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Objective: The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive
system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers.
We evaluated whether the mechanoreceptors in Müller’s muscle function as extrinsic
mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis
oculi in addition to those of the levator and frontalis muscles. Methods: We evaluated
in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of
the mechanoreceptors in Müller’s muscle from upgaze with unilateral lid load induced
reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia
of Müller’s muscle precluded the contraction. We compared the electromyographic
responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct
stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous
electrical stimulation of the supraorbital nerve. Results: Upgaze with a unilateral 3-
g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with
ipsilateral dominance. Anesthesia of Müller’s muscle precluded the reflex contraction.
The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve
differed from that by electrical stimulation of the supraorbital nerve in terms of the
intensity of current required to induce the reflex, the absence of R1, and duration.
Conclusions: The mechanoreceptors in Müller’s muscle functions as an extramuscular
proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-
twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers
functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-
twitch fibers may factor in grimacing and blepharospasm.
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The levator muscle consists of nonskeletal fast-twitch fibers and skeletal slow-twitch fibers,1

whose neuromuscular units for contraction are separated (Fig 1a).2,3 The nonskeletal
fast-twitch fibers of the levator and superior rectus muscles are voluntarily contracted
by excitation of the rostral interstitial nucleus of the medial longitudinal fasciculus, the
interstitial nucleus of Cajal, the M-group, and the oculomotor neurons for vertical gaze
control.4,5 Because the frontalis and orbicularis oculi muscles consist of skeletal fast-
twitch and slow-twitch fibers (Fig 1a),6,7 the neuromuscular unit for contraction of each
fiber type differs as well.2,3 The skeletal fast-twitch fibers of the frontalis and orbicu-
laris oculi muscle are voluntarily contracted by excitation of the primary motor cortex
and facial motor neurons. Whereas mixed limb skeletal muscles have intrinsic muscle
spindles that are required to induce reflex contraction of their slow-twitch fibers owing
to proprioception evoked by stretching of mechanoreceptors in the muscle spindles,8 the
mixed levator, frontalis, and orbicularis oculi muscles seemingly lack these intrinsic mus-
cle spindles.9-11 Accordingly, a specialized proprioceptive system to contract the levator,
frontalis, and orbicularis oculi slow-twitch muscle fibers is believed to be present outside the
muscles.

The supratarsal Müller’s muscle is located between the levator muscle and the tar-
sus (Fig 1a) and is innervated by sparse sympathetic fibers, the interstitial cells of Cajal,
and abundant myelinated trigeminal proprioceptive fibers in a palisade arrangement as
mechanoreceptors.11-13 The trigeminal proprioceptive nerve fibers in Müller’s muscle con-
verge as a transverse nerve on the proximal aspect of the muscle, join into the lacrimal
branch of the ophthalmic trigeminal nerve, pass through the superior orbital fissure and
trigeminal ganglion, and reach the mesencephalic trigeminal nucleus to possibly connect
with the locus ceruleus through gap junctions (Fig 1).11,14

We have reported that voluntary contraction of the levator fast-twitch muscle fibers
stretches the mechanoreceptors in Müller’s muscle to evoke trigeminal proprioception,
which induces reflex contraction of the levator and frontalis slow-twitch muscle fibers
to involuntarily raise the eyelid and eyebrow against gravity (Fig 1a),15-20 and that a
hydraulic mechanism caused by trauma to the globe impairs trigeminal proprioceptive
evocation, which reduces reflex contraction of the levator and frontalis slow-twitch mus-
cle fibers, resulting in eyelid and brow ptosis.21 In addition, we have described that
unilateral direct electrical stimulation to the trigeminal proprioceptive fibers induces a
phasic short-latency monosynaptic response in the ipsilateral levator slow-twitch muscle
fibers (Fig 1a).22 Such stimulation also produced a phasic short-latency monosynaptic
response in the ipsilateral frontalis muscle and prolonged long-latency polysynaptic re-
sponses in the bilateral frontalis slow-twitch muscle fibers with ipsilateral dominance as
well as prolonged long-latency polysynaptic responses in the orbicularis oculi muscles
(Fig 1a).23

