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Abstract

Association analysis using admixed populations imposes challenges and opportunities for disease 

mapping. By developing some explicit results for the variance of an allele of interest conditional 

on either local or global ancestry and by simulation of recently admixed genomes we evaluate 

power and false-positive rates under a variety of scenarios concerning linkage disequilibrium (LD) 

and the presence of unmeasured variants. Pairwise LD patterns were compared between admixed 

and nonadmixed populations using the HapMap phase 3 data. Based on the above, we showed that 

as follows:

1. For causal variants with similar effect size in all populations, power is generally 

higher in a study using admixed population than using nonadmixed population, 

especially for highly differentiated SNPs. This gain of power is achieved with 

adjustment of global ancestry, which completely removes any cross-

chromosome inflation of type I error rates, and addresses much of the 

intrachromosome inflation.

2. If reliably estimated, adjusting for local ancestry precisely recovers the 

localization that could have been achieved in a stratified analysis of source 

populations. Improved localization is most evident for highly differentiated 

SNPs; however, the advantage of higher power is lost on exactly the same 

differentiated SNPs.

3. In the real admixed populations such as African Americans and Latinos, the 

expansion of LD is not as dramatic as in our simulation.

4. While adjustment for global ancestry is required prior to announcing a novel 

association seen in an admixed population, local ancestry adjustment may best 

be regarded as a localization tool not strictly required for discovery purposes.
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Introduction

Major racial groups in the world originated because of continental-scale geographical 

separation. Allele frequencies diverged as a result of genetic drift and natural selection under 

different environmental pressures. Starting generally from genome-wide association studies 

(GWAS) in European-originated populations, collaborative efforts have been made to 

evaluate phenotypic associations using non-European populations [Matise et al., 2011]. The 

motivation for expanding the population diversity for association studies includes: (1) 

Evaluation of the generalizability of risk variants of complex diseases in all populations. (2) 

Better mapping and localization of the true variants by leveraging the varied linkage 

disequilibrium (LD) across different populations. For (1), association studies have revealed 

that the significance of risk variants can vary profoundly in different populations [Ioannidis 

et al., 2004]. Many association signals originally found in European-based studies failed to 

replicate in other non-European populations [Waters et al., 2009; Yamada et al., 2009] and 

vice versa; for example populations with African ancestry harbor prostate cancer risk 

variants at 8q24 with notably higher frequencies compared to other populations [Haiman et 

al., 2007]. Possible explanations for these observed disparities include altered frequency of 

causal variants due to genetic drift combined with varying LD between marker and causal 

alleles, or different environmental/genetic modifiers that amplify the effects of the causal 

variants in certain populations more than in others. The full scope of risk variants across 

populations is a fundamental piece of knowledge about human disease, and requires more 

detailed investigations in diverse populations. Focusing on solely one population may ignore 

associations with SNPs that are common overall, but rare in certain individual populations, 

and misleadingly highlight some population-specific ones. For (2), the philosophy is that, as 

different populations drifted from the original common ancestry of all human beings at 

different historical time points, accumulated recombination would produce LD that varies in 

length and boundaries across populations, and working with multiple populations could 

hopefully narrow down the signal over the risk region, by leveraging the variation of LD in 

different populations [Franceschini et al., 2012; Haiman et al., 2007; Morris, 2011; Udler et 

al., 2009].

A key requirement for success in exploring multiple populations in an association study is 

attending to population heterogeneity. Many modern populations especially in the New 

World have undergone admixture during the past several hundred years. Within the United 

States the largest admixed populations are African-Americans and Latinos. Individuals self-

identified to belong to the same racial population could have very different ancestral origins. 

Among groups of self-identified African-Americans, average proportions of European 

ancestry vary from 3.5% to 22.5%, and within population differences are much greater 

[Chen et al., 2010; Parra et al., 1998, 2001]. Latinos living in the United States are believed 

to have derived from three major ancestral populations: European, Native American, and 
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Africans, with the contribution of each group varying according to the region of residency 

[Hanis et al., 1991].

The study of admixed populations allow for analyses that can not always be performed 

within homogeneous groups, even when data for more than one such group is present. For 

example, several SNPs related to skin pigmentation have different alleles fixed or nearly 

fixed in Northern European (HapMap CEU) vs. sub-Saharan African (as in HapMap YRI) 

populations [Beleza et al., 2013; Sturm, 2009]. Since these SNPs do not vary within the 

ancestral populations, it requires either a historically or recently admixed population to 

detect their relationship to skin pigmentation.

Recent admixture can be exploited to identify candidate regions of the genome that are 

likely to contain variants involved in disease susceptibility. Admixture mapping searches for 

regions of the genome where ancestral population origin with the higher disease prevalence 

is present with higher proportion in diseased individuals [Chakraborty and Weiss, 1988; 

Freedman et al., 2006; Kopp et al., 2008; Manichaikul et al., 2012; Stephens et al., 1994]. 

This analysis can be done with a relatively small panel of ancestry-informative SNPs, but the 

regions identified tend to be large in extent compared to GWAS, which provides more 

definitive localization.

In GWAS with multiethnic and admixed populations, one should be aware of the issues 

raised by “population stratification.” Spurious association occurs for SNPs with different 

allele frequencies in the mixing subpopulations, when disease risk also differs by population. 

Even if two SNPs are in perfect linkage equilibrium in both ancestral populations, as long as 

their allele frequencies are different in two subpopulations, linkage disequilibrium will be 

created as the two populations admix [Chakraborty and Weiss, 1988], we term this as 

admixture-induced LD (ALD) here after. With recombination taking place every generation, 

the genome of an admixed individual is a mosaic consisting of chromosomal segments with 

different ancestral origins. In a recently admixed population, the fraction of ancestry from 

each population varies across each individual, which is termed variation in global ancestry. 

For a single person, the proportions of ancestries vary across the genome, which is termed 

variation in local ancestry.

