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Abstract: This study examined the ability of cavitation jet processing to regulate the oxidation con-
centrations with 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH) (0.2, 1, and 5 mmol/L) and
the structure and emulsification of soy protein isolate (SPI). The tested properties included particle
size distribution, hydrophobic properties (sulfhydryl group (SH) and disulfide bond (S-S) contents,
surface hydrophobicity (H0)), emulsifying properties (particle size and ζ-potential of emulsions,
emulsification activity index (EAI), and emulsification stability index (ESI)), as well as conformational
characteristics. The high shear force of cavitation jet treatment reduced the particle size of oxidized
SPI and distributed uniformly. Cavitation jet (90 MPa)-treated SPI (AAPH with 1 mmol/L) demon-
strated a high H0 (4688.70 ± 84.60), high EAI (71.78 ± 1.52 m2/g), and high ESI (86.73 ± 0.97%).
The ordered secondary structure (α-helix and β-turn content) of SPI was enhanced by the cavitation
jet. Meanwhile, the distribution of SPI-oxidized aggregates was observed under an atomic force
microscope. Therefore, cavitation jet processing combined with oxidation treatment is an effective
method to improve the characteristics of SPI and has potential industrial application prospects.

Keywords: cavitation jet; emulsifying properties; peroxyl radical; soy protein isolate; structure

1. Introduction

Soy protein is a high-quality plant-derived protein. Due to its unique nutritional value
and excellent functional properties, soy protein has become one of the most important
food ingredients widely used in the food industry [1,2]. At present, soybean protein isolate
(SPI) is prone to oxidation and aggregation during storage and transportation, resulting in
the loss of protein nutrition, quality degradation, and loss of some functional properties,
such as solubility, gelation, and emulsification [3,4]. Protein oxidation is the covalent
modification of a protein directly induced by reactive oxygen species or indirectly induced
by reaction with secondary by-products of oxidative stress [5]. Oxidation can partially
unfold proteins as follows: (i) the exposed groups are further oxidatively modified and
(ii) oxidized aggregates are formed through hydrophobic interactions and electrostatic
interactions [6,7]. Therefore, researchers are interested in developing simple and sustainable
processing methods to effectively regulate the oxidative aggregation behavior of soybean
proteins and inhibit the degradation of protein products caused by oxidative damage.

Traditionally, the method of plant protein oxidation is induced mainly by oxidants
(i.e., 13-hydroperoxyoctadecadienoic acid, malondialdehyde, acrolein, and 2,2′-azobis
(2-amiylpropane) dihydrochloride (AAPH)) [8]. A water-soluble free radical initiator,
AAPH is preferred to generate peroxy radicals at a constant rate [9,10]. Thermal decom-
position of AAPH leads to the formation of carbon-centered free radicals, generating
peroxy radicals under aerobic conditions [11–13]. In recent years, researchers have used
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AAPH-derived peroxy radicals to induce SPI oxidative modification and found that these
radicals attack almost all types of amino acid side chains. AAPH oxidation leads to the
formation of carbonyl groups, the degradation of free sulfhydryl groups, and the formation
of dihydrotyrosine in SPI. Oxidative modification results in the breaking of the main chain
of proteins, a decrease in solubility and interfacial activity, and the formation of oxidative
aggregates [3,14].

At present, improving or inhibiting the adverse effects of the excessive oxidation of
proteins is an urgent issue. Many physical treatments, such as high-pressure homoge-
nization, ultrasound, and high hydrostatic pressure, have been widely used to improve
the physical and chemical properties of soy protein [15–18]. Previous studies have em-
phasized the potential of using new processing technologies to change the structure and
functional performance of SPI. Cavitation jet technology is a new type of food processing
technology, which utilizes high pressure and cavitation combined with high-speed impact,
high-frequency vibration, instantaneous pressure drop, and strong shear force [19–21].
The cavitation jet has the advantages of no exogenous chemicals, low processing tem-
perature, and a small amount of nutrient loss [22,23]. The cavitation jet causes a strong
destructive effect to reduce the size of large particles in the fluid so as to improve the func-
tional properties of proteins. Cavitation jet technology is widely used in other industries,
but it is rarely used in food processing applications. Wu et al. [24] used the cavitation jet to
treat okara dietary fiber, which destroyed the structure of the dietary fiber, improving its
water solubility index, water retention capacity, oil retention capacity, swelling capacity,
and thickening capacity. Gong et al. [25] found that hydrodynamic cavitation and ultra-
sonic cavitation treatment unfolded the protein structure and exposed the hydrophobic
residues, which affected the functional properties of proteins, so that the solubility, emulsi-
fying properties, and foaming ability were significantly improved. Previous studies rarely
investigated the relationship between the structural and emulsifying characteristics of
oxidized SPI. Hence, a theoretical basis and guidance were required to better use SPI in
food industry processes and storage.

Therefore, this study was performed to investigate the effect of cavitation jet treatment
on the structure and properties of SPI oxidized by AAPH, thus finding ways to improve
the performance of SPI by combining appropriate oxidation treatment and cavitation jet
treatment, and also provide a theoretical basis for the development and storage of soy
protein products.

