion–integration classiWcation.

Experiment 2

Experiment 2 replicates and extends the Category Label
and Response Location manipulations used in Experiment
1 to a four-category information–integration task. Impor-
tantly, the information–integration categories were derived
from a 45° rotation of the rule-based categories used in
Experiment 1 (see Fig. 2). Thus, the categories are structur-
ally equivalent across the two studies, and any performance
diVerences must be attributed to the qualitative diVerence in
the nature of the categorization strategies—that is, rule-
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based versus information–integration. The results from
Experiment 2 will allow us to determine whether the two
associations that characterize rule-based classiWcation
learning, also characterize information–integration classiW-
cation learning, and will allow us to compare and contrast
the processing characteristics of the two associations across
rule-based and information–integration tasks.

Methods

Participants

One hundred and Wve participants completed the study and
received course credit for their participation. All partici-
pants had normal or corrected to normal vision. Each par-
ticipant served in one condition. Of the 105 participants, 97
met the learning criterion of 40% in the Wnal pre-change
block (Control N = 19; Category Label N = 37; Response
Location N = 41), with approximately equal numbers of
participants completing the A and B versions of the Cate-
gory Label and Response Location manipulations.

Stimuli and stimulus generation

The category structures are displayed in Fig. 2. Stimuli
were generated from the Experiment 1 stimuli via a 45°
rotation. This yielded means along the x dimension of 72,
100, 100, and 128 and along the y dimension of 100, 128,
72, and 100 for categories A–D, respectively. The variance

along the x and y dimension was 100 and the covariance
was 0 for all categories.

Procedure

The procedure was identical to that from Experiment 1.

Results

Accuracy analyses

Pre-change performance The learning curves for all three
conditions across the three pre- and three post-change
blocks are presented in Fig. 5a. To verify that there were no
diVerences in pre-change performance, we conducted a
three condition £ three pre-change block ANOVA. The
main eVect of block was signiWcant [F(2, 188) = 77.63,
p < .001, �2 = .452], whereas the main eVect of condition
[F(2, 94) = 1.79, p = .17, �2 = .037] and the interaction
were non-signiWcant [F(4, 188) = .52, ns, �2 = .011].
Importantly, no performance diVerences were observed
across conditions in the Wnal pre-change block [F(2,
94) = .54, ns, �2 = .011]. Thus, pre-change training perfor-
mance was equated across conditions.

Cost The performance cost data are displayed in Fig. 5b.
The cost was signiWcantly larger than zero in the Category
Label [t(36) = 8.83, p < .001] and Response Location
[t(40) = 4.37, p < .01] conditions, but did not diVer signiW-

Fig. 5 a Proportion correct 
(averaged across participants) 
from Experiment 2. b Cost 
determined by subtracting post-
change block 1 performance 
from pre-change block 3 perfor-
mance. c Recovery determined 
by subtracting post-change 
block 1 performance from post-
change block 3 performance. 
Standard error bars included
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cantly from zero in the Control condition [t(18) = ¡1.58,
p = .13]. There was a main eVect of condition on the perfor-
mance cost [F(2, 94) = 21.17, p < .001, �2 = .311]. In addi-
tion, the cost was signiWcantly larger in the Category Label
condition than in the Response Location condition
[t(76) = 3.46, p < .001], and than in the Control condition
[t(54) = 6.58, p < .001]. The cost was also signiWcantly
larger in the Response Location condition than in the Con-
trol condition [t(58) = 3.72, p < .001].

Examining performance during the Wrst 50-trials yielded
the same pattern of results. The cost proportions were
¡.026, .208, and .119 in the Control, Category Label, and
Response Location conditions, respectively. The cost was
signiWcantly larger than zero in the Category Label
[t(36) = 9.78, p < .001] and Response Location
[t(40) = 5.29, p < .001] conditions, but not in the Control
condition [t(18) = 1.18, ns]. There was a main eVect of con-
dition on the performance cost [F(2, 94) = 20.39, p < .001,
�2 = .303]. In addition, the cost was signiWcantly larger in
the Category Label than in the Response Location condi-
tion [t(76) = 2.88, p < .01], and than in the Control condi-
tion [t(54) = 6.95, p < .001]. The cost was also signiWcantly
larger in the Response Location condition than in the Con-
trol condition [t(58) = 3.99, p < .001].