Under these circumstances, we hypothesized that the mechanoreceptors in Müller’s
muscle functioned as extrinsic mechanoreceptors that induced reflex contraction of the
orbicularis oculi slow-twitch fibers in addition to the levator and frontalis slow-twitch
fibers via the trigeminal proprioceptive neurons in the mesencephalon (Fig 1). Whereas
the levator and frontalis muscles function as eyelid-opening muscles, the orbicularis oculi
muscle serves as an eyelid-closing muscle. It therefore seems controversial that 2 opposing
neural circuits are stimulated by the same trigeminal proprioception. However, electrical
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stimulation to the trigeminal proprioceptive fibers that innervate the mechanoreceptors
in Müller’s muscle may indeed activate the neuromuscular unit for contraction of the
orbicularis oculi slow-twitch fibers, which mainly exist in the orbital portion and do not
directly antagonize eyelid opening (Fig 1).6,7,24

Figure 1. Neuroanatomy for the contraction of the levator, frontalis, and orbicularis oculi fast-twitch
and slow-twitch muscle fibers. (a) Sagittal view. Black arrows indicate voluntary contraction of the
levator, frontalis, and orbicularis oculi fast-twitch muscle fibers. Red arrows indicate involuntary re-
flex contraction of the levator, frontalis, and orbicularis oculi fast-twitch muscle fibers. Green arrows
indicate the proprioceptive nerve. Disinsertion indicates that the levator aponeurosis is disinserted
from the tarsus. (b) Frontal view for the electrical stimulation of the trigeminal proprioceptive nerve.
Question marks indicate unknown nucleus at the reticular formation, cingulate cortex, or amyg-
dala. Fast indicates fast-twitch muscle fibers; Slow, slow-twitch muscle fibers; mesV, mesencephalic
trigeminal nucleus; LC, locus ceruleus; Phasic, phasic contraction; Reflex, reflex contraction; Tonic,
tonic contraction.

To prove our hypothesis regarding reflex contraction of the orbicularis oculi slow-
twitch muscle fibers, we first evaluated whether upgaze with metal weight loading on the
pretarsal skin induced reflex contraction. We then evaluated whether intraoperative direct
electrical stimulation of the trigeminal proprioceptive fibers innervating the mechanore-
ceptors in Müller’s muscle induced reflex contraction of the orbicularis oculi slow-twitch
muscle fibers in comparison with the blink reflex.
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PATIENTS AND METHODS

Patients

One hundred Japanese patients with aponeurosis-disinserted blepharoptosis (85 women and
15 men; aged 55.9 ± 9.3 years) were enrolled for upgaze with lid loading and intraoperative
electrical stimulation studies.15,16 The disinserted aponeurosis (Fig 1a) in all 100 patients
was intraoperatively confirmed and fixed to the tarsus.15,16 The study protocol was approved
by our institutional review board for human subjects. All patients were fully informed about
the nature of the study and gave their written consent for participation.

Upgaze with lid load for increased stretching of the mechanoreceptors in Müller’s
muscle

Before upgazing, 2 to 3 drops of 0.4% oxybuprocaine hydrochloride were administered on
the surface of the cornea to prevent corneal reflex. The unilateral eyelid of the dominant eye
in 100 patients was loaded with a 3-g metal weight on the pretarsal skin using double-sided
adhesive tape. The patients were instructed to maintain a 60-degree upward gaze toward
a corresponding target marked on the wall (Fig 2a). For subjects in whom involuntary
contraction occurred in the orbicularis oculi muscles, we administered 4% lidocaine to
anesthetize the mechanoreceptors in Müller’s muscle. These patients were made to lie in a
supine position, raise their chins, and gaze downward. The upper eyelids of the dominant
eyes were detached from the globes with a small retractor for 60 seconds to create a space
in the upper fornix. Four to 5 drops of 4% lidocaine were administered into the space and
were retained in this position by gravity to exclusively anesthetize the mechanoreceptors in
Müller’s muscle. The 3-g metal weight was then again loaded on the pretarsal skin and the
patients were asked again to reestablish a 60-degree upward gaze to evaluate if involuntary
contraction of the orbicularis oculi muscles was present (Fig 2b).

Figure 2. Upgaze with a 3-g weight loading before (a) and after (b) anesthesia of Müller’s muscle
in a 58-year-old woman with aponeurosis-disinserted blepharoptosis.

[Click Here to view video] [Click Here to view video]

Intraoperative electrical stimulation of the trigeminal proprioceptive nerve

We compared the electromyographic responses of the bilateral orbicularis oculi muscles
to unilateral transcutaneous electrical stimulation of the supraorbital nerve for the blink
reflex with those to the trigeminal proprioceptive nerve in 9 of 100 patients who gave their
informed consent for this study. Before electrical stimulation of the trigeminal propriocep-
tive nerve, the corneal surface and surfaces of the levator muscle and aponeurosis were
anesthetized with 2 to 3 drops of 0.4% hydrochloride and local injection of 5 to 10 mL of
1% lidocaine with epinephrine in each eyelid.