2. Materials and Methods
2.1. Materials

SPI (purity 91.12%, 5.7% ash, 0.95% fat, and 0.87% crude fiber) was provided by
Shandong Yuwang Ecological Food Industrial Co. (Yucheng, China), and AAPH was
purchased from Sigma–Aldrich (Saint Louis, MO, USA). Soy oil was purchased from a local
supermarket (Jiusan Cereals and Oils Industry Group Co., Ltd., Harbin, China). All other
chemicals used were of analytical grade and deionized (DI) water was used throughout
the experiment.

2.2. Protein Oxidation

The oxidative modification of SPI was performed as described by Wu et al. [14].
Soy protein solution (10 mg/mL suspended in 0.01 mol/L sodium phosphate buffer,
containing 0.5 mg/mL sodium azide, pH 7.4) was mixed with serial concentrations of
AAPH and then incubated in the air at 37 ◦C with continuous shaking in the dark for 24 h.
The final concentration of AAPH was 0 (control), 0.2, 1, and 5 mmol/L. The reaction was
stopped by immediately cooling the solution to 4 ◦C by ice-bathing and then centrifuging
it at 8 kg for 15 min at 4 ◦C. The supernatant was dialyzed against DI water at 4 ◦C for 72 h
to remove residual AAPH. The dialysis membrane had a molecular cut-off of 14,000 Da
(Juyuang Biota Technology Co., Ltd., Shanghai, China).
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2.3. Cavitation Jet Treatment of Oxidized SPI

A cavitation jet homogenizer (Beijing Zhongsen Huijia Technology Development Co.,
Ltd., Beijing, China) was used to homogenize the oxidized SPI solution. The processing
pressure was 90 MPa, the processing time was 10 min, and the temperature was 25 ◦C.
At the same time, protein solutions under different oxidation concentrations but not treated
with the cavitation jet were taken as controls. Finally, the oxidized SPI solution that was
treated by the cavitation jet and that was not treated by the cavitation jet was freeze-dried
with a freeze dryer (ALPHA 1-4 LSC Freeze Dryer, Marin Christ Co., Ltd., Osterode,
Germany) and stored at 4 ◦C until use. The natural SPI without oxidation and cavitation
jet was taken as a control. The sample numbers for different oxidation and cavitation jet
treatments are shown in Table 1.

Table 1. Different oxidation and cavitation jet treatment sample numbers.

Parameter
Sample Serial Number

A B C D E F G

AAPH concentration (mmol/L) 0 0.2 0.2 1 1 5 5
Cavitation jet pressure (MPa) 0 0 90 0 90 0 90

AAPH: 2,2′-azobis (2-amiylpropane) dihydrochloride.

2.4. Determination of Carbonyl Content

Protein carbonylation was quantified by the method described by Huang et al. [26].
First, 2,4-Dinitrophenylhydrazine (DNPT) was reacted with the carbonyl groups of ox-
idized SPI. The results were expressed as nmoles of carbonyl groups per milligram of
soluble protein with a molar extinction coefficient of 22,000 M−1cm−1. The soluble protein
concentration was evaluated by the biuret method with bovine serum albumin as the
standard.

2.5. Characterization of Particle Size Distribution

The particle size distribution for SPI was determined by dynamic light scattering
(DLS) with a particle size analyzer (Zetasizer Nano-ZS90, Malvern Instrument Co., Ltd.,
Worcestershire, UK) using the method proposed by Li Yang et al. [27]. SPI was suspended
in a 0.01 mmol/L sodium phosphate buffer (pH 7.0) at a concentration of 0.2 mg/mL and
stirred with a magnetic stirrer (S22-2 constant-temperature magnetic stirrer, Shanghai Sile
Instrument Co., Ltd., Shanghai, China). Then, 0.8 mL of the protein solution was transferred
to a square cuvette for DLS measurement. The results were expressed as volume percentage
(%) versus particle size (nm).

2.6. Evaluation of Emulsifying Properties
2.6.1. Preparation of Protein-Stabilized Emulsions

The emulsion preparation was conducted as described by Huang [28]. The emulsions
were prepared from 10 mL of soy oil and 40 mL of various SPI dispersions (0.5%, w/v),
adjusted to pH 7.0. To ensure that the emulsion system was fully mixed, a homogenizer
(Ultra-Turrax T18 homogenizer, ANGNI Co. Ltd., Shanghai, China) was used for 2 min at
10,000 rpm. The final emulsions were used within 48 h.

