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DrugRep: an automatic virtual screening server for drug
repurposing
Jian-hong Gan1, Ji-xiang Liu1,2, Yang Liu1, Shu-wen Chen1,3, Wen-tao Dai2,4, Zhi-Xiong Xiao1 and Yang Cao1,5

Computationally identifying new targets for existing drugs has drawn much attention in drug repurposing due to its advantages
over de novo drugs, including low risk, low costs, and rapid pace. To facilitate the drug repurposing computation, we
constructed an automated and parameter-free virtual screening server, namely DrugRep, which performed molecular 3D
structure construction, binding pocket prediction, docking, similarity comparison and binding affinity screening in a fully
automatic manner. DrugRep repurposed drugs not only by receptor-based screening but also by ligand-based screening.
The former automatically detected possible binding pockets of the receptor with our cavity detection approach, and then
performed batch docking over drugs with a widespread docking program, AutoDock Vina. The latter explored drugs using
seven well-established similarity measuring tools, including our recently developed ligand-similarity-based methods LigMate
and FitDock. DrugRep utilized easy-to-use graphic interfaces for the user operation, and offered interactive predictions with
state-of-the-art accuracy. We expect that this freely available online drug repurposing tool could be beneficial to the drug
discovery community. The web site is http://cao.labshare.cn/drugrep/.
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INTRODUCTION
Drug repurposing is a strategy to identify new uses or indications
of existing drugs that are beyond the scope of the original medical
indication [1]. In recent years, the demand for drug repurposing
has dramatically increased due to the remarkable advantages over
developing de novo drugs, including low risk, low costs, and rapid
pace [2]. A statistics analysis showed that drug repurposing may
save up to 5–7 years in average drug development time [1]. To
date, numerous successful examples of drug repurposing have
been derived. For example, Gleevec, a drug for chronic myeloid
leukemia (CML) can also be used to treat patients with malignant
gastrointestinal stromal tumors (GIST) [3]. And aspirin, an orally
administered non-steroidal anti-inflammatory agent, is applied
to prevent cardiovascular disease and colorectal cancer [4].
Especially, we have witnessed that a number of computational
drug repurposing approaches have been applied to fight against
COVID-19 [5–8].
Systematic drug repurposing can be largely divided into

experimental screening approaches, and in silico approaches.
The former depends on particularly designed high-throughput
assays, while the latter employs existing data and evolving
computational approaches that are remarkably less expensive
than the former [9]. Among them, virtual screening is a promising
Computer-Aided Drug Design (CADD) technology used in
drug discovery to search compound libraries in a limited time

[5, 10, 11]. In general, virtual screening methods are classified as
receptor-based screening (also known as structure-based screen-
ing or target-based screening) and ligand-based screening. The
receptor-based screening typically explores the affinity of each
compound in the compound library to the target protein using
molecular docking algorithms based on conformational search
and scoring functions. This process consists of preparing chemical
libraries, identifying binding pockets, establishing docking para-
meters, executing docking programs and analyzing the results.
Nowadays, the tools such as Pocket [12], eFindSite [13], CavityPlus
[14] and COACH [15, 16] are available for binding site detection,
while GOLD [17], Glide [18], AutoDock Vina [19], DOCK 6 [20],
SwissDock [21], Edock [22] and CovalentDock Cloud [23] can be
used for protein-ligand docking. Unlike the receptor-based
screening that indispensably depends on the 3D structure of the
receptor, the ligand-based virtual screening searches for new
compounds sharing the similar characteristics observed in the
known active compounds. Commonly employed similarity assess-
ment methods currently include MACSS [24], Open Babel FP2 [25],
RDKit Morgan fingerprint [26], 3D similarity [27], etc. With the
above principles and methods in mind, several virtual screening
tools have been developed. For example, DOCK Blaster [28],
VSdocker [29], iScreen [30], and MTiOpenScreen [31] are receptor-
based virtual screening tools. PoLi [32], LiSiCA [33], SwissSimilarity
[34], HybridSim-VS [35], and Ligity [36] are ligand-based virtual
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screening tools. However, most of those tools are designed for the
general purpose of virtual screening but not well organized for
drug repurposing. In particular, these receptor-based tools need to
provide complex parameters before screening, such as the grid
center coordinates and the sizes of the search space, which are
difficult to obtain for non-specialists.
To address these issues with the state-of-the-art technologies, we

