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miRNA plays an important role in many biological processes, and increasing evidence
shows that miRNAs are closely related to human diseases. Most existing miRNA-disease
association prediction methods were only based on data related to miRNAs and diseases
and failed to effectively use other existing biological data. However, experimentally verified
miRNA-disease associations are limited, there are complex correlations between
biological data. Therefore, we propose a novel Three-layer heterogeneous network
Combined with unbalanced Random Walk for MiRNA-Disease Association prediction
algorithm (TCRWMDA), which can effectively integrate multi-source association data.
TCRWMDA based not only on the known miRNA—disease associations, also add the
new priori information (lncRNA–miRNA and lncRNA–disease associations) to build a
three-layer heterogeneous network, lncRNA was added as the transition path of the
intermediate point to mine more effective information between networks. The AUC value
obtained by the TCRWMDA algorithm on 5-fold cross validation is 0.9209, compared with
other models based on the same similarity calculation method, TCRWMDA obtained
better results. TCRWMDA was applied to the analysis of four types of cancer, the results
proved that TCRWMDA is an effective tool to predict the potential miRNA-disease
association. The source code and dataset of TCRWMDA are available at: https://
github.com/ylm0505/TCRWMDA.

Keywords: miRNA-disease association prediction, three-layer heterogeneous network, unbalanced random walk,
LncRNA, Laplace normalization
INTRODUCTION

MiRNAs are widely found in eukaryotes and regulate the expression of other genes. miRNA is very
important for the control of animal development and physiology (Victor, 2004). miRNA is involved
in regulating cell differentiation (Lee et al., 1993)and plays an important role in many biological
processes, including cell cycle progression and apoptosis (Brennecke et al., 2003). Mutations and
biogenic dysfunction of miRNA and disorders of miRNA and its targets may lead to a variety of
diseases. Calin et al. published the first study that microRNAs linked to cancer in 2002, there was a
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significant association between decreased levels of both miRNAs
and chronic lymphoblastic leukemia, suggesting a potential
relationship between miRNA and cancer (Calin et al., 2002).
miRNA is an important factor in tumorigenesis, and the artificial
regulation of some miRNAs may lead to the occurrence or
apoptosis of tumors, which depends on the regulation of
miRNA (Yang et al., 2009). With the development of miRNA
research, the association between miRNA and disease has been
extended to many types of cancer, including leukemia and lung
cancer (Johnson et al., 2005; Bandyopadhyay et al., 2010), breast
cancer, and colon cancer (Michael et al., 2003), and so on,
exploring the relationship between miRNA and disease has
become the subject of many kinds of cancer research. More
and more evidence proving that miRNA is closely related to
diseases, understanding relationships between miRNA and
disease is conducive to understanding the pathogenesis of
diseases at the molecular level, but more importantly is
conducive to prognosis, diagnosis, evaluation, treatment, and
prevention of diseases and the promotion of human medical
progress. Traditional experiments are costly, time consuming,
and only suitable for small-scale data, with the development of
biology, mass biological data about miRNA have been generated.
There is an urgent need to develop a powerful computational
method to predict the potential disease-related miRNAs, possible
candidate miRNAs with higher prediction score were obtained
by computational methods can reduce the time and cost of
biological experiment.

