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A non-invasive, brain-to-brain interface (BBI) requires precision neuromodulation and
high temporal resolution as well as portability to increase accessibility. A BBI is a
combination of the brain–computer interface (BCI) and the computer–brain interface
(CBI). The optimization of BCI parameters has been extensively researched, but CBI
has not. Parameters taken from the BCI and CBI literature were used to simulate
a two-class medical monitoring BBI system under a wide range of conditions. BBI
function was assessed using the information transfer rate (ITR), measured in bits per
trial and bits per minute. The BBI ITR was a function of classifier accuracy, window
update rate, system latency, stimulation failure rate (SFR), and timeout threshold. The
BCI parameters, including window length, update rate, and classifier accuracy, were
kept constant to investigate the effects of varying the CBI parameters, including system
latency, SFR, and timeout threshold. Based on passively monitoring BCI parameters,
a base ITR of 1 bit/trial was used. The optimal latency was found to be 100 ms or
less, with a threshold no more than twice its value. With the optimal latency and timeout
parameters, the system was able to maintain near-maximum efficiency, even with a 25%
SFR. When the CBI and BCI parameters are compared, the CBI’s system latency and
timeout threshold should be reflected in the BCI’s update rate. This would maximize the
number of trials, even at a high SFR. These findings suggested that a higher number of
trials per minute optimizes the ITR of a non-invasive BBI. The delays innate to each BCI
protocol and CBI stimulation method must also be accounted for. The high latencies in
each are the primary constraints of non-invasive BBI for the foreseeable future.

Keywords: interface, computer–brain, neuromodulation, non-invasive, temporal resolution, device portability

INTRODUCTION

Non-invasive brain-to-brain interface (BBI) requires precision neuromodulation, device
portability, and high temporal resolution to increase accessibility (Rao et al., 2014; Lee et al.,
2017; Jiang et al., 2019). Two relevant non-invasive neuromodulation methods include transcranial
focused ultrasound (TFUS) and transcranial magnetic stimulation (TMS) (Lee et al., 2018).
Electroencephalography (EEG) offers high temporal resolution and sufficient spatial resolution
for use in brain–computer interfaces (BCIs) with low-cost, consumer-grade headsets (Volosyak
et al., 2010; Lebedev and Nicolelis, 2017). A non-invasive BBI can potentially operate with limited

Frontiers in Neuroinformatics | www.frontiersin.org 1 February 2020 | Volume 14 | Article 1

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2020.00001
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fninf.2020.00001
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2020.00001&domain=pdf&date_stamp=2020-02-07
https://www.frontiersin.org/articles/10.3389/fninf.2020.00001/full
http://loop.frontiersin.org/people/784476/overview
http://loop.frontiersin.org/people/888945/overview
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-14-00001 February 6, 2020 Time: 16:33 # 2

LaRocco and Paeng Optimizing Non-invasive Brain-to-Brain Interface

computational resources, but no work has yet investigated the
potential limitations of a general purpose, non-invasive BBI
(Lee et al., 2017; Rao, 2019, Toward neural co-processors for the
brain: combining decoding and encoding in BCIs 2019).

Brain-to-brain interfaces have been demonstrated with both
invasive and non-invasive methods in humans and animals.
A BBI is a combination of a BCI and a computer–brain
interface (CBI).

The reported benefits of a BBI as a “brainet” include
enhancements in cognitive performance and learning rate (Pais-
Vieira et al., 2015; Cinel et al., 2019). The accessibility of human
BBIs has been previously constrained by CBIs, typically requiring
highly invasive implanted devices, imprecise neurostimulation
techniques, and immobile equipment (Ye et al., 2016; Martins
et al., 2019). Developments in technology and software may offer
alternatives to these existing barriers, but little analysis has been
done on potential system data flow rates for non-invasive BBI.
To contextualize brain-to-brain communication, therefore, the
quantification of neural signals, a coordinate system, computer–
brain information delivery parameters, and a communication
format are required. Information delivery parameters will be
addressed in depth.

Brain-to-brain interface systems are a combination of BCI
systems and neurostimulation, and EEG-based BCI protocols
are among the least invasive and lowest cost to implement
(Volosyak et al., 2010; Mathe and Spyrou, 2016). EEG offers
neurophysiological recording with high temporal resolution
using a proven coordinate system. The International 10–20
system standardizes EEG electrode positions (Rao et al., 2014).
The International 10–20 system calculates electrode positions
relative to the distance between the nasion, the bridge of the
nose, and the inion, the base of the skull. The center of this
direct line is position CZ, from which all other electrode positions
are calculated. The International 10–20 system is used in the
current study to define EEG electrode and transducer placement
(Yoo, 2018).