collected three drug libraries for drug repurposing, including
approved drug library, experimental drug library and traditional
Chinese medicine library, and then created an automated and
parameter-free tool named DrugRep, which can perform receptor-
based and ligand-based virtual screening over the carefully
organized drug libraries. In our tool, several innovative works
developed in-house are efficiently integrated, and those include the
structure-based-cavity-detection approach, CurPocket [37, 38], for
receptor-based screening, the ligand-similarity-based method,
LigMate [39], and the hierarchical multi-feature alignment
approach, FitDock [40], for ligand-based virtual screening. Among
them, CurPocket is a protein-ligand binding site prediction method
that searches for cavities on the protein surface by calculating
curvature factors. Our previous work has demonstrated that it is
highly accurate in determining docking boxes for molecular
docking [37, 41]. LigMate and FitDock both can benefit ligand-
based virtual screening [39, 42]. The former combines various
descriptors in different dimensions of the molecule, while the latter
uses a hierarchical alignment approach to find equivalent atom
pairs. Our benchmark tests showed that these two achieved more
substantial enrichment power than other methods. With the state-
of-the-art virtual screening methods as well as the user-friendly
interface, DrugRep could serve as a convenient tool for the drug-
design community at http://cao.labshare.cn/drugrep/.

MATERIALS AND METHODS
Workflow
The DrugRep web interface is built by the HTML5, CSS3, PHP, and
JavaScript libraries for the client-side user interface. It offers
two strategies for drug repurposing, namely Receptor-based Screen
(RBS), and Ligand-based Screen (LBS) (Fig. 1). For a protein receptor,
RBS applies a novel cavity detection approach to automatically

search the possible binding pockets and the results are shown
interactively in 3D viewer for users to select. In addition to predictive
pockets, RBS also utilizes the co-crystallized ligand from PDBbind
[43] or user-uploaded ligand to calculate the center and sizes of the
docking box using AutoDockTools [44] and eBoxSize [45]. After
determining the docking parameters, RBS then performs docking
for each drug with the receptor via the prevalent docking program
AutoDock Vina (version 1.1.2) [19, 46], and finally gets a ranking
based on the predicted affinity. For ligand-based virtual screening,
LBS measures the similarity between the submitted ligand and each
drug in drug libraries by LigMate, FitDock as well as five universal
similarity measuring tools (i.e. Morgan fingerprint, LSalign-Rigid,
LSalign-Flexi [27], FP2 and FP4 [25]). Ligand-Screen’s score
ranges from 0 to 1.00, where 1.00 means totally same and 0 means
not similar at all. The top-ranking compounds obtained by RBS or
LBS will be displayed in tables, 2D and 3D images. The 3D
visualization service is supported by NGL Viewers [47] and the
superposition between the submitted ligand and drug is calculated
by FitDock.

Drug libraries
DrugRep offers three drug libraries, including approved drug library
(2315 drugs), experimental drug library (5935 drugs) and traditional
Chinese medicine library (2390 drugs). The first two are the
approved and experimental drugs from DrugBank database
(version 5.1.7) [48], a state-of-the-art collection of approved,
experimental, and pre-clinical drugs. Traditional Chinese medicine
library which is from Topscience Company, contains 2390monomer
compounds from nearly 800 traditional Chinese medicines, and
includes various structural types such as flavonoids, alkaloids,
terpenoids, and glycosides. These drugs were double-checked
using Open Babel [25] and assigned initial 3D conformations for
drugs without 3D conformation using RDKit (http://rdkit.org) and
Open Babel. Open Babel is also used to convert all drugs into the
PDBQT format required for docking and other format (MOL/MOL2/
SDF/SVG) required for similarity measuring tools.

Benchmark test
DUD [49], a well-established virtual screening benchmark dataset,
contains 40 protein targets with 98,266 active compounds and

Fig. 1 The workflow of DrugRep.
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decoys. DUD-E [50] is an enhanced DUD dataset which contains
102 targets with diverse ligands as well as decoys. The maximum
unbiased validation (MUV) dataset [51] contains 17 targets, and
each target has 30 actives and 15,000 decoys, which are unbiased
in terms of simulation bias and artificial enrichment.
The enrichment testing is often used to evaluate virtual screening

performance, and its result will be shown by the receiver operating
characteristic (ROC) curve [52]. For all attainable score thresholds
going from the best score to the worst, the selectivity (Se) and
specificity (Sp) were calculated, as given by

Se ¼ TP
TPþ FN

Sp ¼ TN
TNþ FP

Where TP is the true positive, FN is the false negative, TN is the true
negative, and FP is the false positive. The ROC curve was then
graphed by plotting all pairs of (1-Sp, Se). The area under the curve
(AUC), which ranges from 0 to 1, is the metric used to assess a ROC
curve. To be specific, AUC = 0.5 indicates that the compounds are
randomly ranked, and the higher AUC means that the performance
is better.
Enrichment Factor (EF), defined by the ratio of true positives in

the first percent (TP1%) to all cases (N1%) divided by the ratio of
actives (Na) to the total number (Nt) of test cases, is another metric
used to evaluate enrichment testing.

