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Abstract

Initiation of treatment during the pre-symptomatic phase of Yersinia pestis (Y. pestis) infec-

tion is particularly critical. The rapid proliferation of Y. pestis typically couples with the mani-

festation of common flu-like early symptoms that often misguides the medical intervention.

Our study used African green monkeys (AGM) that did not exhibit clear clinical symptoms

for nearly two days after intranasal challenge with Y. pestis and succumbed within a day

after showing the first signs of clinical symptoms. The lung, and mediastinal and submandib-

ular lymph nodes (LN) accumulated significant Y. pestis colonization immediately after the

intranasal challenge. Hence, organ-specific molecular investigations are deemed to be the

key to elucidating mechanisms of the initial host response. Our previous study focused on

the whole blood of AGM, and we found early perturbations in the ubiquitin-microtubule-

mediated host defense. Altered expression of the genes present in ubiquitin and microtubule

networks indicated an early suppression of these networks in the submandibular lymph

nodes. In concert, the upstream toll-like receptor signaling and downstream NFκB signaling

were inhibited at the multi-omics level. The inflammatory response was suppressed in the

lungs, submandibular lymph nodes and mediastinal lymph nodes. We posited a causal

chain of molecular mechanisms that indicated Y. pestis was probably able to impair host-

mediated proteolysis activities and evade autophagosome capture by dysregulating both

ubiquitin and microtubule networks in submandibular lymph nodes. Targeting these net-

works in a submandibular LN-specific and time-resolved fashion could be essential for

development of the next generation therapeutics for pneumonic plague.

Introduction

Time-sensitive diagnosis is the foremost challenge in the management of infection with Yersi-
nia pestis (Y. pestis) [1, 2], the causative agent of pneumonic plague [3]. Rapid proliferation of
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Y. pestis during the pre-symptomatic phase allows very little time for therapeutic intervention.

Therefore, identification of early markers of disease pathogenesis and of novel targets to

inhibit the invasion is the fundamental objective of next generation therapeutic research.

Previously, we reported a longitudinal study in which African green monkeys (AGMs)

were intranasally challenged with Y. pestis strain CO92 [4]. Our in vivo model was built on a

past communication [5] that established AGM as the reliable model for plague experiments.

We collected AGMs’ organs and blood at six different time-points post-infection (p.i.). The

AGMs succumbed to death within 78 h p.i.; no obvious symptoms of disease including fever

were detected until 48 h p.i., leaving essentially little more than one day to treat a moribund

animal. Bacterial colonization in the blood was confirmed above the threshold level at nearly

32 h p.i., but transcriptomic investigation of blood samples indicated much earlier signs of

pathogenesis [4], which compelled the investigation of the molecular landscape in greater

detail.

Blood transcriptomic assays suggested an early involvement of ubiquitination and microtu-
bule activities in response to Y. pestis [4]. The ubiquitin network controls a broad range of

immunological activities including pathogen detection, antigen presentation, and proteolysis

via proteasome-, phagolysosome- and autophagosome-mediated degradation [6]. In addition,

ubiquitination of NFκB networks under stressed conditions essentially regulates a range of

genes encoding cytokines and pro-inflammatory molecules [7]. Evidently the ubiquitination-

deubiquitination process is a key battleground of host-pathogen interactions, as the pathogens

typically attempt to manipulate the ubiquitination-deubiquitination mechanism in their favor

[8, 9]. In light of past reports suggesting the potential effects of Y. pestis surface proteins on

many genes enriching the NFκB network [10–12], the present study offered a unique opportu-

nity to interrogate the longitudinal regulation of this network and its upstream and down-

stream regulators. The role of microtubules in Y. pestis uptake was suggested earlier [13, 14].

Microtubules further the sequestration of those proteins that escape the impaired proteolysis

[15]. Hence, the manipulation of the microtubule architecture creates a replication-permissive

niche that promotes the intracellular movement of the pathogen [16]. Clearly, studying these

ubiquitin-microtubule mechanisms together can potentially enrich our understanding about

Y. pestis pathogenesis.

Increasing numbers of reports have demonstrated how a gene cluster is preferentially per-

turbed in one organ type over other organ types under similar stress [17]. Therefore, we

decided that an investigation of organ-specific molecular events was needed in order to

interpret the cross-talk among various organs [18] in a biologically meaningful way. Post infec-

tion, the lungs, submandibular lymph nodes (LN) and mediastinal LN, were the major organs

that showed the first signs of bacterial accumulation [4], sometimes a day before the coloniza-

tion could be detected in blood. Therefore, these organs are likely to be the primary battle-

grounds for host-pathogen interaction at the onset of Y. pestis challenge. A number of studies

using various animal models supported the critical role of lungs and adjacent lymph nodes in

the response to Yersinia infection [19–22]. Longitudinal transcriptomic analyses of these

organs were primarily focused on the ubiquitin-microtubule networks and neighboring

pathways.

Our organ-specific investigation showed the submandibular LN to be the most active organ

during the early episode of pathogenesis. Multi-omics assays predicted a comprehensive inhi-

bition of ubiquitin and microtubule networks, which was synchronized with the early onset of

apoptosis and immunosuppression. Thereby a niche was potentially created to facilitate the

rapid proliferation of Y. pestis. These submandibular LN-specific networks could be viable tar-

gets for next generation therapeutics.

Roles of submandibular LN in host-Y. pestis interaction
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Materials and methods

Aerosolized Y. pestis exposure to non-human primate (NHP) population

The experimental protocol is described elsewhere [4]. All animal experiments were approved by

the Institutional Animal Care and Use Committee (IACUC) at the Walter Reed Army Institute of

Research (WRAIR), Silver Spring, MD, and were performed in a facility accredited by the Associ-

ation for the Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

The adult male African green monkey (Chlorocebus aethiops) model used was identified

previously as reliable for the study of the pathogenesis of plague [5]. Briefly, the AGMs

obtained from the primate colony of WRAIR were 4.8–7.0 kg body weight and determined to

be negative for tuberculosis (TB), simian immunodeficiency virus (SIV) and simian retrovirus

(SRV). The typical Animal Biosafety Level 3 (ABSL-3) housing conditions and pathogen expo-

sure protocol were reported earlier [4].