Motivated by the advantages and challenges of using multiethnic, and admixed populations 

for GWAS studies, discussions aiming to find optimal association tests abound. In terms of 

controlling of type I error inflated with population stratification, a basic but useful practice is 

genomic control [Devlin and Roeder, 1999]. Price et al. suggested estimating and then 

adjusting for top principal components [Price et al., 2006], because the top eigenvectors are 

shown to be effective in capturing the demographic uniqueness of a population. The above 

two are accepted as standard practice nowadays, but Qin et al. argued that in direct SNP 

association test, adjusting only for global population structure is insufficient when local 

population stratification is the dominating confounder, and suggested the calculation and 

correction of local principal components in such cases [Qin et al., 2010]. Wang et al. made 

similar points but suggested adjusting for estimated local ancestry, instead of local principal 

components [Wang et al., 2011]. Another direction of active efforts is to increase power by 

unifying admixture mapping and single variant association tests. Tang et al. proposed that 
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the signals from admixture mapping and single SNP associations provide independent 

information and could complement each other, and suggested a joint test under a family 

design [Tang et al., 2010]. Two joint tests (MIXSCORE) were developed in the context of 

case/control GWAS study, and a gain of power was reported [Pasaniuc et al., 2011]. A 

Bayesian method (BMIX) has also been proposed [Shriner et al., 2011].

When the causal variants are not directly typed, the effects of surrogate markers might vary 

across populations due to heterogeneity of LD. Liu et al. proposed to include local ancestry 

and an interaction term in logistic regression model, which may increase power when LD 

varies greatly between mixing populations [Liu et al., 2013].

Despite the interest in local ancestry and in the correct use of admixed populations in 

GWAS, the type I error and power of these proposed methods were only evaluated in the 

original papers with individually different and sometimes oversimplified simulations. The 

lack of consistency in the evaluation measures and results has lead to conflicting advice to 

the researchers needing to choose the strategies to deal with admixed populations in GWAS 

practice. Here, we attempt to discuss the following basic questions:

1. Can an admixed population provide good power for association tests 

relative to studies within an ancestral population, or combinations of 

ancestral populations?

2. Should correction for local ancestry be generally required when evaluating 

statistical significance found in studies using admixed populations?

3. How much power for localization is lost due to admixture, and can 

mapping be improved by using local ancestry adjustment?

To answer the above questions, we started with deriving the conditional variances of 

candidate allele counts in association strategies being discussed, and showed in simulation 

that the conditional variance largely determines power. Further, we simulated simple but 

illustrative admixture processes and a polygenic disease model to evaluate the false-positive 

rate. The advantage of our simulation over many of the others is that (1) the global and local 

ancestry was fully known, so the bias introduced by ancestry inference was avoided; (2) the 

contribution from global or local ancestry to disease risk in the admixed population was a 

result of risk allele differentiation, rather than an effect assigned arbitrarily as in some other 

simulations [Qin et al., 2010; Wang et al., 2011]; (3) the disease risk differentiation could be 

due to an overall differentiation of the polygene, instead of due to one single causal variant 

only; (4) null SNPs could be in LD with causal SNPs, which enables us to compare type I 

error in a more practical sense, and to visualize association signals in a genome-wide scan. 

Finally, we investigated the pairwise SNP correlation patterns in actual admixed and 

nonadmixed populations using HapMap Phase III data, to inspect the real extent of LD 

expansion in major admixed populations, as a reference when addressing the necessity of 

adjusting for local ancestry in actual practice.
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Methods

Theoretical Derivations

Notation—Without loss of generality, we consider a simple but illustrative two-way 

admixture model. Suppose there are two ancestral populations in which the risk of the 

polygenic disease of interest differs, and the allele frequency of a candidate SNP in each 

population is p1 and p2, respectively; and a new admixed population derives from these two 

ancestral populations with an initial proportion a of population 1 and 1-a of population 2 and 

K generations of subsequent random mating. For each admixed offspring, the proportion of 

his/her ancestors originating from ancestral subpopulation 1 is termed “global ancestry” or 

G here after. For each SNP of each admixed offspring, the number of alleles (0, 1, or 2) 

originating from ancestral population 1 is termed “local ancestry” or L. The allele count of 

the candidate SNP is termed as M.

Under the above setting, the probability distribution of G and L can be readily written down 

as:

(1)

(2)

where n = 2K is the number of ancestors of an admixed individual.

For purposes of comparison, we also consider a study using stratified ancestral populations. 

Suppose there is a stratified population with proportion a from ancestral population 1 and 1-
a from ancestral population 2. We term the subpopulation indicator of each individual that 

will later be used for stratified analysis as P, which follows a simple binomial distribution:

Conditional Variance of the Candidate SNP Allele Count Given Certain 
Population Stratification Controlling Variables—Global and local ancestry for 

analysis of an admixed population, and subpopulation indicator for analysis of a combined 

ancestral population are possible covariates to control for population stratification, and we 

inspect the variance of the candidate allele count conditioning on each of these covariates, 

which, for studies of a constant sample size, largely determines the power to detect the effect 

of the candidate SNP when using an adjusted Armitage test.

Some derivations (details shown in Appendix) reveal that:
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Note that , so the 

conditional variance of candidate SNP allele count could be ordered as follows: 

. The first equality 

holds only when p1 = p2, and the difference of expected variance is a function of (p1 – p2)2, 

so it increase as the difference of allele frequencies in two ancestral populations gets larger.

Impact on Power—For a continuous trait Y, the noncentrality parameter for detecting the 

effect of a variable X in the presence of a control variable C equals: , 

where . Assuming that X explains only a modest 

proportion of the variance of Y, so that σY|X,C
2 is almost equal to the variance of Y given 

only C we can see that the noncentrality parameter and hence power is determined by Var(X|

C). For a binary outcome we consider the Armitage test, which is equivalent to the score test 

of logistic regression. While it is not as easy to derive a closed-form expression of the 

noncentrality parameter we find in simulations that the concept for linear regression largely 

generalizes to logistic regression and the power of detecting the effect of a risk allele 

increases with its expected conditional variance. An additional consideration for logistic 

regression is that greater variance of omitted covariates (e.g., other elements in polygene) 

leads to greater bias toward the null [Neuhaus and Jewell, 1993], which would reduce power 

under alternative hypothesis. This is discussed more fully below.

Power

Let Yi denote the disease status of each individual, Wi denote the score of polygene (i.e., the 

weighted sum of risk alleles of all causal SNPs Mis of each individual), and assuming that 

risk of polygenic disease can be modeled as

We are interested in evaluating the power (and type I error) of detecting the effect of any 

single Mis, in association studies using an admixed population with global ancestry 
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adjustment (referred to as Adx|G here after), or with local ancestry adjustment (Adx|L), in 

comparison with stratified analysis of combined ancestral populations (Anc|P).