Electroencephalography has been extensively utilized in non-
invasive BCIs, and four common EEG BCI protocols are motor
imagery, covert speech, steady-state visually evoked potential
(SSVEP), and P300 virtual keyboard protocols (Beverina et al.,
2003; Schlögl et al., 2005; Sereshkeh et al., 2017). Common
BCI protocols, such as SSVEP and P300 virtual keyboards,
rely on visual and auditory feedback (Beverina et al., 2003).
Such feedback may require a user to remove their attention
from the task at hand, potentially lowering the efficiency
of direct brain-to-brain communication. Prior non-invasive
BBI systems did not require the patient to divert their
eyes from the task at hand, as the feedback was integrated
into the task itself (e.g., video game sprite movement) (Rao
et al., 2014; Lee et al., 2017). Motor imagery and covert
speech present examples of proven BCI protocols that do
not require extraneous visual feedback, unlike the SSVEP and
P300 speller (Schlögl et al., 2005; Sereshkeh et al., 2017).
BCI systems using imagined movements and speech have
been implemented with consumer-grade dry electrode EEG
headsets, which have few electrodes and are susceptible to noise
(Mathe and Spyrou, 2016).

A key metric for BCI performance is the information transfer
rate (ITR) (McFarland et al., 2003; Schlogl et al., 2003). Measured
in bits per trial or bits per minute (bpm), the ITR is a function
of the speed with which a user can successfully send commands
and receive responses from a properly calibrated system (Krausz
et al., 2003; Blankertz et al., 2006; Thomas et al., 2013; Chen
et al., 2014). ITR is a function of the number of classes and
accuracy of a system, so a higher accuracy directly increases the
ITR. For motor imagery-based EEG BCIs, an ITR value of 35 bpm
was the highest reported value for years (Blankertz et al., 2006).
However, that value was limited by the length of the trials, and
ITRs of approximately three times that have been reported in
recent years. Despite this, the trial length can still affect the ITR,
so bits per trial is a more suitable measure in certain cases. A value
of 1 bit/trial has been reported as a respectable value, regardless
of trial length (Obermaier et al., 2001). A current standard for
non-invasive BCI systems is approximately 100 bpm or less. Some
groups have reported higher rates, which including one reporting
a rate as high as 302 bpm (Lin et al., 2019).

Prior research has examined the viability of BCI systems
partially, or automatically, adjusting the length of trials and
epochs to improve ITR (Jin et al., 2019b). This work has
been performed with common paradigms, such as motor
imagery, the P300 speller, and SSVEP (Dimitriadis and Marimpis,
2018; Feng et al., 2018; Jin et al., 2019a). In addition, BCI
feature selection can be similarly adjusted in response to each
subject (Saha et al., 2019). A combination of a self-calibrating
BCI, with automated feature optimization, could improve
BCI performance, independent of subject (Saha et al., 2019).
The primary advantage would be bypassing a time-intensive
calibration session.

A poorly calibrated system requires more trials to achieve
the correct classification and, thus, exhibits a lower ITR. Relying
on EEG features that require a longer latency period, such
as the P300, can lower the ITR. In the context of BBI and
medical imaging, a longer stimulation period can similarly
decrease the ITR (Lee et al., 2017). Higher ITRs have been
reported for invasive BCI and BBI systems than for their non-
invasive counterparts, but electrode coverage, protocol selection,
algorithm design, and rapid neurostimulation may change this
(Danilov and Kublanov, 2014). The neurostimulation process
must also not compromise the successful operation of a BCI by
introducing EEG artifacts.

Computer–brain interface is needed to close the loop for BBIs.
Closed-loop neurostimulation software has existed for over a
decade, especially for neural cell cultures and invasive systems.
BCI systems close the loop through visual, tactile, or auditory
feedback. However, these are insufficient for the purposes of non-
invasive, high-precision neurostimulation (George and Aston-
Jones, 2010; King et al., 2013). In two previous non-invasive BBI
implementations, TMS and TFUS were used (Rao et al., 2014;
Lee et al., 2017). However, TMS also directly interferes with
EEG recordings, requiring extensive noise-filtering systems. TMS
systems are currently large and bulky. As a mechanical system,
TFUS can be utilized with lower requirements for power, space,
and noise cancelation in real time (Sassaroli and Vykhodtseva,
2016). Therefore, TFUS and a non-visual protocol EEG BCI
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present a potential framework for a completely non-invasive,
non-surgical, and portable closed-loop BBI headset.