Recovery The recovery data are displayed in Fig. 5c.
There was signiWcant recovery both in the Category Label
[t(36) = 8.27, p < .001] and the Response Location
[t(40) = 3.16, p < .01] conditions. In addition, the recovery
was signiWcantly larger in the Category Label condition
than in the Response Location condition [t(76) = 2.45,
p < .05].

The most important Wnding is that we observed a larger
cost in the Category Label condition than in the Response
Location condition, and in this case, the diVerence was
highly signiWcant for both the 50- and 100-trial analyses.
This supports a two-association model of information–inte-
gration learning. Interestingly, whereas we found no recov-
ery rate diVerence between the Category Label and
Response Location conditions for rule-based categories
(Experiment 1), we did Wnd a larger recovery for the Cate-
gory Label condition with information–integration catego-
ries (Experiment 2) suggesting a possible processing
dissociation between the rule-based and information–inte-
gration classiWcation learning systems. We conduct a more
direct comparison of the results from Experiments 1 and 2
in the Discussion section below, but Wrst we brieXy discuss
the models.

The accuracy-based analyses suggest that the Category
Label manipulation led to a larger cost but greater recovery
than the Response Location manipulation. However, it
remains unclear, whether the manipulations led participants
to abandon information–integration decision strategies and

to fall back on rule-based strategies, or whether the manip-
ulations interfered with the implementation of information–
integration strategies. To answer these questions, we Wt
information–integration, rule-based and random responder
models to each participant’s responses on a block by block
basis (Maddox & Ashby, 1993).

The model-based analyses suggested that a large number
of participants switched from information–integration strat-
egies during the Wnal pre-change block to non-information–
integration strategies during the Wrst 50 trials of the Wrst
post-change block in the Category Label and Response
Location conditions. However, the use of an information–
integration strategy recovered quickly by the second 50 tri-
als of the Wrst post-change block in both conditions. Inter-
estingly, the decrease in the use of information–integration
strategies was not associated with a large increase in the
proportion of data sets best Wt by a rule-based model, but
instead was associated with a large increase in the percent-
age of data sets best Wt by the random responder models in
both conditions. However, the proportion of data sets best
Wt by the random responder model remained high in the
second 50 trials of the Wrst post-change block for the Cate-
gory Label condition but not in the Response Location con-
dition. It is important to note that a good Wt of the random
responder model can be interpreted in one of two ways.
One possibility is that participants are truly random in their
responding and have completely abandoned the use of a
consistent response strategy. A second, and most likely
possibility, is that participants are trying multiple strategies
in an attempt to Wnd one that “works”.

Brief discussion of Experiments 1 and 2

Experiments 1 and 2 used identical Category Label and
Response Location manipulations to aVect the category
label and response location associations of processing
diVerentially. The critical diVerence between the studies
was in the nature of the category learning task. Experiment
1 used a four-category, conjunctive rule-based task,
whereas Experiment 2 used a four-category, information–
integration task derived by rotating the stimuli from the
rule-based categories by 45° in the stimulus space. In this
section, we conduct some direct statistical comparisons
across the two studies to determine whether the eVects of
the category label and response location manipulations
interact with the nature of the category structure. These
Wndings should be interpreted with some caution because
they involve across experiment comparisons. Even so, they
provide some evidence to suggest that processing dissocia-
tions exist between the rule-based and information–integra-
tion systems. As a starting point we compared Wnal block
pre-change performance, by conducting a two category
structure £ three condition ANOVA. The main eVects of
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category structure [F(1, 192) = 2.668, p = .104, �2 = .014]
and condition [F(2, 192) = .326, ns, �2 = .003] and the
interaction [F(2, 192) = .133, ns, �2 = .001] were all non-
signiWcant. Thus, any performance diVerences that emerge
across Experiments 1 and 2 cannot be attributed to diVer-
ences in pre-change performance.