2.6.2. Determination of Mean Droplet Size and ζ-Potential of the Emulsion

A particle size analyzer (Zetasizer Nano-ZS90, Malvern Instrument Co., Ltd., Worces-
tershire, UK) was used to determine the droplet size distribution (single droplets or droplet
aggregates) of a freshly prepared emulsion sample. The particle size was expressed as
the volume-weighted mean diameter d4,3. This emulsion was diluted (50 µL in 5 mL
of 0.01 mmol/L sodium phosphate buffer (pH 7.0)), and ζ-potential of the samples was
determined using a zeta potential analyzer (Zetasizer Nano-ZS90, Malvern Instrument Co.,
Ltd., Worcestershire, UK).
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2.6.3. Emulsification Activity Index and Emulsification Stability Index

The emulsifying properties of SPI were determined with some modifications proposed
by Pearce and Kinsella [29]. The freshly prepared homogeneous emulsion was taken out
from the bottom and allowed to stand for 10 min. Aliquots (50 µL) of the emulsion were
diluted 100 times with 0.1% (w/v) sodium dodecyl sulfate (SDS, pH 7.0). A microplate
reader (Tecan Infinite M200 PRO microplate reader, Tecan Inc., Maennedorf, Switzerland)
was used to measure the absorbance of a 0.1% SDS solution blank at 500 nm, and the
emulsification activity index (EAI) and emulsification stability index (ESI) were calculated
as follows:

EAI = 2× 2.303× A0 × N
C×V × 1000

(1)

ESI =
A0 × ∆T
∆A− At

=
1

At − A0
× ∆T (2)

where A0 represents absorbance at time 0, N is the dilution factor (100), C is the protein
concentration (g/mL) before emulsification (g/mL), V is the oil-phase volume fraction
in emulsion (%), ∆T is the time difference (min), and ∆A represents the difference in
absorbance within ∆T.

2.7. Determination of Sulfhydryl Groups (SH) and Disulfide Groups (S–S)

The contents of sulfhydryl groups (free and buried SH) and disulfide bond (S-S) in SPI
were determined according to Huang et al. [26] using the 2,2′-dithiobis (5-nitropyridine)
modified Ellman method, and the soluble protein concentration was evaluated by the biuret
method with bovine serum albumin as the standard. According to the standard curve
(y = 0.0502 × −0.0009, R2 = 0.9994), the protein concentration was calculated. The soluble
protein contents were 12.75, 12.07, 15.13, 11.95, 15.67, 12.29, 16.09 mg/mL, respectively.
The nanomoles of SH per milligram soluble protein were calculated using the extinction
coefficient of 13,600 M−1 cm−1.

2.8. Measurement of Surface Hydrophobicity (H0)

Modifications were made by the method of Shen Lan et al. [30], and the H0 of the
protein was determined using the fluorescent probe ANS−. Serial dilutions in 0.01 mmol/L
phosphate buffer (pH 7.0) were prepared from SPI samples (stock solution; 1.5%, w/v) to
a final concentration of 0.004–0.02% (w/v). A fresh ANS− stock solution (0.08 mmol/L)
was prepared using phosphate-buffered saline. An aliquot of 150 µL of the ANS− stock
solution was added to 15 µL of each diluted dispersion in a cell of a 96-well microplate
and mixed. The fluorescence intensity was recorded at 370 nm (excitation) and 470 nm
(emission) using a microplate reader (Tecan Infinite M200 microplate reader, Tecan Inc.,
Maennedorf, Switzerland). The initial slope of FI versus protein concentration (%, w/v) was
calculated by a linear regression analysis and used as an index of H0.

2.9. Intrinsic Fluorescence Emission Spectroscopy

The intrinsic fluorescence was measured with a fluorescence spectrophotometer
(F-2005, Hitachi Ltd., Tokyo, Japan). Protein solution (0.2 mg/mL) was prepared in
0.01 mmol/L phosphate buffer (pH 7.0). The excitation wavelength was 290 nm, the emis-
sion spectrum was recorded at the scanning speed of 10 nm/s in the range of 300–400 nm,
and the excitation and emission were conducted under a constant 5-nm slit. Phosphate
buffer was used as blank solution for all samples.

2.10. Circular Dichroism Spectra Measurement

The circular dichroism (CD) spectrum of SPI was measured with a Jasco J-815 Circular
Dichroism Spectrophotometer (JASCO, Tokyo, Japan). Different SPIs were dispersed in
0.5 mg/mL deionized water. Quartz cuvettes were used at 20 ◦C with an optical path of
10 mm, and the CD spectrum was scanned at a wavelength in the far ultraviolet range
(250–190 nm) and repeated three times at a speed of 100 nm/min and an interval of 0.5 nm.
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The content of secondary structure was calculated by the CONTINLL method using CDPro
software (Narasimha Sreerama Research Group, Fort Collins, CO, USA).

2.11. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis of
proteins was performed as described by Laemmli [31]. SPI solution was suspended in
phosphate buffer (0.02 mmol/L, pH 6.0) at a concentration of 1.5 mg/mL. SPI solution
(1 mL) was added to 4 mL of sample buffer and heated for 5 min. The Bio-Rad MiniPro-
tean3 system was used as a discontinuous buffer system on a 5% stacking gel and a 12%
separating gel with a constant current set to 25 mA for approximately 1.5 h. The protein
band was stained with Coomassie Brilliant Blue G-250 and then decolorized with 7% acetic
acid (methanol: acetic acid: water, 227:37:236 (v/v/v)). A pre-stained protein molecular
weight marker (10–170 kDa) was run on the same gel to identify the molecular weight of
the protein bands in the stained gel.