Traditional ultrasound transducers utilize a piezoelectric
crystal to generate an acoustic output. They require specific
parameters for successful sonication, including input function,
frequency, amplitude, power, and periodicity (King et al., 2013).
In the case of TFUS, power and precision are closely managed to
prevent intense pressure and cavitation from resulting in neural
damage (King et al., 2013; Lee et al., 2018). The implementation
of a TFUS transducer would closely follow the specifications of
systems previously used for successful BBI (Lee et al., 2017).

One relative drawback with TFUS BBI systems has been the
longer sonication time, such as the 0.5 s reported in previous
examples. In contrast, TMS-based BBI has used a stimulation
period of 1 ms when the entire stimulation sequence was two 1-
ms pulses spaced 8 s apart for safety (Rao, 2019, Toward neural
co-processors for the brain: combining decoding and encoding
in BCIs 2019). In comparison, invasive neurostimulation systems
are able to execute alternating periods of 50-ms recording and
50-ms stimulation for a total cycle time of 100 ms or less (Pais-
Vieira et al., 2015; Rao, 2019, Toward neural co-processors for
the brain: combining decoding and encoding in BCIs 2019).
Previous invasive stimulation, TMS, and TFUS BBI systems have
had low effective ITRs.

Computer–brain interface systems must account for
both hardware delays and the latency of human awareness.
Although hardware and software can be optimized, prior non-
invasive BBI attempts have been constrained by existing
technologies. TMS devices are too large and ungainly
for mobile use. Piezoelectric transducers, used in TFUS,
require water or hydrogel bonding. Power dissipation and
controlling intracranial pressure are key safety concerns
for neurostimulation. The 0.5-s sonication period used in
previous TFUS BBIs was five times the minimum latency
of human awareness, resulting in a lower ITR (Lee et al.,
2017). Similarly, medical imaging requires specific target
sequences constrained by transducer design. Whereas transducer
technology may improve, other approaches may result in
shorter, sharper sonication periods, such as using an array
of smaller, lower-power transducers, or developments in
ultrasound imaging (Jin et al., 2015). A rapid-firing, lower-
energy transducer could ensure a higher ITR for TFUS in
conjunction with optimized device communication. Regardless
of the stimulation method, BBI systems rely on potentially
different system architectures.

Not all BBI systems require identical architectures. Although
BCI is a well-explored area in the literature, a few use-
cases for CBI have been investigated. Four BCIs in well-
documented areas have been considered (Beverina et al., 2003;
Blankertz et al., 2006). One was a therapeutic neurostimulation
or medical CBI, performed for patients that would otherwise
rely on an invasive deep brain stimulation (DBS) device or
other conditional neurostimulation stimulation for chronic
conditions (Lee et al., 2018). Another was a consumer-grade
system that was designed for use by gamers or hobbyists
(Mathe and Spyrou, 2016). Another was a high-level research or
clinical one, intended for use in hospitals, clinics, and devoted

laboratories (Schlogl et al., 2003). Each had a different structure
for processing incoming data, and each represented a closed-loop
system architecture.

A therapeutic neurostimulation device could be a CBI
device combined with EEG or another biosensor. The would
be monitored by an onboard processor for signs of the
condition or event (Peiris et al., 2011). For example, signs of
a Parkinson’s tremor may initialize neurostimulation. Under
these circumstances, there are only two states: the stimulation
condition and the absence of the condition. Classifier accuracy,
update rate, and stimulation accuracy are the most important
parameters. The performance characteristics of such a system
could also be relevant to drowsiness and fatigue detection systems
proposed for use in certain industries, such as manufacturing
and transportation (Peiris et al., 2011). Each window of incoming
data would be monitored, so single-trial performance is key (Rao,
2019, Toward neural co-processors for the brain: combining
decoding and encoding in BCIs 2019).

The second case is a consumer model that could be used
by gamers, hobbyists, and even labs with specific needs (Pan
et al., 2017; Pathirana et al., 2018; InteraXon, 2019). It could
be realistically realized today by combining a consumer EEG
headset with low-cost transducers. The gaming headset would
have a higher number of states, corresponding to the game
inputs. Just as BCI systems have used virtual keyboards, a
gaming controller application may be likened to a virtual keypad.
However, hobbyists and labs could adapt it as a full virtual
keyboard. In both cases, the number of states is greater than
two, and the system requires rapid responses. As data rapidly
stream in, low system latency, a rapid update rate, and an
optimized time cutoff are of great importance, so that even a
single classification error can be rapidly compensated for Rao
(2019), Toward neural co-processors for the brain: combining
decoding and encoding in BCIs 2019).