Single Causal Variant—We started with a very simple model of single causal variant 

disease, with disease model parameters specified as S = 1, α = log (0.1), βs = 0.3∀s. Allele 

frequencies of the causal variant in two ancestral populations were arbitrarily assigned for 

comparison purposes (sets of frequencies: 0.01 vs. 0.99, 0.01 vs. 0.5, 0.5 vs. 0.5, and 0.3 vs. 

0.7 were used). A combined ancestral population was simulated by sampling a number of 

subjects from subpopulation 1 and subpopulation 2, respectively, with the prespecified 

proportion a. The genotype of the causal variant in each subject was sampled according to 

the conditional probabilities, given local and global ancestry, as described in the Appendix. 

An admixed population after five generations with original admixture proportion a was 

simulated by sampling global ancestries, local ancestries, and genotypes according to the 

probabilities listed in Theoretical Derivation and Appendix.

Multiple Causal Variants (Polygenic Disease)—We next investigated whether the 

result of the single variant disease could be generalized to polygenic disease, by simulating 

another 100 causal variants in addition to the causal variant of interest. The allele frequency 

of the causal variant of interest is assigned arbitrarily as before, and the allele frequencies of 

the other 100 variants in two ancestral populations were generated following Balding–

Nichols model [Balding and Nichols, 1995] with Fst set to 0.2. Disease model was specified 

with parameters S = 101, α = log(10−13), βs = 0.3∀s (the very small α was assigned because 

only a vanishingly small proportion of individuals will carry no risk alleles at all). We 

assumed the causal variants are independent of each other, and the genotypes were again 

sampled according to the probabilities listed in Theoretical Derivation and Appendix.

Power Evaluation—Disease statuses in the stratified ancestral population and admixed 

population were assigned according to same pre-specified disease models. For each 

replication 1,000 case-control pairs were sampled, and Armitage tests were performed using 

the sampled subjects. χ2 statistics were averaged over 1,000 replicates.

Positive Rate

Simulation of Ancestral Genomes With LD—Two established populations with Fst of 

0.2 were generated following Balding–Nichol’s model [Balding and Nichols, 1995]. The 

allele frequencies (vector p) of SNPs of an original population ancestral to all modern 

populations were drawn i.i.d. from uniform [0.1, 0.9]. Then, the allele frequencies of 

population 1 and 2 were each drawn from a Beta( , ) distribution. 

Two scenarios of ancestral LD were simulated (i) without, and (ii) with, ancestral LD 

between the SNPs used for the association study: For (i), the allele counts on a single 

chromosome was generated as independent Bernoulli random variables with expectations 

equal to corresponding allele frequencies. For (ii), the correlated Bernoulli variables were 

simulated through the following procedure:
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1. M (number of SNPs on each chromosome) multivariate normal variables 

Vs were simulated, such that V1,V2, …, VM ~ N (0,Σ), where Σ = (ρj k), 

ρj k = exp (− |j – k| · d) ∀j , k.

2.

Hs were created as .

So that the each vector of H consists of binary counts with E(Hj) = pj and 

, which make up allele counts on a single 

chromosome. Each chromosome was generated independently, and then allele counts on two 

chromosomes were collapsed to genotypes. Two ancestral populations were simulated 

respectively.

For the purpose of our discussion, we simulated both sparsely typed SNPs and densely typed 

SNPs. For sparsely typed SNPs, genomes of the ancestral populations were simulated as 22 

autosomes with 500 SNPs on each chromosome. SNPs were simulated to be moderately 

correlated by setting d = 0.3 in ρj k = exp (− |j − k| · d), and the pairwise correlation R2 dies 

off below 0.36 within about 1–2 SNPs. For the densely typed SNPs, two chromosomes with 

10,000 SNPs on each chromosome were simulated; d = 0.01 was used to make the pairwise 

correlation R2 die off below 0.36 within about 30 SNPs.

Simulation of Admixture Process and Disease Status—A simple admixture 

process was simulated for each scenario we have described above. Two established ancestral 

populations were mixed with equal proportions to form one mixing population. Then a 

simulation of random mating was implemented within this mixing population: In each 

generation we forced one recombination between each pair of parental chromosomes at a 

randomly selected position. This is a simplification of the fact that at least one crossover 

takes place as the chiasmata is formed in meiosis [Creighton and McClintock, 1931]. To 

illustrate a scenario of very recent admixture, only two generations of random mating were 

performed. Offspring of this admixture process makes up the simulated admixed population. 

To ensure comparability between the ancestral and admixed populations, the random mating 

process was also implemented respectively within the two original populations, and resulted 

in a slight reduction in ancestral LD. Subjects from these two nonadmixed populations were 

sampled with equal proportion to make up the combined ancestral population.

In each set of simulated genomes, a set of SNPs were randomly sampled and made causal to 

constitute the polygene. To focus on situations where the disease risks are at least 

moderately differentiated between ancestral populations, a paired t-test of the polygene 

allele frequencies in the two ancestral populations were performed and we refrained from 

proceeding unless the p value was less than 0.10. Two patterns of polygene locations were 

simulated: (i) Many causal SNPs spread randomly across the genome. (ii) Causal SNPs 

clustered around a few causal loci. For (i), causal SNPs were selected by simple random 

sampling, for (ii), centers of causal loci were selected by simple random sampling, and then 

two SNPs on each side were made causal.
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We selected 100 causal SNPs from 22 chromosomes of the sparsely typed SNPs; and 10 

causal SNPs from one chromosome of the densely typed SNPs. Case/control status of each 

individual was assigned as a binary outcome according to the disease model described above 

with β = 0.3. Then 750 cases and 750 controls from each ancestral population, and 1,500 

cases and 1,500 controls from the admixed population were selected by simple random 

sampling.

False Positive Rate and Significance Rate—False positive rates were calculated over 

500 replicates as the proportion of simulations in which a noncausal SNP was claimed 

significant falsely with P ≤ 0.05 without Bonferroni adjustment.

Armitage Trend χ2 Test and Adjusted Armitage Test

The association between a given SNP and the disease of interest was calculated using the 

Armitage trend χ2 test [Armitage, 1955]. This test is equivalent to score test of logistic 

regression, and the statistic χ2 was calculated as the Pearson squared correlation between 

the genotype of this SNP and the disease status, multiplied by N, the number of samples.