2.12. Atomic Force Microscope

The microstructure of SPI samples was observed using an atomic force microscope
(AFM). A protein suspension (5 µL) was dropped on the surface of the newly cut mica,
dried in air at ambient temperature for 30 min, and used for AFM studies. AFM images
were obtained using the BioScope (BS3-02) tapping mode of AFM (Veeco Instruments Inc.,
New York, CA, USA). The scanning area was 1 × 1 µm, and the scanning frequency was
1 Hz. The images were processed using NanoScope Analysis 1.7. For each preparation con-
dition, the processing was repeated using at least two samples. Approximately 10 images
were obtained for each formulation.

2.13. Statistical Analyses

All the results were recorded in at least triplicate. They were expressed as mean± stan-
dard deviation. Means were compared using one-way analysis of variance followed by
Duncan’s test (p < 0.05). Statistical analysis was done using SPSS (SPSS Inc., Chicago,
IL, USA). The figures were made using Origin 9.5 (OriginLab Corporation, Northampton,
MA, USA).

3. Results and Discussion
3.1. Effect of Cavitation Jet Treatment on the Carbonyl Content of Oxidized SPI

Protein carbonylation is an irreversible and non-enzymatic modification of proteins
and is the most common indicator of protein oxidation [32,33]. As shown in Table 2,
the carbonyl content increased significantly with the increase in AAPH concentration
(p < 0.05). The results showed that peroxy radicals reacted with amino acid side chains
of protein molecules under aerobic conditions, and some of them evolved into carbonyl
derivatives in subsequent reactions, increasing the carbonyl content [34,35]. In contrast,
the carbonyl content of oxidized proteins decreased significantly after cavitation jet treat-
ment (90 MPa) (p < 0.05). Cavitation jet treatment produced strong shear force, high-speed
impact force, and high-pressure transient release, leading to protein unfolding and carbonyl
bond destruction [36]. However, the carbonylation degree of oxidized SPI treated with
the cavitation jet was still higher compared with natural SPI, which might be due to the
irreversible oxidative modification of oxidative stress [37].
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Table 2. The carbonyl, free sulfhydryl (SH), total SH groups, and S-S bond content of oxidized soy
protein isolate (SPI) before and after cavitation jet treatment.

Protein Samples Carbonyl
(nmol/mg)

Free SH
(µmol/mg)

Total SH
(µmol/mg)

S-S
(µmol/mg)

A 5.67 ± 0.03 f 7.07 ± 0.03 a 9.73 ± 0.03 a 3.80 ± 0.02 b

B 5.86 ± 0.02 c 6.39 ± 0.03 c 9.70 ± 0.03 ab 3.89 ± 0.03 ab

C 5.77 ± 0.02 d 6.89 ± 0.01 b 9.71 ± 0.04 a 3.83 ± 0.02 ab

D 5.95 ± 0.03 b 5.88 ± 0.02 f 9.67 ± 0.02 ab 3.93 ± 0.03 ab

E 5.71 ± 0.02 e 6.01 ± 0.02 d 9.69 ± 0.01 ab 3.88 ± 0.03 ab

F 6.03 ± 0.01 a 5.22 ± 0.02 g 9.64 ± 0.03 b 3.97 ± 0.03 a

G 5.72 ± 0.01 e 5.95 ± 0.02 e 9.67 ± 0.05 ab 3.90 ± 0.03 ab

Values in the same column followed by different letters (a–g) are significant difference (p < 0.05).

3.2. Effect of Cavitation Jet Treatment on the Particle Size Distribution of Oxidized SPI

Protein particle size is an important factor affecting the functional properties of soy
protein, and differences in particle size may lead to different functions [38]. The particle
size distribution of the oxidized SPI after cavitation jet treatment is shown in Figure 1.
The particle size of SPI increased significantly with the increase in the AAPH concentration
(p < 0.05). The results suggested that oxidation could expand part of the protein struc-
ture, expose more hydrophobic groups, and increase the volume of the protein structure.
AAPH induced the formation of soluble aggregates of soybean protein, and further ox-
idative expansion promoted the formation of insoluble precipitates and peroxidation of
peptide chains [8,35].

After cavitation jet treatment, the particle size distribution of the oxidized protein
changed. Both natural and oxidized SPI had a bimodal distribution with a wide particle
size distribution. However, after the cavitation jet treatment, the particle size distribution
tended to be unimodal. Meanwhile, Table 3 shows that d4,3 decreased sharply after
cavitation jet treatment. This might be attributed to the strong shear and turbulent forces
generated by microfluidization and cavitation. The hydrogen bond and hydrophobic
interactions between SPI molecules were destroyed, which led to the decomposition of the
aggregates formed by SPI oxidation into smaller particles [25].