The last case is a research system, comparable in performance
to high-end medical EEGs rather than consumer headsets.
The device would require an accurate classifier and reliable
stimulation. Data, likely from many electrodes, would require
rapid and accurate classification from the BCI. A research CBI
requires reliable, low-latency stimulation. Such high-demand
systems must be capable of integration with sensory inputs
or diagnostic tools for experimental and medical work (Rao,
2019, Toward neural co-processors for the brain: combining
decoding and encoding in BCIs 2019). A virtual keyboard is
a common research BCI system, where a user selects from
different characters or options on a screen (Beverina et al.,
2003). In the context of BBI, it represents a system with a high
number of classes. Protocols and findings from a research system
may eventually be generalized for consumer or therapeutic CBI
(Lee et al., 2017).

Non-invasive BBI systems have been successfully
implemented and tested on humans with both TFUS and TMS
(Rao et al., 2014; Lee et al., 2017). The architectures used were
constrained by laboratory-based protocols and experimental
implementation, which are impractical for other applications and
difficult to replicate. To maintain an ITR comparable with that of
existing BCI systems, a BBI requires a rapid stimulation method,
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low-latency communication, reliable stimulation, confirmation
of stimulation, and the accurate classification of input signals.
To date, no research has addressed optimizing these parameters
in the context of non-invasive BBIs. The primary gap in the
literature is the lack of CBI parameter consideration in the
context of existing non-invasive BCI and EEG analysis. The
purpose of this work is to simulate and optimize the necessary
CBI parameters for a non-invasive EEG-based BBI system.

MATERIALS AND METHODS

Overview
A BBI requires minimal delay between the BCI and CBI steps for
each trial, as shown in Figure 1. The BCI reads and interprets
commands, and the CBI translates them to a physiological
output. This framework can be applied to BCI, BBI, therapeutic
neuromodulation, and medical imaging. Optimizing the ITR
facilitates system efficiency and is dependent on six primary BCI–
CBI variables: classifier accuracy, number of states, update rate,
system latency, stimulation reliability, and time cutoff (Chen
et al., 2014; Rao et al., 2014; Krausz et al., 2003). Classifier
accuracy, number of states, and update rate are BCI dependent,
whereas the others are CBI implementation dependent. All six are
simulated in MATLAB R2015a (Mathworks, 2015). During the
BCI phase, the update rate is directly proportional to the ITR in
bits per minute, but BCI optimization is a well-documented topic
in the literature. CBI parameter optimization is less common.

In all three CBI system architecture cases, the time duration
of a trial is a fundamental limitation on information transfer.
BCI protocols, such as motor imagery, covert speech, SSVEP,
and P300 virtual keyboards, typically require multiple seconds.
Diagnostic protocols, such as those used for therapeutic
cases, require the “trial” to be a window long enough to
extract meaningful information. Thus, the condition-dependent
diagnostic information determines window length (LaRocco
et al., 2014). Similarly, the update rate must be sufficient for both
real-time response and context-specific features.

Similarly, human awareness acts as another potential
bottleneck. In order to impart a “real-time” experience, a BCI
system must provide feedback within 0.1–0.2 s of a trial. For a
BBI, the CBI process must also be concluded within this 0.1–0.2-s
interval. TFUS and TMS, as previously employed, took 0.5 and
8.0 s, respectively. Although rapid neurostimulation is done to
prevent brain damage, it is essential for a responsive system (Rao
et al., 2014; Lee et al., 2017). Even with rapid stimulation, a poor
connection or a failed trial can similarly increase system latency.

Simulation Scope
As other researchers have thoroughly covered BCI parameters,
such as classifier accuracy, update rate, and window length, the
scope of the presented results was focused on CBI parameters
(Krausz et al., 2003; Omary and Mtenzi, 2009; Jin et al., 2019b).
The simulated BBI modeled the effective ITR, including window
length, update rate, classifier accuracy, number of states, system
latency, stimulation reliability, and time cutoff. Window length
is the total time span covered by each trial. The update rate

is how fast each window refreshes. The classifier accuracy is
defined as the rate at which the system can assign the correct
state to new trials. The number of states is defined as the
discrete number of groups able to be selected through user
action (or inaction). System latency is the total time required
for the data to be processed and classified and for stimulation
to be delivered. Stimulation reliability is the percentage chance
that the initial stimulation will fail, requiring up to two more
attempts. Time cutoff is a timeout threshold that precludes any
delayed stimulus delivery if exceeded. A single simulated BBI, a
binary-state medical monitoring system, was used owing to its
relative simplicity.