In the early research methods of miRNA-disease association
prediction, under the assumption that functionally related
miRNAs are often related to diseases with similar phenotypes
(Lu et al. , 2008), A computational model based on
hypergeometric distribution to predict the miRNA-disease
association was proposed (Jiang et al., 2010), and constructed a
heterogeneous phenome-microRNAome network for human
phenome-microRNAome by combining the miRNA functional
similarity network and the disease phenotype similarity network
with the known miRNA-disease association, However, this
method relies on the neighbor point information of the
predicted miRNA, and the false positive and false negative
rates are relatively high, so the prediction accuracy of this
method is not high. With the development of miRNA-disease
research, the restart random walk algorithm was used to predict
the miRNA-disease association (RWRMDA) based on the
similarity model, which is the first to use the global network to
predict miRNA-disease association (Chen et al., 2012b). A
restart random walk was performed on the MiRNA functional
similarity network to predict potential MiRNA disease
interactions, but RWRMDA did not work on any known
related MiRNA disease. A semi-supervised classification
method RLSMDA to predict the potential miRNA-disease
association based on regularized least squares is proposed
(Chen and Yan, 2015), RLSMDA is a semi-supervised model
that does not require negative samples and a global approach
that prioritizing the association of all diseases at the same time.
CombinedWithin-Score with Between-Score for miRNA-disease
association prediction (WBSMDA) was proposed (Chen et al.,
Frontiers in Genetics | www.frontiersin.org 2
2016), WBSMDA based on the basis of known miRNA-disease
association data and assuming that miRNAs with similar
functions are more likely to be associated with diseases with
similar phenotypes may lead to bias (preference) on miRNAs
with more known diseases, In addition, the accuracy of the
model is still not very high. Then, a KNNmodel based on rank to
predict potential related miRNAs for diseases (RKNNMDA) was
proposed (Chen et al., 2017), which based on miRNA functional
similarity, disease semantic similarity, Gaussian interaction
profi le kernel similarity and known miRNA-disease
association. In RKNNMDA, k-nearest neighbor algorithm was
used to search k-nearest neighbor of miRNA and disease, and
these k-nearest neighbors were reordered and reweighted
according to the support vector machine model to obtain the
final predicted results. Random walk has also been further
developed in the prediction of miRNA-disease association. The
random walk technique has also been developed in association
prediction, unbalanced bi-random walk on the heterogeneous
networks (BRWH) based on RWR was proposed (Luo and Xiao,
2017) to predict the miRNA-disease Association. From the
matrix, making use of matrix completion algorithm
(MCMDA) to update the adjacency matrix based on the
known miRNA-disease association data to predict its potential
association proposed in (Li et al., 2017). In 2018, there is a
KATZMDA model for miRNA-disease association prediction
(Qu et al., 2018), which based on KATZ model to calculate
miRNA similarity and disease similarity to predict the
association between miRNA and disease, and KATZMDA
yields better results than the previous algorithms mentioned.
Based on the idea of MCMDA, a new induction matrix
completion model (IMCMDA) for MiRNA-Disease
Association prediction was proposed (Chen et al., 2018).
Different from MCMDA, IMCMDA uses disease similarity and
miRNA similarity as the characteristics of disease and miRNA to
complete the missing miRNA-disease association. Recently, a
kernel-based soft-neighborhood similarity model combined with
similar network fusion for miRNA-disease association prediction
was proposed (Ma et al., 2018a). The improvement of the
similarity model improves the accuracy of predicting miRNA-
disease. Ha et al. predict miRNA and disease associations based
on matrix decomposition, which has been widely used in
recommendation systems (Ha et al., 2019). Based on the
heterogeneous network of miRNA and disease, structural
perturbation method is also applied to the prediction of
miRNA-disease correlation, and the final perturbed matrix
represents the correlation score between the two (Zeng et al.,
2018). However, these methods mentioned above only
considered the miRNA-disease association data sets and
functional similarity, without extracting more information
from other data sets related to them to improve the accuracy
and reliability of the model.

With the development of biomedicine, the number of
biological databases increases, and the association between
biological data is gradually excavated, which enables us to
combine different information from different databases to
reliably predict the miRNA-disease association. In view of the
January 2020 | Volume 10 | Article 1316
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limitations of the above methods, in this paper, we put forward a
novel prediction model of three-layer network combining
unbalanced random walk for miRNA-disease association
prediction (TCRWMDA). Based on the known associated data
of miRNA-disease, lncRNA–miRNA and lncRNA-disease,
TCRWMDA build a three-layer heterogeneous network and
performs unbalanced random walk between networks and on
heterogeneous networks to obtain the final prediction results.

To evaluate the effectiveness of the TCRWMDA, we
compared it with other classical and advanced algorithms
based on the same similarity measure on 5-fold cross-
validation. In addition, compared with the latest model based
on the kernel-based soft neighborhood network fusion similarity
model. In order to verify the applicability of TCRWMDA
algorithm, four diseases were studied by TCRWMDA
algorithm. Experimental results and case studies show that this
method can be effectively used to predict the potential
association between miRNA and disease.
MATERIALS AND METHODS

The Dataset
The associated data sets used in this article are from (Chen,
2015). The dataset mainly consists of three association data sets.
First, miRNA-disease association data set is from HMDDV2.0
(Li et al., 2013), finally, 5,430 miRNA-disease associations were
obtained, including 383 diseases and 495miRNAs.A represents the
known association between miRNA and disease, A(i,j)=1. denotes
miRNA m(i) is related to disease d(j), otherwise, A(i,j)=0.