To adjust for a variable (such as G, L, or P) in the association tests, we performed linear 

regression of disease status and the SNP genotype, respectively, on the adjusted variable, and 

retained the residuals of the disease status and genotype. Then the statistic χ2 of an adjusted 

Armitage trend test was calculated as the Pearson squared correlation between the two 

residuals, multiplied by (N-k-1), where N was the number of samples, k the number of 

variables adjusted. This is a generalization of Armitage test for discrete phenotype and 

genotypes, based on the idea that to test for the partial correlation of two vectors is 

equivalent to test correlation between their projections in a space with reduced dimension 

[Price et al., 2006].

Pairwise Correlation Patterns of Real GWAS Data

The Armitage trend test statistic is proportional to the Pearson R2 correlation coefficient 

between marker and case-control status. Therefore for any other adjacent marker SNP with a 

correlation R2 with a causal locus with a large noncentrality parameter T (if we test the locus 

directly), the noncentrality parameter is approximately T × R2. So in a region with an 

unobserved causal variant, the strength of association signals we would detect is a function 

of the Pearson correlation between that variant and nearby SNPs residing within that region.

We used HapMap phase III data to evaluate the pairwise R2 correlation pattern in continental 

and admixed populations. We randomly selected 100 subjects from the founders in 

American Europeans (CEU), Western Africans (YRI), and East Asian (pooled CHB and JPT, 

referred to as ASN here after), respectively. The pairwise Pearson R2 between SNPs was 

calculated for the 11,485 common SNPs (MAF > 0.05 in all populations) on chromosome 

21. Similarly, 48 subjects (the available size of MEX panel) were sampled from African 

Americans (ASW), and Latinos (MEX), respectively, and the pairwise Pearson R2 between 

SNPs was calculated for the 12,099 common SNPs (MAF > 0.05 in all populations) on 

chromosome 21.
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The global ancestry of the admixed population ASW and MEX was estimated as top 

principal components, local ancestry of ASW was estimated by program LAMP 

[Sankararaman et al., 2008]. Partial correlations conditioning on G or L were calculated to 

investigate the LD pattern after adjustment of G or L.

By examining the distributions of pairwise R2 correlation in the HapMap continental panels 

(CEU, YRI, and ASN), we found the 99-percentile cutoff is 0.36. Thus we define a SNP that 

correlates with a causal variant with R2 ≥ 0.36 as a surrogate of this variant, and therefore 

the surrogates of a causal variant correspond to the top 1 percent strongest signals we would 

detect in a well-powered association test scanning for this causal variant.

One SNP (not necessarily differentiated between ancestries) was randomly sampled to be the 

causal variant, and its surrogates within 7.5 Mb neighboring region (on each side) were 

identified. The number of surrogates, and the distance between the farthest surrogate and the 

variant of interest were recorded; empirical distributions were generated over 1,000 

independent samplings. The causal variants were stratified by their allele frequency 

difference in ancestral populations, which refer to CEU and YRI for ASW, CEU, and ASN 

for MEX.

The pairwise correlations and partial correlations were also calculated for the simulated data 

with densely typed SNPs. To make the pattern in simulated data comparable to that in 

HapMap data, we assigned a constant interval of 1.8 Kb between SNPs in simulated data, so 

that the correlations die off below 0.36 in roughly 55 Kb, as in HapMap CEU panel.

Results

Power

A major motivation of this paper is to understand whether using an admixed population for 

an association study is at least as powerful as using its ancestral populations, and a quick 

answer is that using admixed populations with adjustment of global ancestry could yield 

even higher power. As shown in Tables 1 and 2, and illustrated in Figure 1, it is evident that 

as long as the allele frequency of a causal variant differs between ancestral populations Adx|

G yields higher power than Anc|P or Adx|L with the difference in power dependent on the 

difference in allele frequency.

When the candidate SNP is the only causal variant, power using either Adx|L or Anc|P is 

very similar (Table 1). However, when a causal polygene is simulated, a subtle but 

perceptible deficit of power in ADX|L comparing to Anc|P is observed (Table 2). This can 

be explained by the fact that the conditional variance of the other elements in polygene is 

larger in Adx|L than Anc|P, which leads to larger bias toward null and interferes with the 

power of detecting the effect of the candidate SNP [Neuhaus and Jewell, 1993].

It is worth being noted that our comparison is between an admixed population with 

admixture proportion a, and a stratified analysis of a population consisting of subjects from 

the two ancestral populations (of the studied admixed population) with the same proportion. 

For all the three tests we have discussed, the expected conditional variance of a candidate 
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variant is maximized when the proportions subjects deriving from the ancestral populations 

are equal.

False-Positive Rates

The immediate following goal was to compare the performance of the tests discussed above 

in terms of controlling spurious association. An oversimplified measure of type I error 

would be the proportion of times of rejection for a candidate SNP with β = 0. However, in 

the real practice of disease mapping it is not appropriate to use the very strict definition of 

false positive because in a sense all GWAS are based on LD instead of complete genotypes. 

On the other hand, it is also not desirable to detect an association when candidate SNPs and 

causal SNPs are in very weak LD, such as on two ends of one chromosome or on different 

chromosomes.

To accommodate this practical consideration, we compared the rate of false positives using 

the strict definition when applied in the admixed population to when the same definition was 

applied to a stratified analysis of the combined ancestral populations. The noncausal SNPs 

were categorized by their proximity to members of the polygene, and the observed positive 

rates were compared within categories.

As expected (Table 3), the näive test using the admixed population without any adjustment 

of ancestry information suffers spurious association even for noncausal SNPs physically 

residing on chromosomes where no causal locus exist. Adx|G sufficiently controls this kind 

of inflation, no matter whether the SNPs are independent, or in considerable LD in the 

ancestral populations. For noncausal SNPs that reside on the chromosomes harboring 

elements of the polygene, Adx|G removes a substantial amount of the spurious associations: 

the positive rate level is almost identical to Anc|P for SNPs that are distant from the 

polygene; while for SNPs that are close to the polygene the positive rate level is higher than 

that in Anc|P, especially when the SNPs are dense. Adx|L always controls the inflation of the 

null SNPs to the level that is almost identical to Anc|P, even for SNPs in strong LD with the 

polygene. The result of the Armitage test adjusted for both global and local ancestry were 

also examined, and the type I error is almost identical to that of Adx|L (data not shown), 

which is expected since conditioning on global ancestry as well as local ancestry does not 

further reduce the variance of the candidate allele, as shown in Methods.