Parameter Computation
With the use of Eq. 1, the ITR was calculated in terms of bits
per trial. It is a direct function of two variables: system accuracy
(P) and the number of classes (N). For example, a two-class
therapeutic CBI system with a nearly perfect (>99.99%) classifier
would have an ITR of 1 bit/trial. In this case, the number of classes
(N) was set to 2, and the accuracy (P) was set to 0.99999.

ITR = log2 (N)+ P ×log2 (P)+ (1− P) × log2

(
1− P
N − 1

)
(1)

The trial length is a function of window length, update rate,
system latency, stimulation failure rate (SFR), and time cutoff.
The window length was the total duration, in seconds, of a trial.
The update length was the refresh time, in seconds, of the system.
The system latency was the total time, in seconds, required to
complete a full “cycle” of the BCI–CBI “loop.” The SFR was the
probability of neurostimulation not being provided or not having
the intended effect, resulting in a break in the loop. The time
cutoff was the time, in seconds, after which a failed stimulation
would not be reported. To convert between bits per trial and bits
per minute, window length L (in seconds) and window update
rate U (in hertz) were required.

ITR
(

bits
minute

)
= ITR

(
bits
trial

)
× L×U ×60

(
seconds
minute

)
(2)

In the case of the example system, window length L was 1 s, and
the update rate U was 100 ms. If the sampling window was 1 s
long, with an update rate of 100 ms, it would have a total ITR of
600 bpm. This rate is far higher than conventional BCIs, but it is
possible for a binary-state EEG-based therapeutic system. Based
on documented BCI protocols like motor imagery, P300 spellers,
covert speech, and SSVEPs, an ITR lower than 100 bpm is more
likely (Beverina et al., 2003; Blankertz et al., 2006; Lin et al., 2019).
The values for specific CBI parameters are detailed further in the
literature (Krausz et al., 2003; Chen et al., 2014).

As discussed previously, the ITR is primarily a function of
classifier accuracy, the number of classes or selectable outputs,
total time per trial, and the number of trials per time period.
Recorded and typical ITR values for different BCI systems were
used as a baseline for the CBI estimates. Based on the operational
requirements discussed previously, a medical monitoring CBI
system is likely to have the highest ITR, owing to its short time
window (1.0 s) and rapid update rate (0.1 s). The monitoring
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system represents a primarily passive high-accuracy system, such
as an occupational drowsiness detector (LaRocco et al., 2014).
The research CBI is likely to have a high ITR but may be
constrained by longer window lengths owing to its large number
of classes. The research system represents an experimental setup,
such as an EEG, with over a hundred active channels and several
options (Rao, 2019, Toward neural co-processors for the brain:
combining decoding and encoding in BCIs 2019). A virtual
keyboard CBI would likely have the highest ITR, as it is a research
CBI with a large number of potential states. A virtual keyboard
is often a P300 speller in past studies, although other paradigms
have been reported (Beverina et al., 2003). The consumer CBI is
likely to have low accuracy but a large number of classes and trials
per minute. Consumer systems include hobbyist and gaming
projects, although some have been used in an experimental
context (Pan et al., 2017). Of the four typical BCI systems, the
medical monitor has the highest ITR, and a higher number of
trials than the other three, even at lower classifier accuracies.

Table 1 investigates high-accuracy (99%), medium-accuracy
(75%), and low-accuracy (50%) cases for each BCI model.
Given the current values in the literature, it is unlikely that the
ITR for other protocols is as high as for medical monitoring.
Although 600 bpm seems like a high rate, a skilled typist is
capable of producing thousands of bits per minute of text
(Beverina et al., 2003; Blankertz et al., 2006). Therefore, non-
invasive BBI may be constrained by protocols and hardware, at
least when compared with invasive options (Rao, 2019, Toward
neural co-processors for the brain: combining decoding and
encoding in BCIs 2019). For the remainder of the simulation,
the medical monitoring/therapeutic case was used owing to its
high ITR (Chen et al., 2014). However, the ITR estimates could
be adjusted for other cases by retrieving the literature values for
BCI parameters, such as accuracy, number of classes, and update
rate (and thus, number of trials per minute).