A(i, j) =
1, if miRNA m(i) is associated with lncRNA l(j)

0, otherwise

(

Second, the lncRNA–miRNA association dataset was derived
from the star-base v2.0 database (Yang et al., 2011). Repeated
associations of different evidences were deleted, as well as the
lncRNA–miRNA associations that did not exist in 5,430 known
miRNA-disease associations and their corresponding lncRNA–
miRNA associations in the lncRNA-disease association. Finally,
704 lncRNA–miRNA associations were obtained. B represents the
known relationship between lncRNA–miRNA, B(i,j)=1 represents
miRNA m(i) is related to lncRNA l(j),otherwise, B(i,j)=0.

B(i, j) =
1, if  miRNA m(i) is associated with IncRNA I(j)

0, otherwises

(

Third, the lncRNA-disease association data set in the lncRNA
Disease database (Geng Chen et al., 2012a) was downloaded, and
the repeated association of different evidences and the
association of lncRNA-disease related to the disease or lncRNA
were removed. After removing the data of diseases not shown in
the above data set, 182 lncRNA-disease associations of 34
lncRNAs were finally obtained. C represents association matrix
between lncRNA and disease, C(i,j)=1 denotes lncRNA l(i) is
related to disease d(j), otherwise, C(i,j)=0.
Frontiers in Genetics | www.frontiersin.org 3
C(i, j) =
1, if  lncRNA l(i) associated with disease d(j)

0, otherwise

(

TCRWMDA
Based on the idea of unbalanced bi-random walk, we proposed
three-layer heterogeneous network combined with unbalanced
random walk for miRNA-disease association prediction
algorithm. TCRWMDA algorithm includes three random walks,
including the random walk on miRNA–miRNA network, disease
similarity network, and the mapping relationship of miRNA–
lncRNA-disease. Figure 1 shows the flow chart of TCRWMDA
algorithm to predict miRNA-disease association. In the dotted
black box above Figure 1, blue dots represent miRNA, yellow dots
represent disease, and red dots represent lncRNA. A three-layer
heterogeneous network consist of the similar networks formed by
same color nodes with straight lines and the heterogeneous
networks formed by nodes of different colors with dotted lines.
The similarity measure can be obtained by calculating the
similarity of association data, the similarity measure was use to
obtain the transition probability matrix by Laplace normalization,
finally, TCRWMDA algorithm using the transition probability
matrix to unbalanced random walk on heterogeneous network to
get the potential association scores between the disease and its
associated miRNAs and sorting. The feasibility and effectiveness of
the algorithm is verified by whether the predicted results already
exist in the existing database.

Construction of Similarity Networks
The similarity networks in this paper consist of lncRNA
similarity network, Disease similarity network, miRNA
similarity network.

lncRNA Similarity Network
Genes can be mutated, inserted and deleted, it is difficult to
achieve a complete match of two sequences, so we use sequence
information as its feature. We extract the sequence features by
considering sequence composition (Zhang et al., 2018). For
lncRNA sequences, we calculated the proportion of four
nucleotide types (A, C, G, T) and 16 dinucleotide types (AA,
AG, AC…) in each lncRNA sequence, every lncRNA l(i) can get a
20−dimensional eigenvector, where (i) is its component, named
as lncRNA sequence composition. The sequence data of 34
selected lncRNA were downloaded from LNCipedia5 (Volders
et al., 2019). Use cosine similarity method to calculate the lncRNA
similarity sl, the formula of lncRNA similarity is as follows:

sl i, jð Þ = o20
i=1L ið Þ � L jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o20
i=1 L ið Þð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o20

j=1 L jð Þð Þ2
q

Disease Similarity Network
In this paper, we used the same method as in literature (Wang
et al., 2010) to calculate the disease similarity.

Disease semantic similarity model 1: Directed acyclic graph
(DAG) was constructed to describe the disease based on MeSH
January 2020 | Volume 10 | Article 1316
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descriptor downloaded from national library of medicine
(Lipscomb, 2000) (http://www.nlm.nih). According to DAG,
the contribution of disease d to the semantic value of disease d
DAG (d) is expressed as:

D1D dð Þ = 1                                                                           if d = D

D1D dð Þ = D ∗D1D d0ð Þf jd0 ∈ children   of   dg if d   ≠ D

(

Δ denotes attenuation coefficient of semantic contribution.
The self-semantic value of disease D was defined as follows:

DV1 Dð Þ =od∈T Dð ÞD1D dð Þ
Where T(D) represents all ancestor nodes of D and D itself.