A target dose of 100 ± 50 LD50 aerosolized Y. pestis strain CO92 was given to animals that

had fasted for the previous 6 hours and were anesthetized using 4 mg/kg Telazol (Fort Dodge

Animal Health, Fort Dodge, IA). Our previous report described the methods involved in bac-

terial inoculation and aerosol delivery [4]. Individual AGMs received Y. pestis within the range

from 0.33 x 106 to 3.55 x 106 CFU via the aerosol particles with an estimated size (mean mass

aerosol diameter or MMAD ± geometric standard deviation) of 1.03 μm ± 1.46.

A group of three animals was anesthetized but not exposed to Y. pestis. This control cohort

was euthanized 2 h after exposure to sham aerosol. At the 78 h post-exposure time point, we

euthanized one Y. pestis-challenged moribund animal, which was randomly chosen to test the

lethality of the given pathogenic load. Between the Y. pestis exposure and 78 h post-exposure,

sub-cohorts (N = 3) were sequentially euthanized at 6 h, 9 h, 12 h, 18 h, 24 h, 32 h and 42 h p.i.

[4]. The present study is focused on 9 h, 12 h, 24 h, 32 h and 42 h p.i. results. A number of

organs, including submandibular LN, mediastinal LN and lungs, were collected from every

animal including the controls (Fig 1).

The protocol associated with enumeration of bacterial colonies of blood was discussed ear-

lier [4]. The tissue samples were aseptically collected and portions approximately 1 gm in

weight were removed. These portions were placed into properly-labeled, disposable sterile

sample bags, heat-sealed, weighed, and placed on ice. These samples were dissociated using a

handheld tissue homogenizer (Tissue Tearor, Inc.) for 120 seconds, serially diluted in sterile

saline, and cultured for quantitative cultures. Congo red agar plates were incubated at 28˚C for

72 h and the CFUs were enumerated based on the geometric mean of CFU/mg of the dilution

factor and colony counts (Fig 2, S1 Table).

Biosample extraction from the organs of interest

Whole organs were submerged in vendor-recommended volumes of TRIzoL Reagent (Life

Technologies, Carlsbad, CA). To ensure the TRIzol-emerged samples were non-infectious,

these samples were tested for Y. pestis growth on BHI plates incubated at 28˚C for 21 days.

Upon observing no growth on the plates, the samples were transferred to BSL2 labs. The

organs were homogenized using a handheld sonicator, while keeping the whole system sub-

merged in ice to maintain a low temperature.

RNA was isolated following the protocol outlined for TRIzoL Reagent (Life Technologies,

CA). Subsequently, RNA purification was carried out using the Qiagen RNeasy MinElute Cleanup

Kit (QIAGEN, Inc., Germantown, MD). RNA quality and quantity were determined using the

NanoDrop 2000 spectrometer (Thermo Fisher, Wilmington, DE) and the Agilent 2100 Bioanaly-

zer (Agilent Technologies, Inc., Santa Clara, CA). Purified RNA was stored at -80˚C.

Roles of submandibular LN in host-Y. pestis interaction
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Protein was isolated from the phenol-ethanol supernatant saved during the RNA extraction

protocol [23]. Briefly, 100% EtOH was added to precipitate the protein. Protein precipitate was

washed with 0.3 M guanidine hydrochloride in 95% EtOH. The protein precipitate was dis-

solved in 1% SDS, and isolation and purification were completed using the Qiagen protocol.

cDNA microarray hybridization and post-processing

Agilent Technologies (Agilent Technologies, Inc., CA) was the source of the Rhesus Monkey

Oligo Microarray slides containing ~40,000 probes. BioChain’s monkey universal reference

RNA (BioChain Institute, Inc., Newark, CA) was labeled with Cy3 dye, and transcribed

mRNA (from either control or Y. pestis-exposed samples) was labeled with Cy5 dye using Agi-

lent’s Quick Amp Labeling Kit (Agilent Technologies, Inc., CA). The cDNA array was co-

hybridized using the Cy3- and Cy5-labeled RNAs, the scanned images were visualized and

normalized using Feature Extraction (Agilent Technologies, Inc., CA), and the ensuing data

were analyzed using GeneSpring software (Agilent Technologies, Inc., CA).

The results are available online (http://www.ncbi.nlm.nih.gov/geo/), GEO ID: GSE101653.

Protein ELISA

Detection and quantitation of total proteins extracted from all three organs were determined

using the Thermo Scientific (Rockford, IL) Pierce BCA Protein Microplate Assay Kit. The

microplate reader was set at 562 nm absorbance detection wavelength to determine the quanti-

ties of proteins present in the tissue samples.

MyBioSource (San Diego, CA) monkey ubiquitin, and microtubule-associated protein Tau

(MAP Tau) and NFκB ELISA kits were used. The vendor-recommended protocol and analytic

Fig 1. Schematic of experimental design and corresponding organ collection sequence. The timeline is not in scale. N: sample size; LN: Lymph node.

https://doi.org/10.1371/journal.pone.0209592.g001
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procedure were used to compare the result with a standard curve to determine the quantitative

measure of the expressed proteins.

Transcriptomic assay validation

The detail of the QuantiGene-Plex protocol was described elsewhere [24]. From Thermo

Fisher Scientific (Frederick, MD), we purchased the customized probes of the following NHP

genes: ADNP, CYLD and TRIM9 in lungs, and USP12, USP10, SKP2 and PSMA4 for

Fig 2. Hierarchical clustering of the genes linked to ubiquitin and microtubules networks. Genes clustered here

showed alteration in at least one of the two early time points, 9 h and 12 h p.i. Ubiquitin-associated genes located in

submandibular LN are shown in the left hierarchical tree. These genes linked to ubiquitination weren’t expressed in

the lungs or mediastinal LN. All of these genes are listed in Table 3, which is in the same order as that in the figure.