Electrophysiological activity of the orbicularis oculi muscles was recorded using Ag-
AgCl surface electrodes that were 8 mm in diameter and filled with impedance-reducing
paste (Fig 3). The active electrode was placed over the lateral one-third of the orbital portion
of the orbicularis oculi muscle and the reference electrode was placed 2 cm medially to
the active electrode (Fig 3). The ground electrode was attached to the subject’s chin. Elec-
trical stimulation of the supraorbital nerve for measurement of orbicularis oculi reflexes
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was delivered using a pair of surface electrodes according to the guidelines of the interna-
tional federation of the clinical neurophysiology.25 Electrical stimulation of the transverse
trigeminal proprioceptive nerve on the proximal Müller’s muscle was delivered using a
forceps-type electrical stimulator. The cathode was placed beneath the center of the upper
margin of the Müller’s muscle, and the anode was placed near the lacrimal gland to avoid
directly stimulating the orbicularis oculi muscle (Figs 1b and 3). To accurately obtain an or-
bicularis oculi reflex, a single electrical stimulus to the transverse trigeminal proprioceptive
nerve required a constant 0.1-milisecond current pulse of 200 μV and 14.29 ± 6.73 mA,
while that to the supraorbital nerve needed a constant 0.1-milisecond current pulse of 200
μV and 6.57 ± 2.70 mA. An interval of at least 7 seconds between electrical stimuli was
chosen to avoid habituation of the blink reflex. All electromyographic recordings were
made using an electromyograph (Neuropack 8; Nihon-Kohden Tokyo, Japan) with a band
pass frequency filter set at 20 to 3000 Hz. Five trials were performed to detect the location
of the transverse trigeminal proprioceptive nerve on the proximal Müller’s muscle. Five
electromyograms with larger amplitudes of the responses in the orbicularis oculi muscles
were superimposed, and the shortest latency among the responses and the duration of the
responses were calculated.

Figure 3. Intraoperative electrical stimulation of the trigeminal proprioceptive
nerve innervating the mechanoreceptors in Müller’s muscle in a 61-year-old
woman with aponeurosis-disinserted aponeurosis. A forceps device is electri-
cally stimulating the trigeminal proprioceptive nerve, which runs transversely
between the distal levator muscle belly and the proximal Müller’s muscle (refer
to Fig 1b). The electrodes on the orbital orbicularis oculi muscles are recording
responses.
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Because muscle responses were induced bilaterally, we compared the latencies and
durations of ipsilateral responses. Data were analyzed using the Mann-Whitney U test
with SPSS software (IBM). A P value of less than 0.05 indicated a statistically significant
difference.

RESULTS

Upgaze with a unilateral 3-g lid load induced involuntary contraction of the bilateral
orbicularis oculi muscles with ipsilateral dominance in 13 of 100 patients (Fig 2a). After
anesthesia of the mechanoreceptors in Müller’s muscle in these patients, repeated upgaze
with a unilateral 3-g lid load did not result in involuntary contraction (Fig 2b).

Figure 4. Representative orbicularis oculi reflexes induced by electrical stimulation of the supraor-
bital nerve (a) and the trigeminal proprioceptive nerve innervating the mechanoreceptors in Müller’s
muscle (b) in a 61-year-old woman, as shown in Figure 3. S indicates the side of electrical stim-
ulation; R-OOM, right orbicularis oculi muscle; L-OOM, left orbicularis oculi muscle; LM, a
volume-conducted response from the ipsilateral levator muscle to orbicularis oculi muscle.

Stimulation of the supraorbital nerve induced an R1 response in the ipsilateral orbicu-
laris oculi muscle and R2 responses (mean latency: 30.4 milliseconds; mean duration: 35.3
milliseconds) in the bilateral orbicularis oculi muscles with ipsilateral dominance (Fig 4a).
Stimulation of the trigeminal proprioceptive nerve on the proximal Müller’s muscle did not
induce a phasic oligosynaptic response but rather induced a short-latency phasic response
as a volume-conducted response from the ipsilateral levator muscle to the orbicularis oculi
muscle22 as well as prolonged long-latency polysynaptic responses (mean latency: 27.4 mil-
liseconds; mean duration: 67.0 milliseconds) in the bilateral orbicularis oculi muscles with
ipsilateral dominance (Fig 4b). The mean latency of prolonged long-latency polysynap-
tic responses (27.4 milliseconds) induced by stimulation of the trigeminal proprioceptive
nerve did not significantly differ from that of R2 responses (30.4 milliseconds) induced by
stimulation of the supraorbital nerve (P = 0.482) (Fig 5a). In contrast, the mean duration of
prolonged long-latency polysynaptic responses (67.0 milliseconds) induced by stimulation
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of the trigeminal proprioceptive nerve was significantly longer than that of R2 responses
(35.3 milliseconds) induced by stimulation of the supraorbital nerve (P = 0.002) (Fig 5b).