Next, we compared the performance costs by conducting a
two category structure £ two condition ANOVA. The main
eVect of category structure was signiWcant [F(1,
155) = 21.44, p < .001, �2 = .121] and suggested that the per-
formance cost was smaller in the rule-based condition (.040)
than in the information–integration condition (.104). The
main eVect of condition was also signiWcant [F(1,
155) = 19.403, p < .001, �2 = .111] and suggested that the
cost associated with the category label manipulation (.102)
was larger than that associated with the response location
manipulation (.042). The interaction was non-signiWcant
[F(1, 155) = 1.273, ns, �2 = .008]. Finally, we compared the
recovery rates by conducting a two category structure £ two
condition ANOVA. The main eVect of category structure
was signiWcant [F(1, 155) = 16.133, p < .001, �2 = .094] and
suggested that the recovery rate was smaller in the rule-based
condition (.040) than in the information–integration condi-
tion (.110). The main eVect of condition was also signiWcant
[F(1, 155) = 4.954, p < .05, �2 = .031] and suggested that the
recovery rate associated with the category label manipulation
(.094) was larger than that associated with the response loca-
tion manipulation (.055). Perhaps most interestingly, the
interaction was signiWcant [F(1, 155) = 3.772, p = .054,
�2 = .024]. As suggested by the results from Experiments 1
and 2, the interaction was characterized by signiWcantly
larger recovery in the category label condition than in the
response location condition for information–integration cate-
gories, but not for rule-based categories.

Taken together, these results suggest that the two associ-
ations of rule-based learning identiWed by Kruschke
(1996)—category label and response location—also apply
to information–integration learning. In addition, they sug-
gest that the costs associated with the category label and
response location manipulations does not interact with the
nature of the categorization problem (i.e., rule-based or
information–integration). However, there is clear evidence
that the recovery rate associated with the category label and
response location manipulations does interact with the
nature of the categorization problem. SpeciWcally, the
recovery rate being associated with the category label
manipulation is greater than that associated with the
response label manipulation for information–integration
categories, but not for rule-based categories.

One potential criticism of Experiments 1 and 2 is that it
is logically possible that participants in both experimental
conditions could learn the transfer categories via a cogni-
tive remapping of the response keys. For example, in all

pre-change conditions, the stimuli in Fig. 2 denoted by the
open squares are associated with the “Z” key. During post-
change training in the Category Label(A) and Response
Location(A) conditions, these same stimuli are now associ-
ated with the “W” key. It is possible that participants
become consciously aware of this change and explicitly
remap the open square stimuli with the “W” key. There are
at least two arguments against this criticism. First, we
observed a diVerent pattern of results for the Category
Label and Response Location conditions in both experi-
ments. It is diYcult to imagine how a cognitive remapping
in both conditions would lead to such diVerent results
across the two conditions. Second, there is an overwhelm-
ing body of evidence to suggest that information–integra-
tion strategies are not available to conscious awareness
because they involve the procedural-learning system
(Ashby & Casale, 2003; Ashby & Ennis, 2006; Ashby &
Maddox, 2005; Maddox & Ashby, 2004). Despite the evi-
dence against a cognitive remapping hypothesis, we
decided to run a third experiment that provides a second
examination of the eVects of these two-category shift
manipulations on information–integration classiWcation
learning.

Experiment 3

In Experiment 3, participants learned a two-category infor-
mation–integration task using stimuli composed of circular
sine-wave gratings that varied across trials in bar width and
bar orientation (e.g., as in Fig. 1). After pre-change training
was complete, the response keys remained the same in the
Control condition, or the response keys were switched (i.e.,
the A key became the B key and vice versa) in the
Response Location condition. Note that these procedures
mimic those used in Experiments 1 and 2. A scatterplot of
the stimuli used during pre-change training, and post-
change training in the Control and Response Location con-
ditions are displayed in Fig. 6a. The third condition is
referred to as the Rotation condition. After training was
complete in the Rotation condition, the category structures
were rotated 90° in stimulus space (i.e., in bar width, orien-
tation space). A scatterplot of the stimuli in the Rotation
condition are displayed in Fig. 6b. Note that the rotation
aVects the stimulus-to-category label associations, but in a
way that is diVerent from that used in the Category Label
conditions of Experiments 1 and 2, and cannot be solved by
a simple cognitive remapping. Notice also that this is a var-
iant of the partial shift procedure used by Sanders (1971)
and Wills et al. (2006) because some pre-change stimuli
remain in the same category, whereas others do not.

Note that in the Response Location condition, every
stimulus requires a new response during transfer. In the
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Rotation condition, on the other hand, some stimuli require
a new response, some stimuli require the originally trained
response, and some stimuli are novel. If a cognitive remap-
ping explains the results from Experiment 2, then it would
predict that a smaller performance cost should be observed
in the Rotation condition then in the Response Location
condition. On the other hand, if manipulations that break
the learned association between stimuli and category labels
lead to larger costs as observed in Experiment 2, then we
would predict that a larger performance cost should be
observed in the Rotation condition then in the Response
Location condition.