From the pool of genes linked to microtubule network, only those were mined that ranked in the primary and

secondary tiers computed by GIH algorithm. Genes showing early (9 h or 12 h p.i.) alteration in expression are

clustered in the right column. All of these genes are listed in Table 4 is in the same order as that in the figure. A scale

depicting the range of color corresponding to the gene expression levels is shown at right.

https://doi.org/10.1371/journal.pone.0209592.g002
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submandibular LN. Beads linked to the probes were hybridized with total RNA selected for

individual time points of corresponding tissue types. The hybridization plate was incubated

for 22 hours at 54˚C, while shaking at 600 RPM in a VorTemp 56 shaking incubator. Post-

hybridization, the samples were captured in magnetic separation plates, washed, signal-ampli-

fied and scanned using the BioRad BioPlex 100 instrument. The BioPlex instrument settings

were sample size 100 ul, timeout 60 seconds, and Bead Events/Bead region 100.

Fluorescent readings from blank wells were subtracted from fluorescent values for each

mRNA of interest. These values were then normalized against the geometric mean expression

of two control genes for each sample: GAPDH and β-Actin (ACTB). The array data were com-

pared with QuantiGene Plex data in Table 1.

In addition, the longitudinal expression dynamics of a number of genes in blood were vali-

dated using the qPCR assay we published earlier [4]. The expression of genes linked to the

functions relevant to this manuscript was reported, including INFγ, XIAP, ELP2, UBE2D1,

ADAMTS12, NCR1, SOCS1, NEDD4, ALDH1L1 and IL6.

Statistical and functional analysis

For all transcriptional and protein analyses, the untreated controls were used as the baseline

(or threshold). Transcripts altered at individual time points (moderated t-test analysis values

of p< 0.01 and fold change>|2|) were mined from each organ type. Subsequent network anal-

ysis using the significantly altered genes was conducted using the Ingenuity Pathways Analysis

platform (IPA, QIAGEN, Inc., CA). Networks meeting the hypergeometric threshold (p<
0.05) were considered for subsequent analysis. Functional analysis identified those genes that

were associated with various networks of interest. The Molecule Activity Predictor (MAP)

toolkit of IPA was used to predict the temporal regulation patterns of networks of interest. The

MAP algorithm suggests the state of activation or inhibition of the network of interest by con-

sidering the observed expression changes of the molecules associated with this network.

Since a large gene set was identified linked to the microtubule network, it became essential

to sort the genes based on their involvement in this biological process. As a result, we were

able down-select to obtain those genes which were primarily involved with Y. pestis-mediated

manipulation of the microtubule network. We used the Gene Interaction Hierarchy (GIH)

algorithm [25] to sort the genes based on their involvement in the process by which Y. pestis
manipulates microtubule networks. The genes were sorted based on the number of interac-

tions they made with their neighbors within the microtubule networks domain. Candidates

Table 1. The list of genes assayed for validation using QuantiGene Plex platform. The high throughput array data and BioPlex/qPCR data are presented in a log2 (fold

change).Those instances, where the regulations measured by array and qPCR results are in opposite directions were in italics. S6 Fig depicts the bar plots of qPCR results.

Time Course! 9h 12h 24h 32h 42h

Gene

Name

Array qPCR Array qPCR Array qPCR Array qPCR Array qPCR Gene Functions

Lungs ADNP -2.50 -6.20 — — -2.30 -6.30 -3.00 -0.95 — — Provides neuroprotection

CYLD -1.61 -0.96 — — -1.61 -1.80 -2.01 -1.06 — — Checkpoint of necrosis [45]

TRIM9 1.80 1.30 -1.91 -1.20 1.61 0.83 — — — — Linked to proteasomal degradation

Sub-

mandibular

LN

USP12 -2.02 -0.27 -2.6 0.02 — — -2.97 -0.73 -1.90 -1.31 Regulator of T cell homeostasis and cell cycle

progression [46, 47]

USP10 -2.26 -0.25 -2.6 -0.60 -2.11 0.82 -2.43 -0.93 -2.04 -2.47 Regulator of DNA damage [48]

SKP2 -2.28 -0.55 -2.42 -0.11 -2.13 1.01 -2.87 -1.17 -1.91 -2.95 Provides a scaffold named SCF for ubiquitin-

proteasome activity, immune response, apoptosis and

cell signaling [49, 50]

PSMA4 -2.13 -0.90 -2.2 -0.40 -2.47 -0.93 -2.81 -0.44 -2.23 -3.30 Involved with proteasome activity

https://doi.org/10.1371/journal.pone.0209592.t001
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ranked within the top 90 percentile were placed into the primary tier, and candidates ranked

between 75 and 90 percentile were placed into the secondary tier. The remaining genes that

made at least one interaction were pooled within the peripheral group. Some genes did not

interact with their neighbors, and they were clustered as the orphan group. Hierarchical clus-

tering of each subgroup was carried out using a Euclidian algorithm.

Protein expression was calculated for every time point using the untreated control samples

as the baseline. Fold change cutoff was set at ±1.5. GraphPad Prism was used for visualization

and calculation of the statistical significance using Welch’s t-test (# p<0.1; � p< 0.05; ��

p<0.01).

Results

AGMs were exposed to aerosolized Y. pestis and sequentially euthanized at 6 h, 9 h, 12 h, 18 h,

24 h, 32 h and 42 h p.i. Three untreated animals were used as the baseline cohort. Two animals

marked for lethality testing died at 72 h-78 h p.i. Post euthanasia, we extracted 13 tissues that

included blood, lungs, submandibular LN and mediastinal LN from individual NHPs. [4].

Early Y. pestis colonization detected in lungs, submandibular LN and

mediastinal LN

S1 Table documented the number of Y. pestis colonization after the pathogenic exposure. Our

previous publication presented the enumeration of bacterial colonies of all the tissue types

beyond blood, lungs, submandibular LN and mediastinal LN; in addition, we justified the

selection of the threshold [log10(1.5 CFU/mg)] and reasons for reporting the sub-threshold

number [4].