Based on the assumption that the two diseases share a large part
of DAG and their semantic similarity is large, the semantic
similarity between disease d(i). and disease d(j) can be defined as:
Frontiers in Genetics | www.frontiersin.org 4
SS1 d ið Þ, d jð Þð Þ = od∈T d ið Þð Þ∩T d jð Þð Þ D1d ið Þ dð Þ + D1d jð Þ dð Þ� �
DV1 d ið Þð Þ + DV1 d jð Þð Þ

Disease semantic similarity model 2: It is unreasonable to give
the same contribution value for diseases in the same layer of
DAG (D). Therefore, according to the model proposed by Xuan
et al., we define the contribution of disease d to the semantic
value of disease d in DAG (d) as follows:

D2D dð Þ = − log
the   number   of  DAGs   including   d

the   number   of   diseases

� �

We define the semantic similarity of diseases d(i),d(j) as the
ratio of share ancestor node contributions to all ancestor node
contributions. The semantic similarity model 2 is calculated
as follows:
FIGURE 1 | Flow chart of TCRWMDA algorithm. The steps of TCRWMDA for the association prediction between miRNA and disease are divided into four stages: the
construction of similarity network, the calculation of transition probability matrix and the random walk on the three-layer heterogeneous network. Finally, the final prediction
score is obtained to analyze the association probability of a certain disease and a certain miRNA. In the black dotted box is the construction of similarity network, which
are based on association data and related data from the available database. The red dotted line shows that an unbalanced random walk on a three-layer heterogeneous
network.
January 2020 | Volume 10 | Article 1316
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SS2 d ið Þ, d jð Þð Þ = od∈T d ið Þð Þ∩T d jð Þð Þ D2d ið Þ dð Þ + D2d jð Þ dð Þ� �
DV2 d ið Þð Þ + DV2 d jð Þð Þ

Among them,

DV2 Dð Þ =od∈T Dð ÞD2D dð Þ

miRNA Similarity Network
Wang et al. (2010) proposed the method of MISIM and miRNA
functional similarity based on the hypothesis that miRNAs with
similar functions are more likely to be associated with diseases
with similar characteristics. The miRNA function similarity data
downloaded from http://www.cuilab.cn/files/images/cuilab/
misim.zip. We use FS(m(i),m(j)) to represent association score
between miRNA m(i) and miRNA m(j)

Gaussian Kernel Similarity
Based on the basic assumption that similar diseases are often
associated with miRNAs with similar functions (Wang et al.,
2010), we calculated the Gaussian kernel similarity for miRNA
and disease to obtain the miRNA similarity and disease
similarity. First, we use vector IP(d(i)) to represent there is or
is not an association between each miRNA and disease d(i) and
regard IP(d(i)) as interaction profile of the disease d(i), then, the
gaussian interaction profile kernel similarity between disease d(i)
and d(j) was calculated:

kd i, jð Þ = exp −gd jj IP d ið Þð Þ − IP d jð Þð Þ jj2� �
gd = g 0

d=(
1
ndo

nd

i=1
jjIP d ið Þð Þ)jj2)

gd controls kernel bandwidth. Similarly, the Gaussian kernel
similarity between disease m(i) and disease m(j) can be obtained
as follows:

km i, jð Þ = exp −gm jj IP m ið Þð Þ − IP m jð Þð Þ jj2� �
gm=g

0
m=(

1
nmo

nm

i=1
jjIP(m(i))jj2)

Integrated Similarity for Diseases and miRNAs
We could not obtain the DAGs of all diseases, that is, for a
specific disease without DAG, we could not calculate the
semantic similarity score of this disease with other diseases.
Therefore, for the disease pairs with semantic similarity score, we
used the semantic similarity score to express the disease
similarity, and for other disease pairs, we used the gaussian
kernel interaction profile similarity to represent the disease
similarity. The disease similarity matrix of disease d(i) and
disease d(j) was constructed as follows:

sd i, jð Þ =
SS1 d ið Þ,d jð Þð Þ+SS2 d ið Þ,d jð Þð Þ

2 d ið Þ and d jð Þ has semantic

similarity

kd d ið Þ, d jð Þð Þ                                   otherwise

8>><
>>:

Similarly, the similarity matrix of miRNA can be obtained:
Frontiers in Genetics | www.frontiersin.org 5
sm i, jð Þ =
FS m ið Þ,m jð Þð Þ m ið Þ and m jð Þ has functional similarity

km m ið Þ,m jð Þð Þ                                                                     otherwise

(

The similarity between the two miRNAs is the weight of edge
in the miRNA similarity network, in the same way, the similarity
between the two diseases is the weight of edge in the disease
similarity network.