The Rotation and Response Location conditions will not
be run with rule-based categories, as these already exist in
the literature. For example, Ashby et al. (2003) used a one-
dimensional rule-based task and found that a response loca-
tion switch led to no performance cost, whereas Ell (2003)

found that a 90° rotation led to a large performance cost. A
90° rotation of a one-dimensional rule-based task is equiva-
lent to an extra-dimensional shift (i.e., a previously irrele-
vant dimension becomes relevant), and many studies have
reported that transfer costs are associated with such shifts
(Downes et al., 1989; Ell, 2003; Owen, Roberts, Polkey,
Sahakian, & Robbins, 1991; Owen et al., 1993).

Method

Participants

Seventy-nine participants completed the study and received
course credit for their participation. All participants had
normal or corrected to normal vision. Each participant
served in one condition. To ensure that only participants
who learned the initial category structures were included in
the transfer performance analyses, a learning criterion of
80% correct in any of the ten pre-change blocks was
applied. Of the seventy-nine participants, 53 met the learn-
ing criterion (Control N = 16; Rotation N = 19; Response
Location N = 18).1

Stimuli and stimulus generation

Each exemplar in Experiment 1 was a circular sine-wave
grating of the type shown in Fig. 1. The stimuli varied
across trials on bar width and bar orientation. Category
exemplars for the control and the response location condi-
tions were generated by deWning bivariate normal distribu-
tions along the two stimulus dimensions with mean x values
of 300 and 400 and mean y values of 400 and 300 for cate-
gories A and B, respectively. The x and y variances were
8,000 with a covariance of 7,800 for both categories. Three
hundred random samples were drawn from each distribu-
tion (600 total) and were linearly transformed so that the
sample mean vector and sample variance–covariance
matrix exactly equaled the population mean vector and var-
iance–covariance matrix. Each random sample (x, y) was
converted to a stimulus by deriving the orientation (in
degrees counterclockwise from horizontal) as o = x ¡ 30,
and spatial frequency (in cycles per degree) as
f = (y £ .001) + .01. These scaling factors were chosen to
roughly equate the salience of each dimension. The com-
plete set of 600 stimuli is displayed in Fig. 6a. Five hundred
of these stimuli were randomly sampled and were used dur-
ing the training phase of all three conditions. The remaining
100 were used during the transfer phase of the Control and
Response Location conditions. The stimuli for the Rotation

Fig. 6 Category structures used for Experiment 3. The optimal deci-
sion bound is indicated by the diagonal line. Category A stimuli are de-
noted by the open squares and category B stimuli are denoted by the
Wlled squares. a Categories used during training in all conditions and
during transfer in the Control and Response Location conditions. b
Categories used during transfer in the Rotation condition
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1 Several more and less stringent inclusion criteria were examined and
the same qualitative pattern in the results emerged. In fact, the same
qualitative pattern held when all participants were included.
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transfer condition were generated by randomly sampling
100 stimuli from the full complement of 600 and then rotat-
ing those by 90° clockwise. The rotated stimuli are shown
in Fig. 6b. The optimal decision bound in both panels is
denoted by the diagonal line. A participant responding “A”
to any exemplar above the optimal categorization bound
and “B” to any exemplar below the bound would achieve
100% correct; the best one-dimensional rule (i.e., where the
participant based their categorization on a single dimen-
sion) would achieve approximately 70% correct.

Procedure

Each participant was randomly assigned to one of three
experimental conditions: Control, Rotation, and Response
Location. The experimental session consisted of 10, 50-trial
pre-change training blocks, followed by 2, 50-trial post-
change transfer blocks, with a participant-controlled rest
period after each block. Participants in all three conditions
were given response instructions at the beginning of the
experiment prior to the Wrst pre-change block, and again
immediately prior to the Wrst post-change transfer block.
Participants were told that they were to categorize disk pat-
terns on the basis of the orientation and bar width of the
stimulus presented on each trial into one of two categories
by pressing one button labeled “A” or the other button
labeled “B”. In all three conditions, participants were given
10, 50-trial blocks of pre-change training with a 5-s
response deadline. On each trial, a single stimulus was pre-
sented at Wxation and the participant was instructed to make
a categorization response by pressing one of two response
keys (labeled “A” or “B”) with their index Wngers. The Wxa-
tion point was presented on a gray background at the center
of the screen for 500 ms followed by the stimulus, which
was response terminated. Feedback was immediate, and
took the form of a 500 Hz tone for 500 ms for correct
responses or a 200 Hz tone for 500 ms for incorrect
responses. After the feedback interval, a blank screen was
presented for 1,000 ms, at which point the next trial began.