Figure 5. Statistical comparison of the latency (a) and duration (b) of the orbicularis oculi reflexes
between electrical stimulation of the trigeminal proprioceptive nerve and that of the supraorbital
nerve.

DISCUSSION

Evinger et al26 and Gruart et al27 reported that electromyographic activity in the orbicularis
oculi muscles did not change according to vertical gaze movements. Upgaze with a 3-g
lid load did not increase touch, pain, or temperature sensation but did increase proprio-
ception evoked by stretching of the mechanoreceptors in Müller’s muscle. In patients with
aponeurosis-disinserted blepharoptosis,15,16,28 the mechanoreceptors in Müller’s muscle
are sensitized to enhance reflex contraction of the levator and frontalis slow-twitch muscle
fibers for maintenance of an adequate visual field. Since upgaze with a 3-g lid load did not
induce a visible reflex contraction of the orbicularis oculi muscles in any patient and local
anesthesia of the Müller’s muscle precluded involuntary contraction of the orbicularis oculi
muscles in all 13 patients tested, the presence of strong stretching of the mechanoreceptors
in Müller’s muscle appeared to evoke strong trigeminal proprioception that induced reflex
contraction of the bilateral orbicularis oculi slow-twitch fibers.

The orbicularis oculi reflex elicited by electrical stimulation of the trigeminal proprio-
ceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms
of the intensity of electrical current required to induce the reflex (14.29 mA vs 6.57 mA),
the absence of an R1 response, and the duration of the prolonged long-latency polysynap-
tic responses (67.0 milliseconds vs 35.3 milliseconds). Meanwhile, the electrical current
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needed to consistently induce reflex contraction of the levator slow-twitch fibers by direct
electrical stimulation of the trigeminal nerve was found to be 3 mA,22 while that for reflex
contraction of the frontalis slow-twitch fibers by transcutaneous electrical stimulation of
the trigeminal proprioceptive nerve was 15 mA.23 Consequently, weak stretching of the
mechanoreceptors in Müller’s muscle in primary gaze with weak proprioceptive evocation
may induce reflex contraction of the levator slow-twitch muscle fibers, moderate stretching
of the mechanoreceptors in Müller’s muscle in upward gaze with moderate propriocep-
tive evocation may enhance reflex contraction of the levator slow-twitch muscle fibers and
evoke reflex contraction of the frontalis slow-twitch muscle fibers, and strong stretching of
the mechanoreceptors in Müller’s muscle with strong proprioceptive evocation may induce
reflex contraction of the orbicularis oculi slow-twitch muscle fibers (Fig 1).

Because the corneal surface was anesthetized, reflex contraction of the orbicularis oculi
slow-twitch fibers induced either by stretching of the mechanoreceptors in Müller’s muscle
or by electrical stimulation of the trigeminal proprioceptive nerve could be distinguished
from the corneal reflex with contraction of the orbicularis oculi fast-twitch muscle fibers,29

which may have possibly been induced by electrical stimulation or mechanical stimulation
of the cornea with the weight-loaded eyelid.

The orbicularis oculi muscle consists of 3 distinct concentric units: the pretarsal,
preseptal, and orbital portions. The pretarsal portion is almost completely composed of
fast-twitch fibers, whereas the preseptal portion contains 10% to 20% slow-twitch fibers.30