Calculation of Transition Probability Matrix
To perform a random walk on three-layer heterogeneous
networks, the state transition between networks must be
considered and transition probability matrix needs to be
created. To calculate the transition probability in the miRNA
similarity network, we make use of the Laplace normalization
(Zhao et al., 2015) to calculate transition probability matrix in
the miRNA similarity network, and the exit degree of nodes and
the entry degree of nodes were taken into account.

Laplace normalization: Assuming that Z=[(i,j)],i,j=1,2,…,N is
a symmetric matrix, Y is a diagonal matrix, defined as: Y (i,i) is
the sum of the i row of Z, When i is not equal to j,Y (i,j)=0.
Matrix normalization: Z=Y-1/2AY-1/2 also a symmetric matrix,
The elements in can be defined as:

Z i, jð Þ = Z i, jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y i, ið ÞY j, jð Þp

Then the transition probability matrix M in the miRNA
similarity network can be expressed as:

M(i, j) =

sm(i,j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oism(i, j)ojsm(i, j)

q ifo
i
sm(i, j)ando

j
sm(i, j) ≠

     0 otherwise

8><
>:

Similarly, we can obtain the transition probability matrix D
and L in the disease similarity network and lncRNA similarity
network as follows:

D(i, j) =

sd(i,j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oisd(i, j)ojsd(i, j)

q ifo
i
sd(i, j)ando

j
sd(i, j) ≠ 0

     0 otherwise

8><
>:

L(i, j) =

sl(i,j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oisl(i, j)ojsl(i, j)

q ifo
i
sl(i, j)ando

j
sl(i, j) ≠ 0

     0 otherwise

8><
>:

TCRWMDA Algorithm Process
Specifically, TCRWMDA algorithm can be divided into two
parts: one is random walk on heterogeneous networks, and the
other is random walk between networks. Table 1 introduces the
process of TCRWMDA algorithm in predicting miRNA-disease
association, and Table 2 introduces the process of unbalanced
random walk between networks.

Random Walk on Three-Layer Heterogeneous Networks
Where MD represents the predicted correlation matrix between
miRNA and disease, MDt represents t-step random walk were
January 2020 | Volume 10 | Article 1316
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performed MD, A、 B、 C denotes matrix of prior knowledge.
TCRWMDA algorithm has six parameters: a, b, l, r, s. l, r. s
represents the number of steps random walk on miRNA-miRNA
network, disease-disease network and networks respectively. a
controls network walk or return to the proportion of prior
knowledge; The function of l is to provide a new priori
knowledge, there is a linearly combination of the new state
form by a random walk between networks and the known
initial state by l. That is, if the current particle is in the
miRNA network, then the particle has probability of a to
perform the l-step random walk in the miRNA network, to
perform the l-step random walk (1-a)×l perform the s-step
random walk into disease network, and has probability of (1-
)×(1-l) to return the start node. If the current particle is in the
disease network, then the particle has probability of a to perform
the r-step random walk in the disease network, has probability of
(1-a)×l perform the s-step random walk into miRNA network.

Random Walk Between Networks
ML represents the predicted association score between miRNA
and lncRNA, while LD represents the probability matrix of
disease generation on lncRNA. b notes the probability of
controlling the random walk on the lncRNA network or
Frontiers in Genetics | www.frontiersin.org 6
returning to prior knowledge during random walk among
networks. R represents the miRNA-disease association matrix
formed through Random Walk between networks.

MLt and LDt represents t-step random walks were performed
ML and LD, respectively. In equation (18), the association matrix
between miRNA and lncRNA is multiplied by the right
transition probability matrix L on the lncRNA network, which
represents a random walk on lncRNA network to update ML.
Similarly, the left multiplication probability transition matrix L
represents a random walk on lncRNA network to update LD,
finally, we can obtain association between miRNA and disease.
RESULTS AND ANALYSIS

Parameter Analysis
Receiver operating characteristic curve (ROC curve) takes true
positive rate (sensitivity) as the vertical coordinate and false
positive rate (1-specificity) as the horizontal coordinate. The area
under the ROC curve is the AUC value, which can be used as the
evaluation index to intuitively evaluate the classifier. The higher the
AUC value, the better the performance of the algorithm. In the
process of parameter selection, AUC value is selected as the index to
evaluate the influence of parameters. For an algorithm, if the
parameters are set with different values, it corresponds to different
models. For whichmodel to choose, the best way is to use the model
with the minimum generalization error. However, it is generally
impossible to directly obtain the generalization error of the model,
we select the model parameter when the AUC value is the largest.