Following completion of the 500 pre-change training tri-
als in the Control condition, participants were given 2, 50-
trial blocks of post-change transfer with a 1.5-s response
deadline. The response deadline was included to ensure that
the participants could not overcome any interference by
simply inhibiting their initial response. If a response was
not made before the response deadline, the participant
received a message to speed up his or her response, and the
trial was discarded from subsequent analyses. On average,
this occurred on 3 of the 100 transfer trials. Post-change
transfer in the Response Location condition was identical to
that in the Control condition with the exception that the but-
tons associated with categories A and B were reversed so
that the button labeled “A” was now associated with

response “B” and vice versa, thereby switching the
response locations. Post-change transfer in the Rotation
condition was identical to that in the Control condition with
the exception that 100 stimuli from the rotated category
structure were utilized (see Fig. 6b). Participants in both the
Response Location and Rotation conditions were given
instructions that during the post-change transfer phase the
stimuli or the response mappings would change, but were
not told which would change.

Results

Accuracy analyses

Pre-change performance The learning curves for all three
conditions across the ten pre- and two post-change blocks
are presented in Fig. 7a. To verify that there were no diVer-
ences in pre-change performance, we conducted a three
condition £ ten pre-change block ANOVA. The main
eVect of block was signiWcant [F(9, 450) = 31.64, p < .001,
�2 = .388], whereas the main eVect of condition [F(2,
50) = 1.52, p = .23, �2 = .057] and the interaction were non-
signiWcant [F(18, 450) = .768, ns, �2 = .030]. In addition,
there was no eVect of condition in the tenth pre-change
block [F(2, 50) = 1.12, ns, �2 = .043]. Thus, pre-change
training performance was equal across conditions.

Cost The performance cost data are displayed in Fig. 7b.
As expected, there was no cost in the Control condition
[t(15) = 1.09, p > .05], but the cost was signiWcantly larger
than zero in the Rotation [t(18) = 9.312, p < .001] and
Response Location conditions [t(17) = 4.45, p < .001]. The
main eVect of condition on the performance cost [F(2,
50) = 17.21, p < .001, �2 = .408]. In addition, the cost was
signiWcantly larger in the Rotation condition than in the
Response Location condition [t(35) = 2.61, p = .013], and
than in the Control condition [t(33) = 6.57, p < .001]. The
cost was also signiWcantly larger in the Response Location
condition than in the Control condition [t(32) = 3.08,
p < .01].

Recovery The recovery data are displayed in Fig. 7c.
There was no signiWcant recovery in the Response Location
condition [t(17) < 1.0], but recovery was signiWcant in the
Rotation condition [t(18) = 3.66, p < .01]. In addition,
recovery was signiWcantly larger in the Rotation condition
than in the Response Location condition [t(35) = 2.67,
p = .011]. Importantly, the lack of recovery in the Response
Location condition cannot be interpreted as a ceiling eVect
since there was considerable room for a performance
improvement.

The most important Wnding is that the cost and recovery
rates were larger in the Rotation condition than in the
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Response Location condition. This replicates the pattern
observed in the Category Label and Response Location
conditions of Experiment 2, and suggests that a cognitive
remapping explanation for the Experiment 2 results is
unlikely. Thus, across two diVerent experimental manipula-
tions of the category label association relative to the
response location association, and with two diVerent stimu-
lus sets, we Wnd the same pattern, with larger costs for
manipulations that disrupt the category label than for
manipulations that disrupt the category-response mapping.
This provides further evidence that these two learned asso-
ciations, originally proposed with respect to rule-based
classiWcation, apply to information–integration classiWca-
tion, and suggests that the adverse eVects are larger, but the
recovery faster when the manipulation aVects the category
label association of information–integration classiWcation
learning.

The accuracy-based analyses suggest that the Rotation
condition led to a larger cost but greater recovery than the
Response Location condition. As with Experiment 2, it is
important to determine whether the manipulations led par-
ticipants to abandon information–integration decision strat-
egies, and to fall back on rule-based strategies, or whether
the manipulations interfered with the implementation of
information–integration strategies. To address this issue we
Wt models to the data from the Wnal pre-change block and
both post-change blocks.