Figure 1. Particle size distribution of oxidized SPI before and after cavitation jet treatment.
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Table 3. The d4,3 of the oxidized SPI dispersion and the d4,3 and ζ-potential of the emulsion droplets
before and after the cavitation jet treatment.

Protein Samples Dispersion Emulsion Droplet

d4,3 (nm) d4,3 (µm) ζ-Potential (mV)

A 266.21 ± 7.94 f 4.32 ± 0.04 f −22.53 ± 0.81 b

B 355.03 ± 9.16 d 4.69 ± 0.08 e −23.87 ± 1.03b c

C 306.09 ± 3.95 e 4.14 ± 0.08 g −23.97 ± 1.21b c

D 439.38 ± 7.59 b 5.62 ± 0.15 c −25.03 ± 0.58 c

E 389.05 ± 4.52 c 5.02 ± 0.08 d −27.69 ± 0.98 d

F 503.84 ± 5.73 a 6.59 ± 0.09 a −20.80 ± 0.61 a

G 434.26 ± 4.58 b 5.87 ± 0.08 b −20.73 ± 1.12 a

Values in the same column followed by different letters (a–g) are significant difference (p < 0.05).

3.3. Effect of Cavitation Jet Treatment on Hydrophobic Properties of Oxidized SPI
3.3.1. SH and S-S Bond Contents

Cysteine residues are the most sensitive amino acid residues of proteins in the form
of free SH groups or oxidized cysteine [14,39]. Table 2 shows free SH, total SH, and S-S
group contents of untreated and cavitation jet-treated oxidized SPI samples. As the AAPH
concentration increased, the content of the free SH group decreased significantly, and the
content of the total SH group decreased significantly (p < 0.05). However, the content of
S-S bonds gradually increased, but the differences in concentrations were not significant
(p > 0.05). Sulfinyl radicals reacted with molecular oxygen to generate sulfhydryl peroxy
groups, which further oxidized proteins. The SH groups were reduced and converted into
reversible (protein disulfide and sulfenic acid) or irreversible forms (sulfinic and sulfonic
acid) in different oxidation environments [40]. The results showed that not only the oxida-
tion treatment led to the exchange between the SH groups and S-S bonds, but also some
SH groups were converted into sulfur oxidation products. Cysteine residues and disulfide
bonds are important in protein aggregation. The increase in the content of S-S bonds may
cause changes in the SPI structure and lead to protein aggregation [41]. The content of free
SH groups and/or S-S bonds of oxidized SPI were affected by the cavitation jet treatment.
Compared with untreated SPI, the treatment significantly increased the free SH content but
significantly decreased the content of the S-S bond (p < 0.05), but the difference between
soybean proteins of different oxidation degrees was not significant (p > 0.05). The cavitation
jet treatment did not significantly affect the total SH content, indicating that the reduction
of free SH content at this time might be more inclined towards the spatial exposure of these
groups rather than SH/S-S exchange. The cavitation jet unfolded the protein structure and
exposed the SH groups, and the content of free sulfhydryl increased [25].

3.3.2. Surface Hydrophobicity (H0)

Surface hydrophobicity is an important structural feature to evaluate the structural
changes in proteins, which is closely related to the functional properties of proteins.
As shown in Figure 2A, the H0 of oxidized SPI significantly increased. As the AAPH
concentration increased, the H0 of oxidized SPI increased first and then decreased. H0 was
affected by the balance between protein aggregation via hydrophobic interaction and
partial protein unfolding. The increase in H0 might be related to the oxidative unfolding
and/or denaturation of proteins, the decrease in the S-S bond content, and the expo-
sure of hydrophobic domains initially embedded in protein molecules [8,39]. However,
the unfolded or denatured proteins initially produced after oxidation treatment were ther-
modynamically unstable and associated with one another to form different aggregates
through hydrophobic interactions between molecules. Therefore, when the AAPH con-
centration was 5 mmol/L, the decreased H0 might be due to the re-aggregation caused by
covalent modification and the hydrophobic association of unfolded protein molecules [4].
Cavitation jet treatment (90 MPa) significantly increased the H0 of oxidized SPI (p < 0.05).
The cavitation jet unfolded the oxidized protein structure, the particle size became smaller,
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the large aggregates in SPI changed into small aggregates, the intermolecular contact area
increased, the hydrophobic amino acids were exposed, and H0 increased. In addition,
the degree of improvement of H0 by the cavitation jet increased with the increase in AAPH
concentration; that is, G (the concentration was 5 mmol/L) had the highest degree of
improvement. Hence, the cavitation jet improved the surface hydrophobic properties of
soybean protein with a higher aggregation degree more effectively. Shen et al. [30] stud-
ied SPI preheated using microfluidization treatment, which yielded similar results to the
present study. As the temperature increased, the degree of protein aggregation increased,
and the ability of the microjet to improve H0 increased.

Figure 2. Surface hydrophobicity (H0, A) and intrinsic fluorescence emission spectrum (B) of oxidized
SPI before and after cavitation jet treatment. Columns with different letters (a–g) are significant
differences (p < 0.05).