EF1% ¼ TP1%=N1%

Na=Nt

EF greater than 1 indicates the compounds are not randomly
selected, and higher EF means the enrichment effect is more
significant.

RESULTS
Performance of RBS
DrugRep is a parameter-free virtual screening tool, which is able to
automatically determine the docking box for RBS. To test the
feasibility and accuracy of the receptor-based virtual screening, we
performed enrichment tests using the targets (ACHE, AR, COX-2,
DHFR, MR, P38, PDGFrb, SAHH, SRC) from DUD dataset, which have
been benchmarked in Vina-based virtual screening by Durrant [53].
For comparison, we also performed the same test using the docking
box obtained from the co-crystallized ligand (named DrugRep-xtal),

since it is the near optimal parameters for screening [45]. The results
show that DrugRep achieved an average AUC values of 0.69, which
is superior to 0.66 by Durrant and closed to 0.74 by DrugRep-xtal
(Table 1 and Fig. 2). Particularly, it outperforms the latter in 5 of the 9
targets, indicating that DrugRep is better than the virtual screening
with manually-determined docking boxes, and even comparable to
the virtual screening with the co-crystallized-structure-determined
docking boxes. We also calculated the EF1 and EF5 (EF for top 1%
and top 5%), which are more important metrics for the actual virtual
screening researches. As shown in Table 1, the average EF1 and EF5
of DrugRep reach 12.25 and 6.18, which are almost the same to
11.94 and 6.38 by DrugRep-xtal. Particularly, the EF1 of AR and SAHH
are 19.79 and 26.84, respectively, outperforming 13.78 and 14.92 by
DrugRep-xtal significantly. Detailed analysis shows that the pre-
dicted docking boxes by DrugRep are usually slightly larger than the
docking boxes of DrugRep-xtal, resulting in increased accuracy for
some targets. However, in a few cases, the predicted docking boxes
may shift a little such as COX-2 (Supplementary Fig. S1) and PDGFrb,
and the predicted docking boxes are too big such as MR. Both result
in reduced accuracy. We also benchmarked DrugRep using another
popular dataset of DUD-E. The result shows that DrugRep achieves
comparable performance to the state-of-the-art approach (Supple-
mentary Table S3). Overall, these results indicate that the automatic
RBS by DrugRep is feasible and accurate for drug repurposing in
many targets, and its unique parameter-free manner is highly
convenient for the non-expert users.

Performance of LBS
We then tested the performance of DrugRep on ligand-based
virtual screening. We calculated the AUC value and the EF1 value
for randomly selected actives with all corresponding decoys and
the remaining actives on each target on the MUV dataset. The
results of these calculations are fused using the maximum value.
For each target, the above procedure was repeated 100 times to
reduce the impact of randomness [39]. Figure 3a and b show the
average AUC value and EF1 value of different methods for MUV
dataset, respectively. The two histograms indicate LigMate
surpasses all other methods. Further, we analyzed each target
independently on the MUV dataset. As shown in Fig. 3c and d,
LigMate achieves EF1s above 30 for targets including Cathepsin G,
FXIIa, FXIa and PKA, which is significantly higher than those of
most control methods. For the remaining targets, LigMate shows a
comparable or even better performance. At the same time, we
observed that other methods showed excellent performance for
some targets (Supplementary Table S4 and S5). For example,
FitDock has the highest EF1 value of 7.70 for HIVRT-RNase and the

Table 1. Enrichment tests using DUD.