To visualize the trade-off of power and false-positive rates by adjusting for local or global 

ancestry, we produced a Manhattan plot using one set of simulated association results (Fig. 

2). It is seen that the näive test without any adjustment of ancestry suffers severe inflation 

even on a chromosome that does not harbor any causal variant, while adjustments for global 

ancestry or local ancestry perform similarly well in getting rid of this kind of gross inflation. 

Adjusting for global ancestry generally yields more significant results than adjusting for 

local ancestry, with relatively more inflation on regions immediately proximal to the true 

causal variants.

Global and Local Ancestry Estimation

The above comparison was performed in the ideal situation that the ancestry attribution of 

each admixed individuals on each SNP was completely known. In real practice of GWAS 
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using admixed populations, one would need to estimate the global and local ancestry. Based 

on our simulated data (see Supplementary Fig. S1), we found that as recommended by Price 

et al. [Price et al., 2006], top PCs capture the variation in global ancestry very well. For local 

ancestry estimation we found that estimates using LAMP were highly correlated (R2 > 0.99) 

with the true local ancestry of the simulated admixed individuals.

Pairwise SNP Correlation Patterns in Real GWAS Data

As described in Methods, we define surrogates of a variant as the SNPs that have correlation 

R2 > 0.36 with that given variant. In the HapMap African American panel (ASW), the 

number of surrogates is not substantially increased when compared to a stratified reference 

panel (20% ASW + 80% CEU), the medians of both are 5. Conditioning on local ancestry 

estimation for ASW reduced the median to 4 (Table 4, Fig. 3). The distance to the farthest 

surrogates is extended in ASW (with median 26.02 Kb), but is still comparable to the 

reference panel (with median 24.46 Kb). Conditioning on global ancestry reduces the 

median very slightly to 25.98 Kb, and conditioning on local ancestry reduces the median to 

22.95 Kb (Table 4). When the allele frequency for the causal variant differs greatly between 

CEU and YRI (difference > 0.5), the effect of admixture is more pronounced: surrogates 

may be more than 1 Mb away for a quarter of all such loci. Conditioning on global ancestry 

narrowed the signals down by more than 900 Kb, while conditioning on local ancestry 

almost recovered the signal pattern in the reference panel, which is another 300 Kb narrower 

than adjusting for global ancestry. For more moderately differentiated variants (difference is 

within 0.3~0.5), one quarter of the signals could expand 60 Kb away compared to that in the 

reference panel, conditioning on global ancestry could narrow down the region by 30 Kb, 

and conditioning on local ancestry further localized the signal by another 30 Kb narrower. 

For variants that are not differentiated to a noticeable level (difference < 0.3) that consists 

more than 77% of all the SNPs, the signals expand for less than 10 Kb in ASW, conditioning 

on either global or local ancestry recovered the signal pattern to that in the reference panel 

(Fig. 4, Supplementary Table S2). However, the ratio of variances Var(ASW|L)/Var(ASW|

G), which is equivalent to the proportionate loss of effective sample size when adjusting for 

L rather than G, gets larger as the differentiation of allele frequency increases 

(Supplementary Tables S1, S2). For slightly differentiated causal alleles (differentiation [0, 

0.3]) this loss of effective size is quite minor (mean of 2 percent) but large differences (e.g. 

[0.5, 1]) imply losses of roughly 25 percent and sometimes much more (Supplementary 

Table S1). Note that a 2 percent loss in effective sample size reduces power from 80 percent 

to 78 percent (at type I error rate 5 × 10−8) while a 25 percent reduction in sample size 

reduces the power from 80 to 50 percent. Put another way, a 25 percent reduction in sample 

size may be expected to change a P value of 5 × 10−8 (generally regarded as globally 

significant in GWAS) to a much less remarkable 2.4 × 10−6.

In the HapMap Mexican panel MEX, due to the lack of reliable local ancestry estimation for 

Latinos, currently we have not assessed the effect of adjusting for local ancestry in MEX. 

But we used a reference panel with equal proportion of CEU and ASN (pooled CHB and 

JPT as described in Methods) to get an idea of the possible association signal span. The 

number of surrogates in MEX (with median 9) is comparable to that in European panel CEU 

with median 10 and the mixed panel of CEU and ASN with median 8 (Table 4, Fig. 3). The 
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distance to the farthest signal with median 47.81 Kb is not obviously expanded compared 

with CEU, in which the distance has median 45.73 Kb; in the mixed panel of CEU and ASN 

the median is 32.99 Kb. Conditioning on global ancestry estimation reduces the median to 

45.76 Kb (Table 4). We should be aware that the LD in the mixed panel used as a reference 

here is likely shorter than that in the real ancestral populations of MEX since the Native 

Americans are a younger population than Asian. One quarter of the signals extend over 25 

Kb greater than in CEU, and adjusting for global ancestry narrowed the third quartile cut-

point to 14 Kb wider than in CEU (Table 4). The expansion of signals is not particularly 

dramatic for the highly differentiated loci (Fig. 4, Supplementary Table S2). This may in part 

reflect the poor performance of the ASN reference panel compared to having a true Native 

American reference.

In contrast, the expansion in simulated data was also examined. The number of surrogates 

does not increase notably in admixed populations when compared to ancestral populations, 

and adjusting for global or local ancestry reduced that small increment to the level of the 

reference panel Anc|P, which is similar with what we have seen in HapMap data (Table 4, 

Fig. 3). Nevertheless, the regions encompassed by the signals expand tremendously in the 

admixed populations (with median 93.75 Kb, 3rd quartile cut point 991.0 Kb) compared 

with that in the reference (with median 63.75 Kb, 3rd quartile cut point 121.9 Kb), 

conditioning on global ancestry reduced the median to 71.25 Kb, 3rd quartile cut point 

138.80 Kb, while conditioning on local ancestry reduced the median to 63.75 Kb, 3rd 

quartile cut point 110.6 Kb (Table 4). The expansion is prominent in not only largely 

differentiated loci, but also moderately differentiated ones (Fig. 4, Supplementary Table S2). 