The model-based analyses indicate that a large number
of participants switched strategy types when instructed that
the categories were going to change. However, it appears
that switching back to a response strategy of the same type
as the optimal classiWer (i.e., information–integration) may
have been more diYcult when the category structures were
rotated than when the response locations were switched. In
other words, more participants in the Response Location
condition were able to relearn an information–integration
response strategy than participants in the Rotation condi-
tion. It is also worth mentioning that in all but one case for
which a rule-based strategy Wt best, the best-Wtting model
assumed a simple one-dimensional rule.

The accuracy and modeling data support the hypothesis
that rotating the categories interfered enough with informa-
tion–integration categorization that participants abandoned
information–integration strategies in the Rotation condition
in favor of rule-based strategies and that they persisted with
this rule use to a greater extent than did participants in the
Response Location condition. Note that this result is also
consistent with the greater recovery rate seen in the Rota-
tion condition. This follows because with two categories,
rule-based learning is faster than information–integration
learning, and in the present experiment a one-dimensional
rule can perform reasonably well (i.e., approximately 70%
correct). As a result, participants who used explicit rules
during transfer could quickly increase their accuracy. In

Fig. 7 a Proportion correct 
(averaged across participants) 
from Experiment 3. b Cost 
determined by subtracting post-
change block 1 performance 
from pre-change block 10 per-
formance. c Recovery deter-
mined by subtracting post-
change block 1 performance 
from post-change block 2 per-
formance. Standard error bars 
included
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fact, an accuracy analysis shows that participants in the
Rotation condition who used rule-based strategies
increased their accuracy from 63% in the Wrst transfer block
to 71% correct in the Wnal transfer block.

Discussion

Rotating the stimuli and switching the response keys each
impaired performance, but the cost and recovery were
larger in the Rotation condition than the Response Location
condition. These results mirror those from Experiment 2,
and suggest that there are two associations involved in
information–integration learning, and that manipulations of
the category label association lead to larger costs but faster
recovery then manipulations of the label-to-response asso-
ciation. The Experiment 3 results also provide evidence
against a cognitive remapping explanation of the Experi-
ment 1 and 2 results. In the Response Location condition
the correct response changed for every region of stimulus
space, whereas in the Rotation condition this was true for
only part of the stimulus space. Thus, a model that assumes
a cognitive remapping would predict that all responses
must be relearned in the Response Location condition, but
only half the responses need relearning in the Rotation con-
dition. For this reason, a cognitive remapping model could
account for smaller costs in the Rotation condition, but
would be incompatible with the present results in which the
cost was larger in the Rotation condition.

In both conditions, the experimental manipulation
caused a decrease in the use of information–integration
strategies and an increase in the use of rule-based strategies.
The larger recovery in the Rotation condition was not asso-
ciated with an increase in the use of information–integra-
tion strategies as one might expect. Instead, rule-based
strategies continued to dominate in the second transfer
block of the Rotation condition, whereas information–inte-
gration strategy use returned in the Response Location con-
dition, although in both cases at least 50% of the
participants used a rule-based strategy in the second trans-
fer block.

General discussion

Understanding how people adapt to novel and changing
environments is an important focus of psychological
research. One of the most popular paradigms for investi-
gating these processes is to train people on rule-based
classiWcation tasks that can be learned via explicit reason-
ing, and then to examine the performance costs and recov-
ery rates associated with various shifts in the nature of the
problem. Research examining the eVects of category
shifts suggests that there are at least two associations

involved in rule-based classiWcation learning: a stimulus-
to-label association that learns to map groups of stimuli
with a category label, and a label-to-response association
that learns to map the category labels with responses
(Goldstone & Steyvers, 2001; Kendler & Kendler, 1962;
Kruschke, 1996).

The existence of these separate associations was con-
Wrmed in a conjunctive, rule-based learning task and was
extended to two diVerent information–integration category
learning problems. Experimental conditions that either dis-
rupted the stimulus-to-category label or the category label-
to-response location mapping were examined. Disruptions
of the stimulus-to-category label association led to a larger
cost and greater recovery than disruptions of the category
label-to-response location association for information–inte-
gration categories. Disruptions of the stimulus-to-category
label association led to a larger cost but equivalent recovery
than disruptions of the category label-to-response location
association for rule-based categories. This suggests some
similarities across rule-based and information–integration
categories (e.g., in the eVects on costs), but also some
important diVerences (e.g., in the eVects on recovery rates).