At 9 h p.i., two animals out of three showed bacterial colonization in the submandibular LN

with an average load ten times higher than the threshold. Subsequent time points showed

some loss of bacterial load in submandibular LN. A very consistent above-threshold bacterial

colonization was observed in the lungs. In mediastinal LN, Y. pestis colonization that met the

threshold was detected at relatively late time point (between 12–24 h p.i). The number of

AGMs detected with positive infection in mediastinal LN were found to increase at subsequent

time points. As reported earlier, blood showed further delayed detection, with Y. pestis coloni-

zation first observed to meet the threshold value at around 32 h p.i.

Global transcriptional analysis of the organs of interest

Lungs, submandibular LN and mediastinal LN were selected for protein and transcriptomic

analyses. Transcriptional profiles of blood samples were presented earlier, and based on the

published results, we analyzed two early (9 h and 12 h), one middle (24 h) and two late time

points (32 h and 42 h). In the subsequent text, we refer to 9 h and 12 h p.i. time points together

as the early phase of infection.

In principal component analyses (PCA), the unexposed animals showed a clear separation

from the Y. pestis-exposed animals in these three different organs (S1 Fig). The bar graphs of

the number of differentially expressed gene transcripts at each time point (S2 Fig do not dem-

onstrate a temporal trend, in contrast to the blood transcriptional dynamics [4].

The cDNA microarray analysis of submandibular LN found that the expression of 1233,

1120, 454, 1653 and 1225 genes was statistically significantly altered at 9 h, 12 h, 24 h, 32 h and

42 h post-exposure, respectively (S2A Fig). At the same significance level, the expression of

284, 346, 186, 92, and 379 genes was altered in mediastinal LN at 9 h, 12 h, 24 h, 32 h and 42 h

post-exposure, respectively (S2B Fig). At 9 h, 12 h, 24 h, 32 h and 42 h post-exposure, the

expression of 1243, 502, 1201, 855, and 349 genes, respectively, was altered in lungs (S2C Fig).

Roles of submandibular LN in host-Y. pestis interaction
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Inhibition of ubiquitin indicated in submandibular LN

Functional analysis of the gene expression data implied that the regulation of the ubiquitin net-

work was significantly altered in submandibular LN (Table 2). S2 Table lists the gene profile

enriched for the ubiquitin network. Overall, we found 42 ubiquitination-associated genes with

altered expression in the submandibular LN, and the majority (62%) of encoded proteins local-

ized to the cytoplasm. S3 Fig depicts the entire ubiquitin network enriched by the differentially

regulated genes; the genes were further segregated based on the locations of the encoded pro-

teins. There were 29 genes linked to the ubiquitin network that showed significant changes in

regulation during the early time points (Table 3). Since the objective of the present study is to

understand the early pathogenesis, we depicted the hierarchical transcriptomic regulation of

two early time points (Fig 3).

The MAP algorithm (Table 2) predicted that ubiquitination in submandibular LN was

inhibited at 9 h p.i. and remained mostly inhibited across the time points. USP10 and SKP2

remained suppressed across all time points. B2M, ODF1, HSPB6, DNAJC16, DNAJC5B,

HSPA12B, SMURF2, PSMB1, PSMB6, CUL1, ZBTB12 and CDC34 showed early up-regula-

tion, whereas HSPA13, HSP90AA1, USP1, USP3, USP8, USP10, USP12, USP44, BIRC2,

Table 2. Predicted levels of activation of different biological functions. Upward arrows and downward arrows rep-

resent the activation and inhibition, respectively. The ‘x’ represents no change.

Submandibular LN

9h 12h 24h 32h 42h

Bacterial infection " X X " "

Ubiquitin signal # X X # #

Microtubule dynamics # # # # #

Organization of microtubule # # # # #

IκB kinase/NFκB cascade # X # # #

TLR signaling # X X # #

Apoptosis " " X " "

Inflammatory response # # # # #

Lungs

9h 12h 24h 32h 42h

Bacterial infection X X X X X

Ubiquitin signal X X X X X

Microtubule dynamics X X X X X

Organization of microtubule X X X X X

IκB kinase/NFκB cascade X X X # X

TLR signaling X X X X X

Apoptosis " " " X "

Inflammatory response # # # # "

Mediastinal LN

9h 12h 24h 32h 42h

Bacterial infection X X X " X

Ubiquitin signal X X X X X

Microtubule dynamics X # # # #

Organization of microtubule X # # # #

IκB kinase/NFκB cascade X X X # X

TLR signaling X X X # X

Apoptosis " " X " "

Inflammatory response # # # # #

https://doi.org/10.1371/journal.pone.0209592.t002
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UCHL5, PSMD10, PSMD14, PSMA4, PSMA1, DNAJC10 and MDM2 showed early down-

regulation.

Cross-organ gene expression profiles predicted early inhibition of

microtubule activities

All three major organs at their Y. pestis ports of entry showed signs of bacterial colonization

and concurrent transcriptional changes, suggesting a shift in microtubule activities (Table 2).

S3 Table lists the corresponding genomic profiles across these three organs, for which 278

genes were significantly altered and associated with 821 interactions with their neighbors. GIH

algorithm [25] -based gene clustering was carried out to down-select those genes which were

most critically involved with Y. pestis-mediated manipulation of microtubule functions. The

GIH algorithm found 20 genes ranked in the primary tier that were involved in more than

37% of total interactions. There were 44 genes ranked in a secondary tier. One hundred

Table 3. Genes of interest from the ubiquitin network. Genes showing early response for at least two early time points (9 h and 12 h p.i) are listed. Only the significant

values (Log2 values) are reported.