Comparing this to the HapMap III results implies that ALD in real admixed population is 

much less expanded than in the very recent admixture that we have simulated.

Discussion

Correction for population stratification is critical for the success of GWAS using admixed 

populations. We showed via theoretical derivation and simulations that adjusting for global 

ancestry provides higher power to discover associations than adjusting for local ancestry. 

Correcting for local ancestry improves localization with the trade off of power loss for 

discovery. Examination of HapMap III ASW and MEX data reveals that the gain of 

localization by adjusting for local ancestry is expected to be moderate in practice except for 

the most highly differentiated alleles, where the power loss is also the greatest. While we 

have focused mainly on analysis of case-control data in our simulations, our results also 

apply to analysis of continuous phenotype data under the assumptions given in the Methods 

section. We have simulated a model in which disease risk differs between populations due 

only to genetic factors (i.e., the differentiation of genes related to disease). It is worth noting 

that if there are environmental factors that differ between ancestral populations that 

contribute to the disease risk, the cultural inheritance pattern of these environmental factors 

in an admixed population is far more likely to be related to global ancestry than to local 

ancestry at a particular SNP. In such a case, adjusting for local ancestry will not help 

improve the statistical behavior of the association tests used in evaluating the effect of the 

candidate SNP.
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Assuming constant effect (the β parameter above) across populations, the expected variance 

of a candidate SNP allele count in admixed population is larger than that in a single or 

combined ancestral population, even allowing for global ancestry adjustment (shown in 

Theoretical Derivation). This is an advantage of association studies using admixed 

population, which improves power in detecting differentiated variants, and especially benefit 

variants with different alleles nearly fixed in different populations, compared to the study 

carried on either one ancestral population, or a combination of them. It should be 

emphasized that the gain of power is only achieved in Adx|G; if Adx|L is used, the power 

drops to the level that is similar to Anc|P.

Adx|L and Anc|P yields the same power when the candidate SNP is the only causal variant, 

which is expected given that the conditional variances of the candidate allele counts are 

equal in the two tests. However, when there is an unmeasured polygene, the power yielded 

by Adx|L is slightly but consistently lower than Anc|P. This can be explained by the fact that 

the conditional variance of the other elements in the polygene is larger in Adx|L than in Anc|

P. That is if we condition on the local ancestry of the candidate variant this reduces the 

variance of that candidate to the value in the stratified analysis, however this conditioning 

does not affect the variance of other causal variants, since their local ancestry is largely 

independent of that of the candidate variant. On the other hand in the stratified analysis all 

the other causal variants for an individual have the same ancestry and hence have smaller 

variance in Anc|P compared to Adx|L (since L refers only to the local ancestry of the 

candidate variant). Neuhaus et al has shown that omitting causal covariates in logistic 

regression leads to bias towards the null, and the attenuation of main effect estimate gets 

larger as the variation of omitted covariate increase [Neuhaus and Jewell, 1993].

We have simulated a very simple model of admixture (the hybrid isolation model HI) for 

illustrative purposes. This model is unrealistic compared to the gradual admixture (GA) or 

continuous gene flow (CGF) models as a description of the history of modern-day admixed 

populations. One of the most important differences between HI, GA, and CGF is in the 

distribution of the lengths of chromosomal segments of distinct ancestry (CSDAs) [Jin et al., 

2012]. After the same number of generations of mixing, HI generally yields relatively 

shorter CSDAs than CGF, or GA. However, note that we have only simulated two 

generations of admixture, which will lead to much longer CSDAs than if the admixture had 

occurred over several hundred years as in African Americans or Latinos. Our simulation is 

clearly more extreme with larger and less variable lengths of CDSAs than is the reality for 

most populations and hence we have simulated an extreme amount of ALD; this is also clear 

from the data, presented in Table 4, of the extent of ALD in the HapMap data compared to 

our simulated data. The basic principle that the expected variance of the allele of interest 

(which determines power) is greater after correcting for global ancestry than for local 

ancestry still holds for these other admixture models. There is a dependence of the expected 

variance E(Var(M|G)), of the allele count, M, given global ancestry G, on the distribution of 

G. (In our simulation the distribution of G is binomial with index n while the other models 

would lead to mixtures of binomial random variables with varying indices.) Crudely 

speaking, E(Var(M|G)) will decline (but will remain larger than E(Var(M|L)) as the variance 

of G increases. Because we have simulated only two generations of HI admixture we are 

using quite a large variance of G in our calculations, therefore in real populations where the 
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variance of global ancestry G is likely to be considerably less than in our simulations, the 

loss of power in correcting for local rather than global ancestry is actually somewhat greater 

than we have simulated.

By increasing population diversity in association studies, the populations with shorter LD, 

such as Africans, can help to narrow down the signals, compared to using populations with 

longer LD, such as Europeans. When an admixed population is used, there is a concern that 

extended ALD would counter balance this benefit, or even produce spurious associations on 

regions that are unlinked with disease. On the other hand, the causal variants are usually not 

directly geno-typed in practice, and we actually depend on LD between neighboring SNPs 

and true variants to map the disease. The simulation results revealed that adjusting for global 

ancestry alone was sufficient to remove inflation induced by admixture on the noncausal 

chromosomes, as well as greatly reduce type I error rates for regions distant from a causal 

variant on the same chromosome. On regions that are close to causal variants, Adx|L yields 

relatively fewer inflated signals compared to Adx|G so that adjusting for local ancestry can 

improve localization. As described above however better localization by using local ancestry 

adjustment comes with a loss of discovery power specifically for SNPs that are highly 

differentiated. For situations where adjusting for local ancestry could truly improve signal 

localization, the challenge lies in the accurate local ancestry inference. Methods of local 

ancestry estimation developed for the purpose of admixture mapping (e.g., 

ANCESTRYMAP [Patterson et al., 2004], ADMIXMAP [Hoggart et al., 2004], 

ADMIXPROGRAM [Zhu et al., 2004], and MALDsoft [Montana and Pritchard, 2004]) use 

ancestry informative markers to track the ancestry variation across genome. LAMP 

[Sankararaman et al., 2008] and WINPOP [Pasaniuc et al., 2009] incorporated unlinked 

GWAS chip genotypes. SABER [Tang et al., 2006] accounted for ancestral LD and allowed 

denser SNPs. HAPMIX [Price et al., 2009] and HAPAA [Sundquist et al., 2008] employed 

phased haplotypes, which largely improved the accuracy at the price of considerable 

computational complexity. The current methods are reported to be relatively successful only 

in African Americans, who have a clear genetic background that could be modeled as a 

combination of African and European ancestry. For Latinos, due to the complex admixture 

history and the lack of reliable genotype data of ancient Native Americans, it is difficult to 

explicitly define their ancestral populations, and the inferences are more susceptible to miss-

call bias [Seldin et al., 2011]. Noticeably larger than expected Mendelian error rates in local 

ancestry estimation of Latinos were reported by evaluating the most popular current methods 

[Pasaniuc et al., 2013].