This study advances the Weld in a number of directions.
First, stimulus-to-category label manipulations have not
been studied extensively in information–integration cate-
gory learning. These data suggest that manipulations of
this sort lead to robust initial performance costs, but large
rates of recovery. Second, these data build upon initial
work by Wills et al. (2006) who compared full and partial
reversal conditions in family resemblance categories. They
found evidence to suggest that the stimulus-to-category
label association might actually be decomposable into two
sub-associations. This possibility is discussed below.
Finally, this work extends that conducted by Ashby et al.
(2003; see also Maddox et al., 2007) to a complex four-
category information–integration problem that includes
suYcient post-change training to examine recovery rates.
We turn now to a brief discussion of a number of impor-
tant topics.

Two learned associations in information–integration 
learning: theoretical and neurobiological implications

Of the many theories of category learning, only one posits a
neurobiological locus of information–integration category
learning. The COmpetition between Verbal and Implicit
Systems (COVIS; Ashby & Waldron, 1999; Ashby et al.,
1998) model assumes that only a single association is
involved in information–integration category learning that
is essentially equivalent to the stimulus-to-label association
proposed here. In COVIS, associations between stimuli and
category labels are learned via changes in synaptic strength
between pyramidal cells in visual association areas and
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medium spiny cells in the striatum. A large set of diverse
results support this general model (for a review see, e.g.,
Ashby & Ennis, 2006), including single-cell recording
studies in monkeys showing that striatal medium spiny
cells develop category-speciWc responses after extensive
categorization training (Merchant, Zainos, Hernandez, Sali-
nas, & Romo, 1997; Romo, Merchant, Ruiz, Crespo, & Zai-
nos, 1995; Romo, Merchant, Zainos, & Hernandez, 1997).
Some of the characteristics associated with the neural archi-
tecture of the COVIS stimulus-to-label association are
roughly consistent with the empirical Wndings reported
here. For example, breaking the associations between the
stimuli and category labels should eVectively return the
synaptic strengths to baseline levels leading the procedural
system to relearn from scratch. This would lead to a large
performance cost, and a rate of recovery similar to that
observed in initial learning as if a new classiWcation task
was being performed.

Because COVIS postulates no learning after the cortical-
striatal synapses, it would predict no qualitative diVerence
between the rotation/category label and response location
manipulations used here. Both manipulations would require
cortical-striatal relearning. For this reason, COVIS, in its
current form, is not consistent with the present results.
COVIS might be extended, however, to include a second
learned association that consists of associating a category
label with a speciWc response location. Logically, such
learning must be downstream from the site of category
label learning, which suggests that plausible sites of
response learning could be at synapses in the internal seg-
ment of the globus pallidus, the ventral anterior or ventral
lateral nuclei of the thalamus, or perhaps within premotor
cortex. Each of these brain regions has been implicated in
procedural learning and, thus represent plausible loci of
such learning (Poldrack et al., 2005). However, at present,
we know of no behavioral or neuroscience data that could
be used to narrow this search. As such, proposing a neuro-
biological basis for label-to-response learning must remain
a goal of future research. Even so, the current results do
oVer some insights into the behavioral properties of the
label-to-response associations (smaller cost, and weaker
recover), and thus should help narrow the Weld of possible
neural loci.

An alternative two-association model

We interpret the current data as supporting a two-associa-
tion model that assumes that one association maps stimuli
to labels and a second maps labels-to-responses. A reason-
able alternative, however, might be a two-association
model that assumes a stimulus-to-label association (as we
do) but also a stimulus-response (instead of a category
label-to-response) association that learns the direct

mapping between the stimulus and the response.2 One
advantage of this model is that it provides a straightforward
explanation for why the category label manipulation led to
a larger performance cost than the response location manip-
ulation. In short, whereas both the category label and
response location manipulations broke the learned stimu-
lus-response association, only the category label manipula-
tion also broke the learned stimulus-to-category label
association. Thus, two associations were broken by the cat-
egory label manipulation, whereas only one was broken by
the response location manipulation. Note that this is not a
viable two-association model of rule-based classiWcation,
because it predicts a performance cost anytime that the
stimulus-response association is broken. As outlined ear-
lier, Ashby et al. (2003) reported that a button switch did
not adversely aVect two-category rule-based performance,
whereas it did aVect two-category information–integration
performance. Even so, it does provide a viable model of
information–integration classiWcation. Thus, although these
data clearly support a two-association model of informa-
tion–integration classiWcation, a determination of the exact
nature of the associations awaits future research.