Gene

name

Submandibular LN Relevant to Y. pestis pathogenesis

9 h 12 h

ANAPC10 -1.8 — Ubiquitin ligase found susceptible to pathogen [51]

PSMD10 -1.8 — Involved with proteasome activity

USP8 -1.8 — Immunomodulator of T cell development [52] and regulator of lysosomal enzymatic activities [53]

HSP90AA1 -1.9 — Encoded proteins, namely, Hsp70 and Hsp90, are markers of hyperthermia and collectively regulate NFκB-mediated

inflammatory responses [54, 55]

PSMD14 -2.0 — Involved with proteasome activity

BIRC2 -2.5 — Alters the host response to pathogen [56]

UBE2D2 -2.5 — An integral part of proteasome system

USP12 -2.0 -2.6 Regulator of T cell homeostasis and cell cycle progression [46, 47]

PSMA4 -2.1 -2.2 Involved with proteasome activity

USP10 -2.3 -2.6 Regulator of DNA damage [48]

SKP2 -2.3 -2.4 Provides a scaffold named SCF for ubiquitin-proteasome activity, immune response, apoptosis and cell signaling [49, 50]

DNAJC10 -2.3 -2.9 Involved in recognizing and degrading misfolded proteins [56]

USP3 -1.8 -2.0 Suppression diminishes the reserve of the hematopoietic stem cell (HSC) and curtails the life span [57]

UCHL5 -2.6 -3.3 Suppression triggers apoptosis and proteotoxicity [58]

USP44 -2.8 -3.3 Regulator of DNA damage [59]

HSPA13 -2.9 -3.8 Involved in removal of denatured or incorrectly folded proteins [60]

USP1 -3.2 -3.7 Suppression causes the arrest of cellular replication and dysregulation of genome stability via controlling cellular senescence

[61]

PSMA1 — -3.1 Involved with proteasome activity

SMURF2 2.1 2.5 Promoter of proteasome-dependent protein degradation [62, 63]

ZBTB12 1.8 2.0 Possibly acts as transcriptional regulation

CDC34 — 2.0 Triggers processive ubiquitination via interlinking with SCF [64]

PSMB6 — 2.9 Early marker of sepsis onset [65]

DNAJC16 — 2.9 Regulator of apoptosis as encoding HSP40 [66]

HSPB6 — 3.1 Regulator of apoptosis and maintains protein homeostasis [67] [68]

B2M — 3.1 Negative regulator of immune response [69, 70]

PSMB1 — 3.8 Early marker of sepsis onset [65]

HSPA12B 2.3 — Regulator of apoptosis and neuroinflammation as a distinct family member of HSP40 [71, 72]

DNAJC5B — 5.6 Regulator of apoptosis as encoding HSP40 [66]

ODF1 — 5.1 A candidate E3 ubiquitin ligase

https://doi.org/10.1371/journal.pone.0209592.t003
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twenty-nine peripheral genes were involved in at least one interaction with their neighbors. In

addition, there were 87 genes with no interactions, defined as orphan genes (S3 Table). S4A

and S4B Fig show the distributions of the primary and secondary ranked genes across the

three organs, respectively. More than 50% of these genes were located in submandibular LN.

MAP analysis showed early inhibition of the microtubule network in submandibular and

mediastinal LN (Table 2).

Table 4 lists all the genes related to microtubule functions that ranked in the primary and

secondary tiers of GIH and showed early significant alteration in at least one organ of interest.

Changes in gene expression of the hierarchical clustered genes listed in Table 4 are shown in

Fig 3. Furthermore, we carried out network analysis seeding of only those genes which are doc-

umented in Table 4, and the list of networks is shown in S5 Fig.

Apoptosis onset and suppression of inflammatory response observed

across the organs

S4 Table lists organ-specific genes associated with apoptosis and inflammatory response. The

MAP algorithm was used with the IPA platform to compute the regulation of these networks

Fig 3. Time and tissue–specific abundance of candidate proteins. (A) Ubiquitin abundance in submandibular LN,

Mediastinal LN and Lungs. (B) Microtubule associated protein (MAP) abundance in submandibular LN, Mediastinal

LN and Lungs. (C) NFκB abundance in submandibular LN, Mediastinal LN and Lungs. The dotted line parallel to x-

axis depicts the cut-off at fold change ±1.5. GraphPad Prism was used for visualization and calculation of the statistical

significance using Welch’s t-test (# p<0.1; � p< 0.05; �� p<0.01). LN: Lymph node.

https://doi.org/10.1371/journal.pone.0209592.g003
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across time points in the three different organs. The trends are shown in Table 2. Interestingly,

an early onset of apoptosis and early suppression of inflammatory response were predicted in

all three organs. There were 473 apoptotic genes altered in the submandibular LN across all

the time points. Among these genes, 204 (42 up- and 162 down-regulated) and 184 (108 up-

Table 4. Genes of interest from the microtubule network. Listed genes are from the pool ranked in the top tier of the Gene Interaction Hierarchy (GIH). Genes showing

early response for at least two early time points (9 h and 12 h p.i.) are listed. Only the significant values (Log2 values) are reported.

Gene

name

Submandibular

LN

Mediastinal LN Lungs Relevance to present objective

9 h 12 h 12 h 9 h

RANBP2 -2.7 -3.3 -0.5 — Linked to phosphorylation of histone, an epigenetic marker of cell death [73]

RACGAP1 -3.8 -3.4 -0.5 — Associated with microtubule binding

CEP170 -3.2 -3.4 — — Showed susceptibility to infection facilitating microtubule rearrangements [74]

MAD2L1 -5.0 -4.5 -0.8 — Critically associated with mitosis

HMGB1 -2.1 — — 2.1 Modulates phagocytosis, inflammation and cell migration [75]

TPM3 -2.6 — — 2.1 Linked to apoptosis [76]

CYLD -2.4 — — -1.6 Checkpoint of necrosis [45]

RAN -2.8 — -0.6 -2.2 Protein and RNA translocator

SMARCE1 -1.9 — — — Associated with proteostasis and ubiquitin-proteasome [77]

HSP90AA1 -1.9 — — — Promotes maturation, structural alteration and regulation of target proteins [78]

EEF1A1 -1.9 — — — Potentially inhibits viral growth and associated apoptosis [79]

MYO6 -2.0 — — — Contributes to phagocytosis along with microtubules [80]

TLR4 -2.0 — — — Controls energy homeostasis during stress [81]

OFD1 -2.1 — — — Controls centriole, a principal microtubule organizing centers [82]

MAP2K4 -2.1 — — — Directly associated with toll like receptor-mediated pattern recognition [83]