Global ancestry could be inferred by program STRUCTURE [Pritchard et al., 2000], or 

estimated as the average of local ancestries across genome, which is highly correlated with 

true global ancestry based on our preliminary results. Another widely used approach to 

correct for global population stratification is adjusting for top principal components [Price et 

al., 2006]. Our preliminary data showed that adjusting for either top PCs or true global 

ancestry results in similar association signals.

The assumption of constant effect is commonly made but not always guaranteed. Population 

variation in effect sizes could be due to modification by other variants or by environmental 

exposures that vary in frequency by ethnicity. Modeling interaction in secondary follow-up 
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could potentially reveal such variants, as has been shown by Liu et al. [Liu et al., 2013]. 

However, if the inconsistent effect is merely due to LD heterogeneity, increasing the SNP 

density could resolve the issue.

Owing to their relatively clear genetic background the best known findings of admixture 

mapping, such as 6q21 for hypertension [Zhu et al., 2005], 8q24 for prostate cancer 

[Freedman et al., 2006], and MYH9 for focal segmental glomerulosclerosis [Kopp et al., 

2008] have been obtained in studies of African Americans. Furthermore, GWAS analysis 

using African Americans has identified many risk variants for a wide range of disease 

[Adeyemo et al., 2009; Lettre et al., 2011]. Compared with reference panel of 80%YRI and 

20% CEU, obvious LD expansion was observed in the HapMap III data for highly 

differentiated SNPs; adjusting for global ancestry narrows down the signal by more than 900 

Kb and adjusting for local ancestry further narrows the signals by another 300 Kb to a level 

comparable to reference panel. But it is noteworthy that in most cases the LD sizes in ASW 

are actually still lower than CEU even without any ancestry adjustment.

The inadequacies of current algorithms make the discussion about local ancestry correction 

in Latinos an impractical one for now. In Hapmap III MEX data, a very slight association 

expansion was observed compared to CEU; and the expansion is not particularly more 

dramatic in variants with allele frequency that differ between European and Asian 

populations. Adjusting for global ancestry generally narrows down the associations to a 

region very close to that in CEU. In GWAS practice, many reported studies have shown that 

global ancestry adjustment is useful in controlling for population stratification in Latinos 

[Graff et al., 2013; Manichaikul et al., 2012; Waters et al., 2009].

Taking these factors into consideration, it seems to us that it is efficient and practical to scan 

the genomes of admixed individuals with global ancestry adjustment first, in order to 

discover causal loci with highest power. If multiple association peaks abound over a 

relatively large region, a follow-up analysis of this region with local ancestry adjustment 

could hopefully help in localizing causal variants by eliminating ALD. On the other hand if 

an association originally implicated using global ancestry adjustment no longer remains 

significant after local ancestry adjustment it may be unreasonable to discard it as spurious. A 

more advised interpretation is that the underlying causal variants may be highly 

differentiated across populations, leading to power loss when adjusting for local ancestry. 

While adjustment for global ancestry is required prior to announcing a novel association 

seen in an admixed population, local ancestry adjustment may best be regarded as a 

localization tool not strictly required for discovery purposes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

In combined ancestral population, conditional variation of candidate SNP 

allele count given P

With the relationship between P and M described as in Method, we could list the conditional 

probabilities of observing a certain number of allele counts.

Pr(P = p)
p = 0
1−a

p = 1
a

Pr(M = m | P = p)

 m = 0 (1 − p2)2 (1 − p1)2

 m = 1 2p2 (1 − p2) 2p1 (1 − p1)

 m = 2 p2
2 p1

2

E(M | P = p) 2p2 2p1

Var(M | P = p) 2p2 (1 − p2) 2p1 (1 − p1)

With the above table, we could easily calculate the expected conditional variation

Plugging the Pr (P = p) into E (Var (M|P)) will get the expressions in Method.

In admixed population, conditional variation of candidate SNP allele count, 

given G or L

With the relationship between G, L, and M described as in Method, we could list the 

conditional probabilities of observing a certain number of allele counts.

Pr(L = l | G = g)
l = 0

(1 − g)2
l = 1

2g(1 – g)
l = 2
g2

Pr(M = m | L = l)

 m = 0 (1 – p2)2 (1 − p1)(1 − p2) (1 − p1)2

 m = 1 2p2(1 − p2) p1(1 − p2 ) + p2 (1 − p1) 2p1(1 − p1)

 m = 2 p2
2 p1p2 p1

2

E(M | L = l) 2p2 p1 + p2 2p1

Var(M | L = l) 2p2(1 − p2) p1(1 − p1 ) + p2 (1 − p2) 2p1(1 − p1)

With the above table, we could calculate
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therefore,

With the above elements, the expected conditional variation could be calculated through

and a little work could show that

Plugging the Pr (L = l) or Pr (G = g) into E (Var (M|L))orE (Var (M|G)), and with some 

basic algebra and a bit bookkeeping, one will get the expressions in Method.
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Figure 1. 
Power comparison with adjustment of local or global ancestry. The mean χ2 statistics of 

detecting a causal variant with certain degree of allele frequency differentiation were 

compared. The left panel shows the power comparison when the disease is caused by this 

single variant; the right panel shows the power when the disease is polygenic (i.e., other 

unmeasured causal variants exist).
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Figure 2. 
Manhattan plot of simulated association results. The P-values of association tests with 

adjustment of local or global ancestry was plotted in minus log10 scale. Each test is 

represented by a red (global ancestry adjustment) or blue (local ancestry adjustment) dot, 

and circles of corresponding color pinpoint the tests detecting the causal variants. The upper 

dash line represents the conventional genome-wide significance level of 10−8, the lower dash 

line represents the significance level after Bonferroni correction for the number of tests 

performed (20,000).
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Figure 3. 
Cumulative density of the number of surrogates. The empirical cumulative densities of the 

number of surrogates within a neighboring region of 7.5 Mb (on either side) were plotted. 