Information Transfer Rate Optimization
The total classification time included a simulated delay based
on window length, sampling size, and probability of stimulation

TABLE 1 | ITR for different EEG BCI applications.

(a) Medical monitor (b) Consumer

Accuracy 0.5 0.75 0.99 0.5 0.75 0.99

No. of classes 2 2 2 5 5 5

Bits/trial 0 0.19 1 0.32 1.01 2.32

Trials/min 600 600 600 60 60 60

Bits/min 0 114 600 19.2 60.6 139.2

(c) Research (d) Virtual keyboard

Accuracy 0.5 0.75 0.99 0.5 0.75 0.99

No. of classes 10 10 10 50 50 50

Bits/trial 0.74 1.72 3.32 1.84 3.43 5.64

Trials/min 30 30 30 30 30 30

Bits/min 22.2 51.6 99.6 55.2 102.9 169.2

ITR, information transfer rate; EEG, electroencephalography; BCI, brain–
computer interface.

failure. The delay accounted for the CBI aspect of the system and
modeled the sending, delivery, and confirmation of a stimulation
sequence on another individual. The delay, or latency, of the
sequence depended on the connection speed, sonication or
stimulation period, and confirmation of stimulus delivery. Three
CBI variables were explored for their effects on ITR: latency,
SFR, and timeout.

The latency represented the entire time required to send
the stimulation command, initialize the system, stimulate, and
confirm stimulation. In previous studies, it ranged from 100 ms
to 1 s without connection delays (Rao et al., 2014; Lee et al.,
2017). The SFR is the ratio in which stimulation delivery does
not result in the desired electrophysiological change or otherwise
fails to achieve the desired goal, breaking the BCI–CBI loop.
An amplitude-based threshold detector on the person to be
stimulated was used to confirm proper stimulation delivery. If
that threshold was not met, then the stimulation was repeated.
The SFR values investigated were 0, 5, 10, 25, 50, 75, and 100%.
The SFR may increase the total latency if stimulation delivery is
not confirmed. The last variable was the timeout threshold, or the
total length of time after a failed stimulation until a command
is given to repeat it. The timeout threshold must be at least as
long as the latency period. It is possible for a timeout threshold to
compensate for a higher SFR; thus, a range of values from 100 ms
to 1.5 s was explored. The latency, SFR, and timeout depended on
the CBI implementation, and they affected the ITR by changing
the total time required per trial. Their total impact was more
thoroughly examined by keeping constant the BCI-dependent
ITR variables, such as accuracy and the total number of classes.

Statistical Testing
The latency, SFR, and timeout were examined in the context of
total ITR. However, the findings demonstrated the limitations
of the system implementation on the effective ITR. As shown
in Table 2, a mixed-model analysis of variance (ANOVA)
with repeated measures was used to investigate the statistical
significance of the different effects. Among the hypotheses tested
were as follows:

Hypothesis 1: A shorter latency improves ITR, even at
high failure rates.

Rationale: Shorter latency periods mean more commands
can be transmitted, enabling a faster “recovery” period
after a failure. However, latencies that are too short may
not provide additional benefit under highly unreliable
stimulus delivery.

Hypothesis 2: A higher failure rate will lower ITR, but it may
be stabilized by the timeout threshold selection.

Rationale: A higher failure rate means more time is needed
for a stimulation cycle. Beyond a particular threshold, a
properly selected timeout stabilizes the decline in ITR.

After ANOVA, a post hoc Tukey test was performed to
compare specific effects.
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TABLE 2 | Repeated-measures ANOVA for primary CBI parameters.

SumSq DF MeanSq F p Value p Val. GG p Val. HF p Val. LB

(Intercept) 4,688,156.48 3.00 1,562,718.83 630.75 0.00 0.00 0.00 0.00

Latency 76,489.69 3.00 25,496.56 10.29 0.00 0.00 0.00 0.00

SFR 196,179.39 3.00 65,393.13 26.39 0.00 0.00 0.00 0.00

Timeout 22,668.90 3.00 7,556.30 3.05 0.03 0.08 0.08 0.08

Error 5,544,796.83 2,238.00 2,477.57

CBI, computer–brain interface.