Target AUC EF1 EF5

Vinaa DrugRep-xtal DrugRep DrugRep-xtal DrugRep DrugRep-xtal DrugRep

ACHE 0.67 0.65 0.67 1.86 5.6 3.17 4.86

AR 0.81 0.77 0.8 13.78 19.79 9.09 11.36

COX-2 0.31 0.89 0.79 26.12 24.49 13.61 10.89

DHFR 0.76 0.79 0.85 9.24 10.7 4.58 7.66

MR 0.84 0.82 0.54 31 12.38 13.15 2.63

P38 0.54 0.62 0.63 1.54 2.2 2.95 2.69

PDGFrb 0.53 0.69 0.45 5.83 7 1.17 2.35

SAHH 0.76 0.74 0.85 14.92 26.84 6.66 10.89

SRC 0.69 0.69 0.62 3.13 1.25 3.01 2.26

AVE. 0.66 0.74 0.69 11.94 12.25 6.38 6.18

DrugRep-xtal means virtual screening using calculated pockets by crystal ligand. DrugRep means virtual screening using predicted pockets by CurPocket.
aThe data were from Durrant, J.D., 2011 [53].
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highest AUC value of 0.66 for S1P1rec. FP2 had the highest EF1
value of 19.15, 52.65, and 3.95 against Rho-Kinase2, CathepsinG,
and M1rec. FP4 had the highest AUC values of 0.63, 0.71 for ER-
β-Coact.Bind.Inh. and ER-α-Coact.Bind.Pot. Morgan Fingerprint
achieves the highest EF1 values for FAK and D1rec., which were
13.25, 15.55; and has the highest AUC values for PKA, SF1 Inh.,
Rho-Kinase2, M1rec., which were 0.83, 0.70, 0.76, 0.58. Taken
together, we argue that LigMate, FitDock, and other methods
provided by DrugRep are complementary in enrichment test, and
can contribute to ligand-based virtual screening.

Case study with DrugRep
COX-2 that plays a significant role in conversion of arachidonate
to prostaglandin H2 is key in the inflammatory response [54].

Targeted inhibition of COX-2’s activity can reduce the risk of
peptic ulcer and is the main feature of nonsteroidal anti-
inflammatory drug (NSAID) including aspirin, flurbiprofen, ibupro-
fen, celecoxib, flufenamic, mefenamic and tolfenamic acids [55].
Some COX-2 inhibitors may cause a significant increasing risk in
heart attacks and strokes from clinical trials [56]. Therefore,
screening the approved drugs which may bind with COX-2 is a
general strategy in drug repurposing. Taking the screening of
COX-2 with RBS as an example (Fig. 4), we only need to perform a
few simple steps on the DrugRep web server, as follows: (i)
uploading the target protein, (ii) detecting and selecting the
pocket, (iii) submitting the task, and (iv) viewing the results of RBS.
Five of the 30 best-scored drugs, namely celecoxib, oxaprozin,
bendazac, meclofenamic acid and phenylbutazone, are associated

Fig. 2 ROC curves of virtual screening results for 9 protein targets using DrugRep. The dashed line indicates random selection of compounds.
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with COX-2 (Fig. 5a). Of the drugs above, celecoxib, oxaprozin,
meclofenamic acid and phenylbutazone are known inhibitors of
COX-2. When inspecting the top 50 best-scored drugs, drug
thalidomide (DrugBank ID: DB01041) that can be bioactivated by
COX-2 [57] would also be found. Thalidomide is a typical example
of drug repurposing. It was developed initially against morning
sickness in pregnant women, but it was withdrawn years later
because of its side effect of leading to severe congenital
disabilities in children. Recently, researchers notice that thalido-
mide can also be adopted to treat some other diseases, such as
leprosy, multiple myeloma, Crohn’s disease and HIV [58]. In
addition, we also performed LBS against COX-2’s co-crystallized
ligand using seven LBS methods embedded in DrugRep. For a
drug with different scores by different LBS methods, the
maximum score was adopted. Among the 50 drugs with the
highest scores, five drugs, namely celecoxib, parecoxib, Etoricoxib,
rofecoxib and valdecoxib (Fig. 5b and Supplementary Table S6),
are known inhibitors of COX-2 and share similarities with the
query ligand greater than 0.7. Among these drugs screened,
celecoxib gets a similarity score of 0.971 by LBS, and gets an

affinity score of −10.8 by RBS, which is greater than the co-
crystallized ligand’s score of −10.2. As is shown Fig. 5c, celecoxib
get an extra hydrophobic contact in a hydrophobic cavity formed
by Phe381, Leu384, Tyr 385, Trp 387, Phe 513 and Ser530, because
of a substitution of the bromophenyl ring to the methylbenzene
ring. Example of COX-2 suggests that DrugRep can be used to
screen new drugs for target, as well as to observe drug-target
binding patterns.