TCRWMDA has six parameters, set step size of a, b and l is
0.1, with values ranging from 0 to 1. For l, r and s, set the step size
to 1 and the value range to 1–5. The known association between
495 miRNAs and 383 diseases verified by 5-fold cross validation.
First, fix some parameters, change the value of a parameter, and
then the influence of parameters on the model performance was
determined according to the change of AUC value. In the process
of parameter selection, the value of s was changed in the
experiment, and the AUC value did not change much. The
increase in the number of steps in the network could not
provide us with more information, and the information that
could be mined was limited. Moreover, the larger s was, the
higher the algorithm complexity, and the performance of the
model barely changed as s increased, so we set s = 1 in this paper,
which also indicates that the data volume in the lncRNA data set
is too small to provide more network structure information.

Change the values of l and s and fix other parameters. The
change result of AUC is shown in Figure 2. For parameters l and
r, the results are significantly better when l ≥ r than when l < r.
Fixed l, with the increase of r, the AUC value decreased
significantly, which indicated that excessive walking on the
disease network would lead to a certain false positive, and the
overall performance decreased. According to the results of
parameter analysis, we set l = 1 and r = 1.

Next, fix l = 1, r = 1, s = 1, Change the values of a, b, and l,
the experimental results are shown in Figure 3. a denotes restart
probability, when a = 0, only random walk between networks
TABLE 2 | The description of the BNetWalk algorithm.

Algorithm 2 BNetWalk (Random Walk between networks)

Input: Transition probability matrix L; Initial association matrix B and C;
parameter b,s

Output: Predicted miRNA-disease association matrix R
1: ML0 =B/sum(B), LD0 =C/sum(C)
2: for t=1 to s
3: R′=R
4: MLt=b ×MLt-1×L+(1-×b)×B
5: LDt=b ×L×LDt-1+(1-×b)×C
6: R=MLt×LDt

7: end for
7: return R
TABLE 1 | The description of the TCRWMDA algorithm.

Algorithm 1 TCRWMDA (Random Walk on three-layer heterogeneous
network)

Input: Transition probability matrix M, D, L; Initial association matrix A, B, C;
Parameter a, l, b, l, r, s.
Output: Predicted miRNA-disease association matrix MD
1: MD0 =A/sum(A)
2: for t=1 to max (l, r)
3: MD'=MD
4: if t≤l then

5: MDt
left = a�M�MDt−1 + (1 − a)� ½l� BNetWalk(B, C,L,b,S) + (1 − l)� A�

6: end if t ≤ r then

7: MDt
right = a�MDt−1 � D + (1 − a)� ½l� BNetWalk(B, C,L,b,S) + (1 − l)� A�

8:MDt = dt≤l �MDt
left + dt≤r �MDt

right

9: end for
10: return MD
E is identity matrix, if ≤x, dt≤x is 1, and 0 otherwise.
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played a role, ignoring the random walk between the miRNA
network itself and the heterogeneous network on the disease
network. Therefore, the results of the model were not ideal, but
the remaining values of AUC were 0.9205~0.9209, with no
significant fluctuation. When b = 0.1, the AUC value is the
maximum and the model performance is the best. When the
parameter b is larger, the probability of prior knowledge is
reduced. The known association information is gradually
ignored, and the results presented are reduced, which indicates
that the known association information plays an important role
in the algorithm itself and cannot be ignored. Parameter l has
little influence on the model, when l = 0.9, AUC is the largest.
From what has been discussed above, we select l = 1, r = 1, s = 1,
a = 0.1, b = 0.1, l = 0.9.
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Algorithm Performance Comparison
In this paper, we take the AUC (Area under Curve) value as the
evaluation index, all known miRNA-disease associations were
divided into five groups of the same size, four of which were used
as training set for model learning, then, the similarity calculation
method mentioned above was used to calculate miRNA and
disease similarity, we compare TCRWMDA with IMCMDA
(Chen et al., 2018), RWRMDA(Xing Chen et al., 2012),
KATZMDA (Qu et al., 2018), BRWH (Luo and Xiao, 2017) for
5-fold cross validation. The results of TCRWMDA and other
methods for 5-fold cross validation are shown in Figure 4. True
positive rate (sensitivity) is the percentage of a test sample ranked
above a given threshold. False positive rate (1-specificity) is the
percentage of samples below the threshold. In this paper, for the
specified threshold, the true positive rate is the percentage that
accurately predicts the miRNA associated with a known disease,
and the false positive rate is the percentage that predicts the
miRNA unrelated to the disease. When AUC = 1, the
performance of the model is the best. When AUC = 0.5, it
indicates that the classification method is completely ineffective
and has no classification value.