RESULTS

Overview
In practice, the maximum potential ITR was directly dependent
on the BCI parameters: window length, classifier accuracy, and
update rate. To better investigate the effect of the CBI parameters,
a simple BBI was simulated. For the simulated therapeutic
and medical monitoring BBI system, the configuration was
updated at a rate of 0.1 s, so a 1-s window corresponded to
a 10 trials per second. There were 600 trials per minute. The
implemented system was a two-class problem. Assuming the
number of classes N = 2 and Accuracy = 99.99%, inserting
these values into Eq. 1 yields 1 bi/trial, which is the theoretical
maximum under perfect operation. Obviously, the values would
be lower in a realistic scenario. As shown in Table 1, multiplying
this by 600 trials per minute, the theoretical maximum ITR
becomes 600 bpm. Although this seems substantial, a trained
user with a conventional keyboard and mouse can achieve several
kilobytes per minute (Obermaier et al., 2001). As the medical
monitoring system showed the highest ITR of the typical BCIs,
its results were generalized to the other systems. Adjusting
the ITR values for another system type required only scalar
multiplication of the values from Table 1 and then inserting them
into Eqs 1 and 2.

An ITR of 600 bpm is six times higher than the real-time BCI
implementations of ∼100 bpm. Real-time BCIs required longer
trial lengths and different update rates, so the value of 600 bpm
can be seen as more reflective of a medical analysis or fatigue
monitoring system than EEG-based BCI (Beverina et al., 2003;
Chen et al., 2014). The performance value of 1 bit/trial, though, is
well within the reported values in the literature for motor imagery
BCI performance (Obermaier et al., 2001).

Across the entire dataset, the ANOVA yielded a p
value < 0.001. However, the post hoc Tukey tests and the
more in-depth analyses revealed a wider range of effect sizes
for the experimental variables. The first hypothesis was that
shorter latencies could improve ITR, even at high failure rates.
The second was that optimal threshold selection could limit the
decline in ITR at high failure rates.

Hypothesis 1: Latency and Failure Rate
Although limited by the window size and refresh rate, latency was
a limiting factor for the maximum possible ITR. Results were first
visually inspected and compared in Figures 2, 3. An SFR of 25%
affects the response pattern, as shown below.

FIGURE 1 | Process flow between a brain and computer. Bidirectional flow of
processes between a user’s brain and an external computer system.

When the failure rate was increased to 50%, the decrease
in ITR continued.

The effect of increasing SFR was statistically significant, with
a p value of 0.0092. Although a failure rate of 25% decreased the
ITR, higher failure rates caused a significant drop in ITR.

Hypothesis 2: Timeout Threshold
Optimization
The timeout thresholds and latency values were contrasted with
each other. The results for a latency of 0.1 s were plotted in
Figure 4.

At lower latencies, the temporal threshold of 0.1 s ensured
an increase in ITR, even at high SFRs. As shown in Figure 5,
the latency value of 1.0 s was shown as an example of
higher latency values.

The results from timeout thresholds and failure rates were
compared, resulting in a p value of <0.001. With longer
latency periods, the system was unable to recover from a failed
stimulation delivery. The optimal parameter selection, as shown
in prior figures, could prevent dramatic declines in the ITR.

Findings
Both hypotheses were confirmed. With parameter optimization,
the system was capable of reaching ITR values close to the
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FIGURE 2 | Information transfer rate (ITR) values at a 25% stimulation failure
rate (SFR). The results show where stimulation command would fail 25% of
the time.

FIGURE 3 | Information transfer rate (ITR) values at a 50% stimulation failure
rate (SFR). The results show where stimulation would fail 50% of the time.

theoretical maximum. The selection of an optimized cutoff
threshold can preserve ITR, even with an unreliable stimulation
system. However, these results are highly dependent on the
evaluated system. A realistic BBI would be more complex than a
binary medical monitoring system, and the ITR would primarily
be constrained by the number of trials per minute.

DISCUSSION

Overview
The simulated results revealed the optimized parameter ranges.
Shorter latency periods resulted in a higher ITR, limited by a
sliding window update rate of 100 ms. The system was able to
function, even with an SFR as high as 25%. For a temporal cutoff,

FIGURE 4 | Information transfer rate (ITR), chance of failure, and cutoff
threshold at a latency of 0.1 s.