DISCUSSION
New drug discovery is time-consuming and costly. Computational
drug repurposing provides the possibility to improve this situation,
and has a promising potential in modern drug development.
However, computational tasks such as preparing chemical libraries,
identifying binding pockets, evaluating docking parameters, and
executing docking procedures can be cumbersome for the
researcher. Here, we constructed an automated and parameter-
free tool called DrugRep for drug repurposing. Our efforts can be
summarized into four aspects. Firstly, DrugRep is designed for the

Fig. 3 Benchmark results of LigMate and FitDock compared to the control methods. a, b show the average EF1 and AUC for the MUV
datasets, respectively. c, d show the AUC and the EF1 for each of the 17 targets from the MUV dataset, respectively. The x-axis shows the
different methods, while the y-axis shows the AUC value in (a, c), and the EF1 value in (b, d).
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purpose of drug repurposing with well-organized drug databases
including approved or experimental-stage chemical drugs, and
traditional Chinese medicine drugs. Secondly, DrugRep performs
large-scale RBS based on CurPocket and AutoDock Vina. CurPocket
for pocket recognition achieves a success rate of 70% in predicting
the top 1 docking pockets and 92.5% in top 5 on the DUD dataset
(Supplementary Table S1), making it accurate and convenient to
prepare docking parameters. Thirdly, compared to receptor-based
screening where docking of a large number of drugs takes a certain
amount of time, DrugRep provides ligand-based screening based
on our latest developed LigMate and FitDock as well as other well-
established similarity measuring tools, helping to discover pharma-
cophores and assisting molecular optimization. Finally, DrugRep
offers user-friendly interface that allows even non-expert users
to perform drug repurposing and visualize results with abundant
information, such as 3D interactive view, 2D images, the molecular
mass, the number of hydrogen bond donors, the number of
hydrogen bond acceptors, and the number of rotatable bonds,
the n-octanol-water partition coefficient (logP), drug targets,
drug pharmacodynamics, hyperlinks to the related data [48, 59]
and so on.
Despite the successful performance in the benchmark tests,

DrugRep also showed some limitations, such as false positive
predictions. It can be attributed to the reasons below. Firstly,
proteins may adopt various binding conformations, while the
RBS of DrugRep performs docking with a static structure, which
is artificial and harmful to some screening. For example, a highly

flexible receptor, namely HSP90 [60], showed 0 for both EF1 and
EF5 in the benchmark (Supplementary Table S2). Secondly, how
to rank the results of screening remains an open question,
particularly for enriching low affinity actives (i.e. TK [61]).
DrugRep employs Vina score and X-Score [62] to evaluate the
binding modes, which shows the advantages and disadvantages
of each (Supplementary Table S2). Still, there are much room for
further improvement. Thirdly, the data-driven methods, such as
machine learning for docking or AI-based protein-ligand binding
prediction, have shown promising results [11, 63–65]. The
current DrugRep has not taken advantages of those state-of-
the-art methods. Fourthly, in LBS, the scores of the seven
similarity measuring methods usually are inconsistent with each
other due to different scoring criteria. It may be not easy for the
users to select the best prediction. Take Cox-2 as an example,
parecoxib (DB08439) has a score of 0.731 in Flexi-LS-align, 0.71
in Rigid-LS-align and 0.688 in FitDock, but 0.473 in FP4 and
0.297 in Morgan fingerprint (Supplementary Table S6). Finally,
in terms of time cost, Flexi-LS-align and FitDock take more time
(20 min) than other methods because of flexible structure
comparison. And RBS is time-consuming as it takes about three
hours or even more for 2000 drugs with a 500 aa-length protein
on our server.
In the future, we plan to develop methods for receptor

optimization and docking parameters optimization before the
docking screen, improving the docking and scoring by incorpor-
ating the AI-based methods, integrating the similarity scores in

Fig. 4 The operation process on the web page by RBS. The process includes (1) uploading the target protein, (2) detecting and selecting the
pocket, (3) submitting the task, and (4) viewing the results of RBS.
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LBS with a more convenient ranking system, and optimizing
the algorithms and pipelines to accelerate the computation
by the guidance of existing similar co-crystal structures and the
introduction of GPU-based Vina docking [66]. Overall, DrugRep will
be more accurate, clever, easy-to-use and rapid for drug
repurposing with our continuous efforts.
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