3.3.3. Intrinsic Fluorescence Emission Spectra

The maximum fluorescence emission wavelength (λmax) of tryptophan is related to
the microenvironment of Trp, indicating that the relative position of the tryptophan residue
in the protein is an indicator of the tertiary structural change in the protein [4,42]. It is
therefore possible to determine the change in the tertiary structure of the protein from the
fluctuations in fluorescence. As shown in Figure 2B, no significant difference was observed
between oxidized SPI with 0.2 mmol/L AAPH and native SPI, indicating that a low con-
centration of peroxyl radical did not affect the tertiary structure of soy protein. When the
concentration was 1 mmol/L, the fluorescence intensity increased significantly, but when
the concentration was increased to 5 mmol/L, the fluorescence intensity decreased and
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was even lower than that of natural SPI. At the same time, the λmax of SPI was 335.8, 336.2,
336.7, and 332.5 nm, respectively, after treatment with 0, 2, 1, and 5 mmol/L AAPH. At first,
when the AAPH concentration was relatively low, the oxidation induced protein unfolding,
Trp was gradually exposed on the surface of the protein, H0 increased (Figure 2A), and the
hydrophobic interaction between molecules increased, resulting in an increase in fluores-
cence intensity and a red shift of λmax. With a further increase in the degree of protein
oxidation, some unfolded proteins or other hydrophobic groups are exposed to the hy-
drophilic environment, ultimately contributing to the formation of protein aggregates due
to hydrophobic interactions. However, Trp was partially oxidized. Free radical destruction
reduced the exposure of tryptophan residues originally located in polar environments,
which were exposed to the nonpolar environment inside the molecule. Eventually, the λmax
of the soy protein reduced and a blue shift occurred [4,35,43]. When the oxidative SPI
was treated with the cavitation jet at a pressure of 90 MPa, the fluorescence intensity and
λmax significantly increased as predicted. On the contrary, cavitation jet treatment wholly
increased the λmax of oxidized SPI. This observation was consistent with the increased H0,
indicating that cavitation jet treatment significantly increased the exposure of the hydropho-
bic domains to solvents in protein aggregates. These exposed hydrophobic domains tended
to avoid contact with solvents. As a result, these small-sized new aggregates underwent
structural rearrangement to make the structure more compact and bury more hydrophobic
domains inside the molecule [22,44].

3.4. Effect of Cavitation Jet Treatment on the Emulsifying Properties of Oxidized SPI
3.4.1. Emulsifying Capabilities

Emulsifying capability refers to the ability of an emulsifier to form and stabilize
small droplets. Generally, the emulsifying capability is related to volume average particle
diameter d4,3 and ζ-potential [30,35]. Therefore, the emulsifying capability of SPI was
evaluated by measuring the d4,3 and ζ-potential of oxidized SPI emulsions treated with the
cavitation jet (Table 3).

The d4,3 of the emulsion increased significantly with the increase in oxidant concentra-
tion (p < 0.05), and the trend of SPI dispersion was the same. The hydrophobic interaction
was enhanced by oxidation treatment, leading to the aggregation of emulsified oil droplets
and the increase in d4,3, which affected the emulsification performance. Moreover, d4,3 was
further reduced by cavitation jet treatment. The formation of the protein structure induced
by cavitation jet treatment exposed more hydrophobic groups, accelerated the movement
of protein molecules, increased the interfacial tension of the emulsion, enabled the protein
to diffuse at the oil–water interface better, and reduced the particle size.

The ζ-potential is another important indicator of the emulsifying ability, which in-
dicates the surface charge property of the emulsion. As shown by d4,3 in Table 3, as the
concentration of AAPH increased, the ζ-potential of the emulsion stabilized by oxidized
SPI first increased and then decreased (p < 0.05). Chen et al. [35] speculated that amino
acid residues greatly affected the surface charge and the exposure of previously buried
amino acids and the ratio of acidic/basic amino acids caused by the selective oxidation
of the susceptible amino acids resulted in the changes in the ζ-potential of the emulsion.
This finding indicated that the surface hydrophobicity of the moderately oxidized protein
increased, the electrostatic repulsion between the emulsion droplets, the surface charge
was enhanced, and the emulsion stability was improved. The cavitation jet increased the
surface charge of the moderately oxidized SPI emulsion and enhanced the electrostatic
repulsion between the particles. This high electrostatic repulsion overcame the molecular
interactions (such as van der Waals forces and hydrophobic interactions) which stabilized
the existing protein aggregates. Therefore, it was possible to obtain greater emulsifying
activity/stability. However, the effect of the cavitation jet on the over-oxidized emulsion
was not significant.
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3.4.2. Emulsification Stability

EAI and ESI are always used to evaluate the emulsifying properties of proteins.
EAI indicates the ability of the protein to form an oil–water interface, and ESI is the ability
of the emulsion to stabilize at the oil–water interface after a predetermined period of
time [45].