TOP2B -2.3 — — — Linked to DNA repair [84]

SUMO1 -2.3 — — — Undertakes many ubiquitin-linked functions including proteolysis [85]

MAP3K1 -2.5 — — — Selective activator of JNK-network-mediated apoptosis [86]

PLCG2 -2.5 — — — Linked to immunodeficiency [87]

MAP3K7 -2.6 — — — Recruits JNK, P38, AND NFκB under stress [86]

KIF2C -2.7 — — — Linked to microtubule assembly [88]

NEK2 -2.8 — — — Controls cell cycle propagation, cell survival and apoptosis [89]

PRC1 -2.9 — — — Controls microtubule architecture [90]

CDK1 -4.6 — -0.8 — Controls microtubule dynamics via regulating cell cycle transition and phosphorylation [91]

WEE1 -3.3 — — — Controls immunosurveillance [92]

ITGA4 -4.2 — — — Integral part of T-cell and B-cell based immune mechanism [93]

TMEM17 — — -0.4 — Regulates functions at ciliary transition zone [94]

UBE3A — — -0.5 — Associated with ubiquitin-proteasome pathway [95]

CHEK1 — — — 2.0 Activates DNA repair [96]

MAP1B — — — 1.7 Involved in microtubule assembly and dynamics [97]

PARK2 — — — -1.5 Presents structural fidelity to microtubules [98]

ITGB1 — — — -1.7 Supports microtubule stability [99]

DBN1 — — — -1.7 Crosslink actin and microtubule stability [100]

PLAU — — — -1.8 Maintain immune homeostasis [101]

TNF — — — -1.9 Encodes proinflammatory cytokine, which is critically linked to NFκB network

PTPRF — — — -1.9 Associated with cell adhesion [102]

IGF1R — — — -1.9 Critically linked to apoptosis [103]

RAB2A — — — -2.1 Linked to phagocytosis and apoptosis [104]

PSEN1 — — — -2.2 Integral part for proper protein degradation through the autophagosome-lysosome system [105]

CAV1 — — — -3.8 Inhibits the depolymerization of microtubule [106]

https://doi.org/10.1371/journal.pone.0209592.t004
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and 76 down-regulated) were regulated at 9 h and 12 h p.i., respectively. Similarly, 160 inflam-

matory responding genes were altered in submandibular LN across all of the time points.

Among them, 81 (12 up- and 69 down-regulated) and 69 (19 up- and 50 down-regulated)

genes were regulated at 9 h and 12 h p.i., respectively.

We also investigated the trend of the toll-like receptor (TLR) signaling networks across the

time course (S4 Table). The most prominent responses were in the submandibular LN that

included 14 genes linked to the TLR signaling networks. Among them, 9 (4 up- and 5 down-

regulated) genes were regulated at 9 h p.i.

Ubiquitin, MAP Tau and NFκB protein loads were reduced during the

early phase of infection

Fig 4 depicts the abundance of the (Fig 4A) ubiquitin, (Fig 4B) MAP Tau and (Fig 4C) NFκB

proteins in the three organs. Ubiquitin abundance was mostly suppressed in the submandibu-

lar and mediastinal LNs; the suppressed loads of ubiquitin met the threshold of detection at

the early phase of infection. In contrast, the abundance of ubiquitin consistently increased in

the lungs across the time range.

Fig 4. A pictorial representation of the cluster of networks that became susceptible to Y. pestis at 9 h p.i. The box adjacent to the gene/function

represents the corresponding predicted level of regulations in submandibular LN, lungs and mediastinal LN, respectively at 9 h p.i. The predicted

regulations of ubiquitin, microtubules and NFκB were confirmed by investigating the time and tissue specific abundance of candidate proteins. The

green upward arrow and red downward arrow represent the activation and inhibition, respectively. The ‘x’ stands for no change.

https://doi.org/10.1371/journal.pone.0209592.g004
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MAP Tau protein abundance in the submandibular LN never met the threshold level.

Decreased MAP Tau expression in the mediastinal LN crossed the threshold of detection only

at the early time points. In the lungs, MAP Tau protein abundance became increasingly sup-

pressed with time, crossing the detection threshold at 32 h p.i.

The submandibular LN had a low abundance of NFκB protein. The level of reduction at 9 h

p.i. was nearly significant. Likewise, the load of NFκB protein remained at the sub-threshold

level in mediastinal LN. In the lungs, the load of NFκB protein remained less than baseline

level during the early phase of infection (from 9 h to 24 h p.i).

Discussion

A recent assessment of the challenges faced by the plague vaccine development program pointed

out the scarcity of NHP data in the field of understanding plague pathogenesis [26]. Mizel et al.,

explored a multi-organ study using a NHP model where the assays were limited to an antigen-spe-

cific humoral immune response [27]. To our knowledge, our previous study [4] was the first to

interrogate the global transcriptomic profile of NHP blood to understand the early pathogenesis

of pneumonic plague. While the majority of the published literature used rodents to understand

the temporal progression of Y. pestis [28–30], we deemed it a logical step to investigate NHPs

since they are a species that is phylogenetically and physiologically near to humans. However, it is

important to note that the study of Yersinia pathogenesis using rodent models has particular

value, since these species are the natural hosts of this pathogen. Furthermore, the present study

derived incentive for its focus from many rodent studies that suggested the critical roles of lungs

and adjacent lymph nodes in the host response to Yersinia [31, 32], including a recent study that

reported the particular affinity of Y. pestis in colonizing lymph systems post-subcutaneous infec-

tion, as detected using a whole body bioluminescent tracing protocol [33].