Future directions

There are a number of exciting directions to take this work.
One that is particularly promising is to explore in greater
detail the possibility that rule-based and information–inte-
gration classiWcation are characterized by three, as opposed
to two, learned associations. Whereas the current research
supports the existence of a stimulus-to-label and a label-to-
response (or perhaps stimulus-response) association, the
work of Sanders (1971) and Wills et al. (2006), using an
optional shift paradigm suggests that the stimulus-to-label
association might actually be composed of two separate
associations: a stimulus-to-category representation associa-
tion and a category-representation-to-category label associ-
ation. Unfortunately, the many diVerences in procedures
and stimuli make a deWnitive conclusion premature. Future
research should attempt to provide evidence for all three
associations within a single experiment.

A second line of work should focus on the processing
characteristics associated with each association. Here an
application of a processing dissociation approach would be
highly useful. Over the past decade or so, Ashby, Maddox,
and their colleagues used a process dissociation approach to
provide convincing evidence that rule-based category
learning is mediated by an explicit hypothesis-testing sys-
tem, whereas information–integration category learning is
mediated by an implicit procedural-learning-based system.

2 We thank an anonymous reviewer for suggesting this alternative.
123



Psychological Research (2010) 74:219–236 235
To achieve this goal, experimental manipulations were
introduced that aVected the explicit system but not the
implicit system (or vice versa) and the eVects of these
manipulations on rule-based and information–integration
category learning were examined. For example, changes to
the nature and timing of the feedback disrupted informa-
tion–integration, but not rule-based category learning
(Ashby, Maddox, & Bohil, 2002; Maddox & Ing, 2005;
Maddox, Ashby, & Bohil 2003; Maddox, Love, Glass, &
Filoteo, 2008), whereas increasing the working memory
load disrupted rule-based, but not information–integration
category learning (Waldron & Ashby, 2001; Zeithamova
and Maddox 2006, 2007). The coherence of the categories
has also been shown to aVect information–integration but
not rule-based category learning (Maddox, Filoteo, & Lau-
ritzen, 2007; Maddox, Filoteo, Lauritzen, Connally, & Hejl,
2005). Applying this same process dissociation approach to
the various associations involved in rule-based and infor-
mation–integration classiWcation learning will provide
many important insights into the nature of processing in
each association.

A third line of work should focus on the pre- to post-
change transition instructions. In all experiments partici-
pants were informed that “some” aspect of the task changed
(e.g., the assignment of categories to buttons had changed).
This is in contrast to many shift studies that provide the par-
ticipants with no information. One prediction is that the
removal of the transition instructions will have no eVect on
the magnitude of the eVect in the implicit, information–
integration task, but will have an eVect in the explicit, rule-
based task.

Another interesting approach would be to look at cate-
gory label and response location conditions that introduced
new category labels and new response locations. In our
studies the same category labels and response locations
were used pre- and post-change, but the stimulus-to-cate-
gory label and category label-to-response location assign-
ments were changed. We took this approach because it is
the most common in the extant literature. Even so, future
work should examine cases in which the category labels
and response locations during the post-change phase are
novel.

Conclusions

The existence of separate stimulus-to-label and label-to-
response associations, hypothesized in previous work
(Goldstone & Steyvers, 2001; Kendler & Kendler, 1962;
Kruschke, 1996), was conWrmed in conjunctive, rule-based
learning and was extended to information–integration cate-
gory learning. Separate conditions that either disrupted the
mapping from stimulus-to-category label or disrupted the

mapping from category label-to-response location were
examined. Both manipulations led to signiWcant perfor-
mance costs in information–integration learning, but dis-
rupting the stimulus-to-category label mapping led to a
signiWcantly larger cost than disrupting the category label-
to-response mapping. SigniWcantly larger costs associated
with disrupting the stimulus-to-label mapping relative to
disrupting the label-to-response mapping were also
observed in rule-based learning. In addition, recovery was
greater when the stimulus-to-label mapping was broken in
information–integration learning. With rule-based catego-
ries, a qualitatively diVerent performance pattern emerged
in which no diVerence in the magnitude of the recoveries
was observed. These results provide strong behavioral evi-
dence that information–integration category learning is
mediated by separate stimulus-to-label and label-to-
response learning associations.
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