The orbital portion has more slow-twitch fibers than both other reegions7 and forms an
extrinsic system by blending with the corrugator supercilii, procerus, and frontalis muscles,
which also contain high percentages of slow-twitch fibers.7,31,32 The fast-twitch fibers of
the pretarsal and preseptal orbicularis oculi muscle are involved in phasic movements such
as spontaneous and reflex blinking and mild eyelid closure. Meanwhile, the slow-twitch
fibers of the orbital orbicularis oculi muscle are involved in tonic postural movements and
serrated eyelid closure, which recruits the orbital portion with the corrugator supercilii and
procerus muscles.6,33 In myotonic dystrophy with atrophy of skeletal slow-twitch fibers,
although electrical stimulation of proprioceptive nerves in mixed limb skeletal muscles
does not induce reflex contraction of slow-twitch muscle fibers (ie, the Hoffmann reflex),
electrical stimulation of the supraorbital nerve induces reflex contraction of the orbicularis
oculi fast-twitch muscle fibers (R2) as a blink reflex.8 Electrical stimulation of the trigeminal
proprioceptive nerve was found to activate the neuromuscular unit for contraction of the
levator and frontalis slow-twitch muscle fibers.22,23 Similarly, this appeared to stimulate the
neuromuscular unit for contraction of the orbicularis oculi slow-twitch muscle fibers as well.
The orbicular oculi reflex induced by electrical stimulation of the trigeminal proprioceptive
nerve may thus resemble grimacing or blepharospasm with contraction of slow-twitch fibers
rather than a blinking reflex with contraction of fast-twitch muscle fibers.

Since crow’s feet in the elderly can be flattened by injection of botulinum toxin type A,
they are recognized as hyperkinetic facial wrinkles,34 that indicate the presence of increased
tonic contraction of the orbital orbicularis oculi slow-twitch muscle fibers. In elderly in-
dividuals whose levator aponeurosis is considerably disinserted from the tarsus,16,28,35 the
mechanoreceptors in Müller’s muscle might be strongly stretched in primary gaze to induce
reflex contraction of the orbital orbicularis oculi slow-twitch fibers accompanied with the
corrugator supercilii, and porcerus slow-twitch muscle fibers. 7,31,32 The resulting slightly
grimacing face is often encountered in elderly people.
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The cortical control of eyelid closure is not well understood.36 Only relatively re-
cently has there been the finding that a major source is the cingulate cortex as well as lesser
sources in primary motor cortex.37 This was first defined in the primate, and then confirmed
in humans with both transcranial magnetic stimulation mapping38 and functional magnetic
resonance imaging.39 New findings show a major input from the amygdala which presum-
ably plays a role in behaviors such as emotional facial expressions.40 The locus ceruleus,
which possibly connects with the mesencephalic trigeminal nucleus through gap junctions
(Fig 1),14 projects ascending axons to the forebrain, the cingulate cortex, the amygdala,
and the spinal motoneurons to facilitate muscle tone by involuntary contraction of skele-
tal slow-twitch muscle fibers.41-44 The locus ceruleus has been also reported to densely
project to the facial motor neurons as well,45,46 and this projection appears to be excitatory
since extracellular microiontophoretic application of noradrenaline increases the activity of
these motoneurons.47-50 Together with our results, it can be interpreted that serrated eyelid
closure with reflex contraction of the orbicularis oculi slow-twitch muscle fibers may be
caused by trigeminal proprioception evoked from strong stretching of the mechanorecep-
tors in Müller’s muscle via excitation of the mesencephalic trigeminal nucleus, the locus
ceruleus, the cingulate cortex, or the amygdala, whereas mild eyelid closure with voluntary
contraction of the orbicularis oculi fast-twitch muscle fibers may be caused by excitation
of the primary motor cortex (Fig 1). Increased involuntary contraction of the orbital or-
bicularis oculi slow-twitch muscle fibers is always observed in yawning for arousal,51,52

which consist of opening the mouth wide and involuntary serrated eyelid closure. Increased
contraction of the extraocular muscles, including the levator nonskeletal fast-twitch mus-
cle fibers may retract the globes backwards and strongly stretch the mechanoreceptor in
Müller’s muscle to stimulate the locus ceruleus, which increases wakefulness and induces
involuntary serrated eyelid closure by reflex contraction of the orbicularis oculi slow-twitch
fibers.

CONCLUSIONS

Trigeminal proprioception evoked both by strong stretching of the mechanoreceptors in
Müller’s muscle from upgaze with lid load and by electrical stimulation of the trigeminal
proprioceptive nerve innervating the mechanoreceptors in Müller’s muscle induces reflex
contraction of the orbital orbicularis oculi slow-twitch muscle fibers not for blinking, but
rather for grimacing or blepharospasm. Similarly to the levator and frontalis muscles, the
orbicularis oculi muscle appears to possess an extramuscular proprioceptive system, that
is, the mechanoreceptors in Müller’s muscle, which is activated by strong stretching of
the mechanoreceptors owing to contraction of the levator and superior rectus nonskeletal
fast-twitch fibers. The next steps in this investigation are to differentiate blepharospasm
from blink movements and to apply the findings to surgical control of grimacing in elderly
people and blepharospasm.
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