It can be seen from Figure 4, the area under the ROC curve of
TCRWMDA algorithm is the largest, that is, the prediction
performance of this algorithm is better than other methods.
The AUC values obtained by IMCMDA (Chen et al., 2018)
(Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018) (Chen
et al., 2018) (Chen et al., 2018) (Chen et al., 2018) (Chen et al.,
2018) (Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018)
(Chen et al., 2018), RWRMDA, KATZMDA, BRWH, and
TCRWMDA on 5-fold cross validation are respectively
0.8351、0.8676、0.9088、0.9106、0.9209. The AUC value of
the TCRWMDA algorithm was 1.3% higher than that of the
BRWH, which indicates add new related dataset and perform a
random walk on constructed multi-layer network and then is
effective. TCRWMDA is 10.3% better than IMCMDA, 6.1%
better than RWRMDA, and 1.1% better than KATZMDA.
FIGURE 2 | Effects of parameters l and r on the result of 5-fold cross
validation. (a=0.1, b=0.1, s=1, l=0.9). When the value of a, b, s, and l are
fixed, the AUC value is maximized when l and r are both equal to 1.
FIGURE 3 | Effects of parameters a, b and l on the result of 5-fold cross
validation. (l=1, r=1, s=1). When a=0, AUC value is the lowest. In this case,
only the random walk between the networks is at work. AUC is relatively
stable with the variation of parameters b and l.
FIGURE 4 | The AUC value of TCRWMDA and other methods for 5-fold
cross validation.
January 2020 | Volume 10 | Article 1316

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Yu et al. Heterogeneous Network and Unbalanced Random Walk
Based on Kernel-Based Soft-
Neighborhood Network Fusion
Similarity Model
Ma et al. considered the distance factor and the reconstruction
relationship between samples to establish the nuclear soft
neighborhood similarity model (Ma et al., 2018b), and combined
the nuclear soft neighborhood similarity matrix of miRNA (disease)
with the functional similarity (disease semantic similarity) of
miRNA using similarity network fusion (SNF) (Wang et al.,
2014), proposed kernel-based soft-neighborhood network fusion
similarity model, and obtained good results. The following analysis
based on kernel-based soft-neighborhood network fusion similarity
model. After parameter analysis, the final selection is l = 1, r = 1, s =
1, a = 0.2, b = 0.1, l = 0.9.

Figure 5 shows the results of TCRWMDA and LKSNF soft
neighborhood network of nuclear fusion based similarity model
on 5-fold cross validation. In Figure 5, the red solid line
represents the result of TCRWMDA algorithm for 5-fold cross
validation, the green dotted line represents the result of
TCRWMDA algorithm based on kernel-based soft-
neighborhood network fusion similarity model, and the black
dotted line represents the result of the LKSNF algorithm on 5-
fold cross-validation. Based on kernel-based soft-neighborhood
network fusion similarity model, the AUC value of the
TCRWMDA algorithm is improved by 0.99%. However, the
association data of lncRNA-miRNA and lncRNA-disease are
sparse, the number of lncRNAs that can be considered is also
small, resulting in a certain deviation in the prediction results,
the AUC value obtained by TCRWMDA algorithm is almost the
same as that obtained by LKSNF algorithm.

Case Study
Globally, breast cancer is the most common cancer in women,
accounting for 25% of all cancers in women. In 2012, there were
1.68 million cases of breast cancer and 520,000 deaths due to
Frontiers in Genetics | www.frontiersin.org 8
breast cancer. Mir-200c inhibits the growth and differentiation of
cancer cells, and strongly inhibits the ability of normal breast
stem cells to form mammary ducts and human breast cancer-
driven tumorigenesis in vivo (Shimono et al., 2009). In addition,
miRNA may be abnormally downregulated or upregulated in
colon cancer tissues. In 2003, the first study on miRNAs was
published in colon cancer (Michael et al., 2003), identifying mir-
143 and mir-145 as new misaligned miRNAs in colon cancer.