Like humans, AGMs are good at hiding their physical discomforts until very late [4, 5]. No

striking clinical symptoms were noticed until one day prior to their deaths. The cornerstone of

our findings was that many immunological and host-response networks were perturbed in tis-

sues much earlier than the bacterial colonization was observed in those tissues. Significant col-

onization of Y. pestis in blood was noted at 32 h p.i. although sub-threshold bacterial

colonization were observed starting from 12 h p.i. (S1 Table). In contrast, lungs (Fig 2A, S1

Table) and submandibular LN (Fig 2B, S1 Table) manifested significant colonization of Y. pes-
tis by 9 h p.i. These organs are located near the respiratory tract. Hence, early colonization of

Y. pestis in these organs is rather expected since the NHPs were intranasally challenged with Y.

pestis. Comprehension of those molecular events that take place in these organs is likely to elu-

cidate the early host-pathogen interactions that ultimately failed to contain Y. pestis. Notably,

mediastinal LN are in close proximity of the lungs and showed colonization between 12–24 h

p.i. (Fig 2C, S1 Table), whereas the transcriptomic changes in mediastinal LN were noted start-

ing at 9 h p.i. Hence, both blood and mediastinal LN underwent molecular perturbations

before bacterial colonization was observed, which showcases the advantage of determining

molecular markers as the early sign of infection.

Despite the anatomic differences between the lymph nodes and lungs, the trends of their

transcriptomic responses to Y. pestis infection were very similar as suggested by their PCA

plots (S1 Fig). Among all of these cases, the largest transcriptomic shift from the pre-infection

state happened at the earliest time point of 9 h p.i. In comparison, the molecular shifts in the

subsequent time points appeared negligible. PCA plots displayed a large displacement and

essentially conglomeration of the post-infection time points away from the pre-infection time

point for transcriptomic regulation. Therefore, one can posit that the impact of Y. pestis assault

was immediate, and this early impact potentially caused the maximum damage in these organs.
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Limitations of this study included using the Rhesus Monkey Oligo array to probe the AGM

transcriptomic profile. The small sample size per time point also compromised the statistical

power of the study. To mitigate this risk, a longitudinal study was designed which was held

together by transcriptomics-proteomics analyses. The untargeted transcriptomic investigation

was streamlined to focus on the networks of interest, and stringent statistical thresholds were

in place to deliver a robust molecular interpretation. Time-specific NHP controls at every time

point were replaced with a more cost-efficient solution: a baseline control was euthanized at

the beginning of the study. The high throughput transcriptomic results were validated by tar-

geted proteomics and transcriptomic data. The strict regulations imposed on BSL3 labs pro-

hibited us from isolating cells critical for adaptive and innate immunity. Hence, the present

study lacks cell-specific data and histopathology data.

Early highjack of the ubiquitination process in the submandibular LN

potentially compromises proteolytic activity

Ubiquitin plays a versatile role in cell biology, and facilitating the host cellular defense is one of its

key roles [8, 9]. Our previous study showed early activation of the ubiquitin network in the blood

transcriptomic profile [4]. The ubiquitin network became suppressed at the transcriptional level

in the submandibular LN by 9 h p.i. In concert, a low abundance of ubiquitin was observed in

submandibular LN. The consequences could be far reaching since the efficacy of the host immune

mechanism essentially depends on the proteasome-mediated disposal of ubiquitinated proteins

[34]. Ubiquitins play critical roles during infection by supporting the antigen-presenting cells

involved in host immunity and in activation of the NFκB family of transcription factors. Ubiqui-

tins also participate in the degradation of whole organelles and large protein aggregates via autop-

hagy [34], which is discussed in a later section in the context of microtubule function.

Existing literature has identified YopJ, a virulence factor of Yersinia, as an efficient deubi-

quitinating agent [35] enabling deactivation of NFκB-mediated host defense mechanisms. Our

study found a set of proteasome-encoding genes that included PSMA1, PSMD10, PSMD14

and PSMA4, that were all down-regulated during the early phase of infection. Our functional

analyses predicted that the early suppression of the toll-like receptor network and the IκB

kinase/NFκB cascade network (Fig 4) potentially triggered an early deactivation of the NFκB

signal. In support of this hypothesis, we found a nearly significant reduced load of NFκB pro-

tein in submandibular LN at 9 h p.i. Impaired proteocatalytic activities were further showcased

by a group of down-regulated ubiquitin-linked genes, USP1, USP3, USP8, USP10, USP10,

USP12 and USP44, that encode proteins associated with peptidase. Hence, there is an early

indication of dysregulated ubiquitin-proteasome activity caused by Y. pestis infection.

Notably, the ubiquitin network was not significantly perturbed in mediastinal LN and

lungs, and this essentially highlights the complex inter-organismal relationship [36]. Neverthe-

less, the trend was very clear. In submandibular LN, the ubiquitin networks remained inhib-

ited during the early and late phases of infection (Table 2). By integrating this information

with other networks closely connected to ubiquitin, such as microtubule activities, inflamma-

tion, and apoptosis, we found a more compelling picture of the pathogenesis of plague.

Early dysregulation of the microtubule network potentially limited the

protein sequestration process

Typically, pathogens trigger the microtubular activities in order to enhance the local spread of

infections [16]. Alternatively, destabilization of host microtubules results in impairment of the

autophagosome, permitting an easy access to the cytoplasm, and ultimately, evasion of the

host defense. Our study showed early down-regulation of genes linked to microtubule
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networks in submandibular LN, mediastinal LN and lungs. The HSP90AA1 gene encoding the

chaperone protein for MAP Tau was down-regulated at 9 h p.i. In concert, the load of MAP

Tau protein, a critical constituent of stable microtubules [37], was reduced during the early

phase of infection in all three organs.

In the event of proteosomal impairment, host cells are essentially compelled to use alterna-

tive routes to dispose of pathogens. Hence, the pathogen or its derivative is trafficked to aggre-

somes via retrograde transportation undertaken by microtubules. Aggresomes are controlled

by GTPase-mediated vesicular trafficking and are eventually sequestered by autophagy [38].

Thus in the event of compromised microtubular activities, autophagy becomes dysfunctional

and essentially facilitates the proliferation of pathogens.