The upper panel represents the simulated data, the middle panel African Americans, and 

lower panel Latinos.
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Figure 4. 
Distribution of distance from the farthest surrogate to the causal variant. The empirical 

distributions of the distance from the farthest surrogates to the causal variants were 

compared using boxplot, stratified by allele frequency difference of the causal variant. The 

upper panel represents the simulated data, the middle panel African Americans, and lower 

panel Latinos. Because of the great numerical difference, the y-axis is in log scale. The exact 

values are listed in Supplementary Table S2.
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Table 1

Mean χ2 statistics for single variant association tests

Pop1: Pop2 = 1:1 Anc|P Adx Adx|G Adx|L

p1 = 0.01, p2 = 0.99 1.914 23.706 22.372 1.941

p1 = 0.5, p2 = 0.5 23.070 23.374 23.373 23.374

p1 = 0.01, p2 = 0.5 12.505 17.784 17.472 12.433

p1 = 0.3, p2 = 0.7 19.652 23.078 22.867 19.518

Pop1: Pop2 = 1:4 Anc|P Adx Adx|G Adx|L

p1 = 0.01, p2 = 0.99 1.796 16.074 15.214 1.887

p1 = 0.5, p2 = 0.5 23.978 22.995 23.005 23.011

p1 = 0.01, p2 = 0.5 6.217 9.786 9.563 6.421

p1 = 0.3, p2 = 0.7 19.483 21.976 21.837 19.680

Single variant disease and polygenic disease were simulated, and the power of association tests we have discussed were evaluated as the χ2 

statistics averaged over 10,000 replicates. The disease model is specified with S = 1, α = log (0.1) , βs = 0.3∀s in disease model. Two sets of 

admixture proportion were simulated.
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Table 2

Mean χ2 statistics for association tests in polygenic disease

Pop1: Pop2 = 1:1 Anc|P Adx Adx|G Adx|L

p1 = 0.01, p2 = 0.99 1.4511 9.7939 10.9613 1.4069

p1 = 0.5, p2 = 0.5 11.5825 11.2928 11.3032 11.2938

p1 = 0.01, p2 = 0.5 6.6472 8.0579 8.8355 6.3579

p1 = 0.3, p2 = 0.7 9.8238 10.3922 11.034 9.5108

The disease model is specified with S = 101, α = log(10−13), βs = 0.3∀s. Allele frequencies of the candidate variant were arbitrarily assigned as 

below for comparison. The average allele frequency of the other 100 causal variants is 0.491 and 0.476, respectively, in two ancestral populations.
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Table 3
False-positive rate comparison

a. Sparse SNPs

Overall Close to polygene 
(d≤5 SNPs)

Far from 
polygene (d>5 

SNPs)
Overall Close to polygene 

(d≤10 SNPs)

Far from 
polygene (d>10 

SNPs)
Off-Chr

Causal variants scattered Causal variants clustered

No ancestral LD

Anc | P 0.050 0.050 0.050 0.050 0.050 0.050 0.050

Adx 0.509 0.519 0.508 0.484 0.511 0.485 0.480

Adx | G 0.056 0.059 0.056 0.059 0.082 0.063 0.051

Adx | L 0.051 0.051 0.051 0.052 0.051 0.052 0.051

Moderat ancestral LD

Anc | P 0.064 0.120 0.052 0.063 0.344 0.053 0.052

Adx 0.567 0.577 0.566 0.482 0.571 0.479 0.477

Adx | G 0.068 0.115 0.058 0.064 0.319 0.054 0.051

Adx | L 0.061 0.107 0.052 0.061 0.311 0.052 0.051

b. Dense SNP with ancestral LD

Overall Close to polygene (d≤100 SNPs) Far from polygene (d>100 SNPs) Off-Chr

Causal variants scattered

Anc | P 0.067 0.194 0.056 0.050

Adx 0.339 0.405 0.382 0.292

Adx | G 0.084 0.206 0.097 0.050

Adx | L 0.066 0.183 0.055 0.050

Causal variants clustered

Anc | P 0.080 0.151 0.099 0.051

Adx 0.269 0.329 0.317 0.220

Adx | G 0.104 0.198 0.147 0.051

Adx| L 0.080 0.157 0.098 0.051

False-positive rate of association tests using admixed population were compared as follow. For the admixed population, un-adjusted Armitage test 
(ADX), Armitage test adjusted for global ancestry (ADX|G) and for local ancestry (ADX|L). As reference, subpopulation variable was adjusted in 
the mixed ancestral populations (ANC | P). The noncausal SNPs were categorized by their distance to polygene.
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Table 4
Quartiles of the number of surrogates, and the distance of the farthest surrogate to the 
causal variant

Number of surrogates
Distance (Kb) to the
furthest surrogate

1st Q Median 3rd Q 1st Quartile Median 3rd Quartile

CEU 5 10 18 20.82 45.73 93.35

YRI 2 4 8 8.58 22.99 55.07

ASN 4 9 15 16.62 35.46 71.99

80%YRI + 20% CEU 2 5 10 10.08 24.46 53.34

ASW 2 5 8 9.81 26.02 67.97

ASW | G 2 5 8 9.97 25.98 66.09

ASW | L 2 4 8 8.92 22.95 54.32

50%ASN + 50%CEU 4 8 15 15.58 32.99 65.19

MEX 5 9 17 20.89 47.81 118.3

MEX | G 4 9 16 20.38 45.76 107.6

Sim Anc 4 8 14 37.5 63.75 121.9

Sim Adx 5 9 16 48.75 93.75 991.9

Sim Adx| G 4 8 14 41.25 71.25 138.8

Sim Adx | L 4 9 15 37.5 63.75 110.6

In each population, one SNP was randomly sampled to be the causal variant, and its surrogates (R2 > 0.36) were found within 7.5 Mb neighboring 
region (either side). The distributions were generated based on 1,000 repeats.
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