In order to further prove the predictive performance of
TCRWMDA in predicting miRNA-disease association, we used
TCRWMDA algorithm to carry out analysis of breast cancer and
colon cancer, as shown in Tables 3 and 4.

The predicted results were verified by dbDEMC database
(Yang et al., 2017) and HMDD (Li et al., 2013), for breast tumor
diseases, 44 of the first 50 predicted miRNAs were verified in
dbDEMC and 45 of the top 50 predicted colon tumor diseases
were verified by dbDEMC. In order to enhance the persuasion,
we also listed two other cases (lung neoplasms and lymphoma),
whose prediction results were verified as shown in the
Supplementary Tables 1 and 2.
CONCLUSION

With the development of bioinformatics, more and more
experiments and evidence show that miRNA is closely related
to the generation and development of human diseases, and the
discovery of miRNA that may be related to diseases has attracted
much attention. The experiment is time-consuming and costly,
the new and effective miRNA-disease association prediction
FIGURE 5 | The AUC value of TCRWMDA and LKSNF for 5-fold cross
validation based on kernel-based soft-neighborhood network fusion similarity
model.
TABLE 3 | The top 50 potential miRNAs predicted by TCRWMDA for breast
neoplasms and their associations confirmed by database (column 1: top 1–25;
Column 3: top 26–50).

miRNA Evidence miRNA Evidence

hsa-mir-106a dbDEMC hsa-mir-454 dbDEMC
hsa-mir-130a dbDEMC hsa-mir-421 dbDEMC
hsa-mir-15b dbDEMC hsa-mir-181d dbDEMC
hsa-mir-150 dbDEMC hsa-mir-216a dbDEMC
hsa-mir-192 dbDEMC hsa-mir-330 dbDEMC
hsa-mir-142 unconfirmed hsa-mir-451 dbDEMC
hsa-mir-130b dbDEMC hsa-mir-544a dbDEMC
hsa-mir-372 dbDEMC hsa-mir-181c dbDEMC
hsa-mir-196b dbDEMC hsa-mir-198 dbDEMC
hsa-mir-98 dbDEMC hsa-mir-376a dbDEMC
hsa-mir-92b dbDEMC hsa-mir-211 dbDEMC
hsa-mir-30e unconfirmed hsa-mir-363 dbDEMC
hsa-mir-32 dbDEMC hsa-mir-455 unconfirmed
hsa-mir-186 dbDEMC hsa-mir-490 unconfirmed
hsa-mir-99b dbDEMC hsa-mir-494 dbDEMC
hsa-mir-424 dbDEMC hsa-mir-381 dbDEMC
hsa-mir-212 dbDEMC hsa-mir-154 dbDEMC
hsa-mir-449a dbDEMC hsa-mir-216b dbDEMC
hsa-mir-449b dbDEMC hsa-mir-370 dbDEMC
hsa-mir-99a dbDEMC hsa-mir-520e dbDEMC
hsa-mir-491 unconfirmed hsa-mir-484 dbDEMC
hsa-mir-28 dbDEMC hsa-mir-217 dbDEMC
hsa-mir-151 HMDD hsa-mir-302e dbDEMC
hsa-mir-144 dbDEMC hsa-mir-590 unconfirmed
hsa-mir-95 dbDEMC hsa-mir-377 dbDEMC
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algorithm can effectively provide research directions and reduce
the cost and time of biological experiments.

In this paper, we propose a novel TCRWMDA algorithm, which
is different from the traditional prediction methods based on
heterogeneous network and incorporates new prior knowledge
(lncRNA information related to miRNA and disease) to effectively
make the best use of the information that we have. TCRWMDA is a
framework for integrating multiple sources of information, which
may yield better results when the data set is large. TCRWMDA is
applied to miRNA-disease association prediction, which
implements unbalanced random walk on three-layer
heterogeneous networks and integrate the related similarity
information to predict disease-related miRNAs. TCRWMDA is
efficient because it makes use of multi-source information from
reliable data sources. Considering the association between lncRNA
and disease and the association between miRNA and disease,
TCRWMDA mines the association information on between data
and topological information in the network to improve the
Frontiers in Genetics | www.frontiersin.org 9
prediction accuracy. Experimental results and case studies prove
that the TCRWMDA algorithm is an effective tool for predicting the
potential miRNA-disease association. If more data sets are added,
the increase and optimization of parameters is a problem worth
thinking about. In the future, we hope to conduct more stable data
integration and seek methods for optimizing parameter selection.
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