As shown in Figure 3, native SPI had EAI and ESI of 35.75 ± 2.78 m2/g and 45.78 ±
1.45%, respectively. The EAI and ESI of the emulsion stabilized by oxidized protein
increased first and then decreased as the concentration of AAPH increased. This result
indicated that moderate AAPH oxidation treatment effectively improved the EAI and
ESI of SPI emulsion. This was because the low concentration of peroxy radical oxidation
caused partial unfolding of the soy protein, the hydrophobic group inside the soy protein
molecule was exposed, and the molecular flexibility was improved. Protein molecules were
more easily combined with the oil–water interface, which increased the emulsification and
emulsion stability of the oxidized soybean protein. The oxidation with high concentrations
of peroxy radicals caused soy protein to form insoluble aggregates. Moreover, the surface
hydrophobicity of oxidized soy protein decreased, leading to decreased flexibility and
reduced surface area of oxidized soy protein molecules, thus resulting in a gradual decrease
in emulsifying properties and emulsion stability [33]. When the oxidized SPI was treated
with the cavitation jet at a pressure of 90 MPa, the cavitation jet increased the EAI of the
emulsion (Figure 3A). At the same time, the degree of EAI increase was negatively related
to the degree of oxidation. This result was contrary to H0’s result, indicating that, besides
H0, other factors, such as the flexibility of SPI, also affected the emulsification performance.
The flexibility of the protein was affected by noncovalent bonds such as hydrogen bonds,
van der Waals forces, electrostatic attraction, and hydrophobic interactions. The cavitation
and mechanical effects of cavitation jet processing destroyed these bonds, causing stretching
of the tight structure of SPI. The flexible protein was quickly adsorbed to the interface,
making it easier for SPI to form an interface film, thereby improving the emulsifying
properties of SPI [38,46]. As shown in Figure 3B, the change trend of ESI was not consistent
with that of EAI under cavitation jet processing. When the AAPH concentration was low,
ESI significantly increased (p < 0.05). Ren et al. [25] studied the effects of hydrodynamic
and ultrasonic cavitation on the emulsification properties of SPI. They found that as the
treatment time increased, the soy protein particle size decreased and the solubility and
H0 increased, leading to the formation of a β-sheet in the secondary structure. Swirling
cavitation improved the emulsification properties of SPI. When the AAPH concentration
was 5 mmol/L, the ESI decreased and became 50.97% ± 1.78%. It suggested that the
cavitation jet processed the over-oxidized SPI, causing the oil droplets of the protein coating
to flocculate. Moreover, the particle size became larger, the H0 decreased, the protein
flexibility decreased, and the ESI deteriorated.
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Figure 3. Emulsification activity index (EAI; A) and emulsion stability index (ESI; B) of SPI emulsions
oxidized before and after cavitation jet treatment. Columns with different letters (a–f) are significant
differences (p < 0.05).

3.5. Effect of Cavitation Jet Treatment on the CD Spectrum of Oxidized SPI

CD spectroscopy can be used to reflect the changes in protein secondary structure.
The secondary structure of oxidized SPI is shown in Table 4. The secondary structure of
natural soy protein is composed of four different conformations, including α-helix, β-turn,
β-sheet, and random structure. Compared with natural SPI, the oxidation of peroxyl
free radicals reduced the ratio of α-helix and β-turn structures and increased β-sheet and
random coil structures. The oxidation reaction caused protein unfolding, and the peptide
bond was broken. When the exposed hydrophobic group increased to a certain value,
the balance of electrostatic repulsion and hydrophobic interaction was broken, promoting
protein aggregation and changes in the secondary structure [14,47]. After cavitation jet
treatment, the β-sheet structure was further converted into β-turn and α-helical structure,
the content of β-sheet and random coil structure decreased, and the content of β-turn and
α-helix increased. The effect of the cavitation jet weakened the intermolecular interac-
tions and exposed the nonpolar groups, leading to the weakening of the intermolecular
hydrophobic interactions and breaking the intermolecular hydrogen bonds, resulting in
an increase in α-helix and β-sheet structures. On the contrary, the cavitation jet treat-
ment increased the ordered structure between protein molecules and protein aggregation,
and hence the increase in α-helix and β-turn structures improved the functional properties
of proteins [48,49]. At the same time, the higher the AAPH concentration, the greater the de-
gree of change in the secondary structure caused by the cavitation jet. Hence, the cavitation
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jet more effectively improved the characteristics of soybean protein with a higher degree of
aggregation.

Table 4. The secondary structure content of oxidized SPI before and after cavitation jet treatment.