FIGURE 5 | Information transfer rate (ITR), chance of failure, and cutoff
threshold at a latency of 1.0 s.

a threshold of 100–200 ms was the most efficient for slowing
the drop in ITR. Although an ITR of 600 bpm and a window
update of 100 ms are far lower than those of a user with a
conventional keyboard and mouse and other EEG BCIs, they are
achievable with a low-cost, hobbyist EEG headset in the context
of a two-class monitoring system (Obermaier et al., 2001; Pan
et al., 2017). When CBI and BCI parameters are compared, the
CBI’s system latency and timeout threshold should be reflected
in the BCI’s update rate. In the simulated system, the highest
ITR corresponded to the lowest latencies and timeout thresholds,
even at high SFRs.

Significance
The simulated BBI indicated that optimized parameters on both
the CBI and BCI sides were required for proper function.
Although a non-invasive BBI is an appealing concept, it is limited
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both by the length of the EEG necessary for proper BCI function
and by the current limitations of non-invasive neurostimulation
technology. Although low-bandwidth EEG headsets are limited
compared with clinical or research systems, 100 ms was sufficient
for “real-time” performance, at least in the context of certain
monitoring tasks. When rapid stimulation is required, TMS
may be required, whereas TFUS may be used when stimulation
can take place over a period 0.5 s or more (Rao et al., 2014;
Lee et al., 2017). Rapid and reliable stimulation is required for
optimized BBI design, and a confirmation system may ensure that
reliability. Similarly, a timeout value ensures the system is not
“bogged down” by executing outdated commands. This suggests
BBI systems may benefit from faster sampling windows, so as to
maximize the number of trials in a given period. A higher ITR
translates into a faster response time for a commercial BBI, faster
character selection on a virtual keyboard, and so on. However,
the longer response times inherent in existing BCI protocols
also constrain the ITR (Beverina et al., 2003; Krausz et al., 2003;
Chen et al., 2014).

Recombination of existing BCI protocols and CBI methods
could potentially mitigate a lower effective ITR. For example,
the BCI protocol could work directly with the CBI-stimulated
brain region. A self-calibration or self-optimizing BCI paradigm
could also be implemented (Dimitriadis and Marimpis, 2018).
Such arrangements could also potentially compensate for the
interference between the CBI and BCI, such as EEG electrodes
and TMS loops. Although TFUS may lack the EEG interference
of TMS, the transducer characteristics determine the effective
stimulation parameters. In a previous study, a motor-imagery
BCI was combined with TFUS (Lee et al., 2018). Covert imagery
could potentially work in a similar arrangement for a BBI
independent of visual stimuli. Direct integration of CBI into
visual stimuli could greatly alter the dynamics of a BBI, such as
in the case of a P300 or SSVEP paradigm (Chen et al., 2014). Such
investigation would require extensive experimental results.

Future Work
The primary limitation in the current study was the lack of
experimental data. The physical implementation of a BBI is
required to confirm simulation findings. Simulation values were
based on the existing literature. The optimization of specific
TFUS or TMS stimulation parameters would be required for
future implementation of a real-time BBI. Similarly, existing
TFUS and TMS both rely on high-resolution medical images
to determine stimulation targets, so the automation of target
identification and selection is required to bring non-invasive,
self-optimizing BBI systems out of the lab. The inclusion of self-
optimizing BCI systems could also be evaluated, both in silico and

experimentally (Feng et al., 2018; Jin et al., 2019b). Furthermore,
the development of a safe, rapid (<0.1 s) neurostimulation system
would enable the performance of a non-invasive system to match
an invasive one. Beyond the CBI parameters investigated, the
size, precision, and power requirements of neurostimulation
technology currently constrain non-invasive BBI.

CONCLUSION

Brain-to-brain interface systems combine BCI and CBI systems
in a closed loop for each user. Values from the existing literature
were used to simulate parameters from BCI classifiers and CBI
systems. The BBI systems required a fast ITR to compensate for
low bandwidths, which was a direct function of the accuracy and
the number of classes. In particular, a binary-state therapeutic
monitoring system with a 1-s sampling window updated at a
rate of 10 Hz was modeled. A rate of 1 bit/trial was used as
the standard ITR value, which reached a value of 600 bpm in
a two-class medical monitoring system. With the CBI latency
kept constant at 100 ms, and a cutoff time of no more than
200 ms, a high ITR was retained, even with a SFR up to 25%.
These findings suggest that CBI latency and timeout should be
reflected in the update rate of a BCI to maximize the number of
trials. The number of trials is directly proportional to the ITR.
The delays innate to each BCI protocol and CBI stimulation
method must also be accounted for. The high latencies of
each are the primary constraints of non-invasive BBI for the
foreseeable future.
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