Protein Samples α-Helix (%) β-Sheet (%) β-Turn (%) Random Coil (%)

A 19.07 ± 0.04 b 22.82 ± 0.09 c 16.04 ± 0.08 d 42.93 ± 0.09 f

B 17.20 ± 0.11 c 21.81 ± 0.06 d 16.79 ± 0.09 c 44.17 ± 0.07 e

C 19.58 ± 0.06 a 20.12 ± 0.09 f 17.90 ± 0.10 b 42.35 ± 0.06 g

D 13.78 ± 0.06 e 23.63 ± 0.07 a 12.58 ± 0.07 g 50.03 ± 0.11 a

E 17.27 ± 0.07 c 22.97 ± 0.07 b 14.46 ± 0.08 f 45.25 ± 0.05 d

F 16.14 ± 0.10 d 21.15 ± 0.05 e 15.07 ± 0.09 e 48.66 ± 0.08 b

G 19.71 ± 0.09 a 15.66 ± 0.07 g 18.66 ± 0.08 a 45.95 ± 0.05 c

Values in the same column followed by different letters (a–g) are significant differences (p < 0.05).

3.6. Effect of Cavitation Jet Treatment on SDS-PAGE of Oxidized SPI

SDS-PAGE was used to further determine the oxidative aggregation behavior of
soluble soy protein and the composition of subunits after cavitation jet treatment (Figure 4).
The SDS-PAGE profile of native soy protein showed the characteristic bands of the subunits
of β-conglycinin (α′, α, and β) and glycinin (As and Bs) (Figure 4, lane 7). After SPI was
oxidized, as the AAPH concentration increased from 0.2 to 5 mmol/L, the intensity of
α′, α, and As subunits of oxidized SPI by AAPH gradually decreased with the oxidation
concentration. Concomitantly, some polymers (stacked at the top of the running gel) with
high molecular weight were generated. β-Mercaptoethanol was added to the sample
to break the disulfide bonds in the soybean protein before loading the protein sample.
Therefore, the bands at the top of the gel were attributed to the aggregation of subunits
connected by non-disulfide bonds. Chao et al. [50] believed that carbon–carbon covalent
cross-linking was the predominant covalent cross-linking in oxidized proteins by peroxy
radicals. More interestingly, the contents of β and Bs subunits increased first and then
decreased (Figure 4, lane 1, 3, 5). The decreased contents of β and Bs subunits were related
to protein fragmentation [51]. On the contrary, untreated and cavitated jet-treated SPI
samples had similar typical SDS-PAGE profiles, and the cavitation jet did not significantly
affect the molecular weight of oxidized SPI. This finding suggested that the effect of
cavitation jet processing on S-S/SH interchange was dependent on the nature of the
applied proteins in SPI.

Figure 4. SDS-PAGE patterns of oxidized SPI before and after cavitation jet treatment. Band 1–7: B, C,
D, E, F, G, and A. M: markers.
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3.7. Effect of Cavitation Jet Treatment on the Surface Morphology of Oxidized SPI

AFM is a powerful tool that can observe the surface morphology of proteins in an
ambient atmosphere and can indirectly observe the dispersed and aggregated forms of
proteins [52]. As shown in Figure 5, the 2D and 3D images of the oxidized SPI disper-
sion were obtained with NanoScope Analysis software. The natural SPI (A) was around
40–60 nm in height, most of which was in the form of spherical clusters, but the degree
of clusters was relatively low, with some uneven surfaces. The particle morphology of the
oxidized SPI dispersion became more uneven, and the particle size significantly increased.
With the increase in AAPH concentration, the degree of particle clustering gradually in-
creased, and most of the particles collided and aggregated to from larger irregular particles.
The observations were in good agreement with the particle size distribution data (Figure 1).
The larger oxidized SPI aggregates treated with the cavitation jet collapsed to form smaller
particles and transformed to more uniform needle-like protrusions. The height distribu-
tion map corresponded to the particle size distribution map, and the distribution became
narrower. This finding was similar to the results of Huang et al. [53] using the mechanical
effect of ultrasonic cavitation to reduce the aggregation of protein SPI particles. This could
be explained as the effects of strong shear force, high-speed impact, and high-frequency
vibration generated during cavitation microjet processing, which could effectively reduce
the particle size of proteins, destroy existing protein aggregation, and inhibit further
aggregation of proteins.

Figure 5. The 3D-view height-view (bottom right illustration) and cross-section (upper right illustra-
tion) Atomic Force Microscope (AFM) image of SPI oxidized before and after cavitation jet treatment.
Note: Scale bar is 3 µm. (A)–(G) represents protein samples.



Foods 2021, 10, 2 14 of 16

4. Conclusions

In summary, our results show that the combination of cavitation jet and oxidation
treatment had a great influence on the structure and emulsification properties of SPI.
The cavitation jet reduced the size of protein aggregates due to the hydrodynamic shear
forces associated with cavitation. The cavitation jet treatment destroyed the hydrophobic
domain and greatly increased H0, resulting in an increase in the fluorescence intensity of
SPI and a change in the tertiary structure. Of the treatment conditions tested, treatment
with 1 mmol/L AAPH and 90 MPa cavitation jet produced smaller particle size, higher H0,
and better emulsification properties (higher EAI and ESI). Overall, these results may help us
to understand the effects of oxidation and cavitation jet treatment on the physicochemical
and emulsification properties of SPI and provide ideas for improving the adverse effects of
oxidation on SPI in industrial production.
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