The scientific literature suggested a somewhat contrasting picture. Y. pestis was found to

block autophagosomes in vitro by altering the functions of AKT, AMPK and p53 signaling

[39]. An in vivo study observed a slightly different mechanism, where Y. pestis evaded the host

defense by entering mouse macrophages and continuing to proliferate within the autophago-

somes [40]. The NHP model revealed a number of genes associated with autophagy, such as

HSP90AA1, HSPA13, MYO6 and HMGB1 that were down-regulated during the 9 h-12 h p.i.

period. In contrast, LMTOR3, the gene encoding a protein responsible for mTOR signal acti-

vation, was down-regulated during the early phase of infection, indicating positive regulatory

effects of autophagy. As time went by, an increasing number of genes that potentially regulate

autophagy were found down-regulated. In particular, a large set of genes associated with

AMPK-mediated autophagy were down-regulated, including PK1A, PRKAA1, PRKACB,

CREM (all at 24 h p.i); CREB3L3, PK1A, PRKAA1 (all at 32 h p.i.); and CREB3L3, CREB,

PK1A, PRKAA1, PRKACB (all at 42 h p.i.). In addition, a number of genes associated with

GTPase activities, which included GIMAP2, RACGAP1, AGBL5 and RAP1GDS1, were down-

regulated during the early phase of infection. Overall, a temporal trend was established,

highlighting a possible mechanism adopted by Y. pestis to evade autophagy.

The functional analysis of the genes critically associated with microtubule activities (i.e., the

genes enriching the two top tiers classified by the GIH algorithm) found that these genes co-

enriched the ubiquitin network, TLR signal, and apoptosis (S5 Fig). This result is supported by

the emerging evidence that interlinks microtubule-protein networks and cell death [41]. Our

results possibly indicated the existence of a parallel apoptotic mechanism induced by Y. pestis
that further weakened the host defense.

Immunosuppression synchronized with the early onset of apoptosis results

in the comprehensive dysregulation of the host defense

Our previous study indicated that Y. pestis triggered the onset of apoptosis in blood [4]. S5 Fig

highlights the possible cross-talk between apoptosis with the ubiquitin-microtubule network.

Interrogation of the three organs also revealed that apoptosis may have been triggered during the

early phase of infection (Fig 4). The early trend of apoptotic risk was manifested during 9 h-12 h

p.i. as nearly 60% of all of the apoptotic genes were altered during this early phase of Y. pestis
infection. The early signal of apoptosis in submandibular LN was synchronized with putative inhi-

bition of TLR signal (Fig 4). This observation is particularly interesting in light of a recent study

that reported Yersinia species showed more virulent pathogenesis in TLR-deficient mice [42].

We found that suppressed TLR signaling and the early highjack of ubiquitin-microtubule

networks were potentially synchronized with the suppression of the host inflammatory

response. Although the genes encoding the pro-inflammatory cytokines such as IL-18 were

up-regulated in submandibular LN, the overall inflammatory response was putatively sup-

pressed during the early phase of infection. As the time went by, an increasing number genes
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encoding pro-inflammatory cytokines such as TGFA and IL-36 and anti-inflammatory cyto-

kines such as IL-17 became down-regulated at the transcriptomic level.

Conclusion

Over time, the pathogenesis of Y. pestis involves multiple organs and affects many biological

functions. To understand this process, we explored the conceivable relationships among the

seemingly distinct networks. Aligned to the emerging hypothesis that complex disease biology

is essentially driven by clusters of networks [18], we hereby showed the interconnectivity

among a set of networks which was perturbed in a synchronized fashion across multiple

organs during a pre-symptomatic time period. The present study added a time-resolved per-

spective to many of those molecular events, such as ubiquitin and microtubule functions that

were reported previously in the context of Y. pestis pathogenesis [13, 14, 35, 39, 40]. In fact,

our previous publication [4] upheld ubiquitin and microtubule functions as two major net-

works potentially manipulated by Y. pestis.
Submandibular LN emerged as a potential target organ for early intervention. Past records

have shown high activity in submandibular LN in the event of aerosol challenge [43, 44]. A

particular time lag between submandibular LN and blood molecular profiles was found. For

instance, TLR signal was activated in blood during the early phase of infection, and Y. pestis
was able to gradually dysregulate this network. The ubiquitin network remained active across

the time course in blood. However, both of these networks were dysregulated in the early

phase of Y. pestis infection in submandibular LN. Thereby our study revealed how some of the

key organs potentially cross-talk during the time course of pathogenesis. For an opportunistic

pathogen like Y. pestis, which proliferates rapidly and is capable of turning the key host defense

mechanisms to its favor, it is essential to target the appropriate organs and molecular networks

to effectively confront and counter the pathogen. Our study identified submandibular LN as

an early site for the host immune system to encounter pathogens, and we mined some poten-

tial pathways that were impaired by Y. pestis to create its permissive niche. A carefully designed

in vitro study that is preferably based on synthetic organ clusters could be used to validate the

present multi-organ based analysis. A bio bank obtained from well-regulated clinical efforts

would be another valuable source for validating the results. This knowledge can potentially

drive the strategies for next generation therapeutics.

Supporting information

S1 Fig. Principal component analysis (PCA) of the global transcriptomic expression of

three organs of interest. Each circle is labeled by the corresponding time points. (A) Subman-

dibular LN. (B) Lungs. (C) Mediastinal LN.

(TIF)

S2 Fig. Bar plot showing the number of gene transcripts significantly altered in tissues of

interest. (A) submandibular lymph node, (B) mediastinal lymph node and (C) lungs. The

shaded bar represents up regulated and clear bar represents down regulated probes.

(TIF)

S3 Fig. Gene network associated with ubiquitination in submandibular LN. The diagram

depicts the cellular locations of the proteins encoded by the genes enriching the ubiquitin net-

work. The temporal expression of individual genes are shown under each gene symbol. To

note, there was no ubiquitin-associated gene significantly altered at 24 h p.i.; hence gene

expression at 9 h, 12 h, 32 h and 42 h are shown.

(TIF)
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S4 Fig. Cross-organ distribution genes related to microtubule network; the genes ranked

by Gene Interaction Hierarchy (GIH). (A) Primary tier. (B) Secondary tier. The pie chart

shows the distribution of genes across three organs, and the corresponding hierarchical matrix

shows the temporal pattern of transcriptional expression of these genes in three organs. A

scale depicting the range of color corresponding to the gene expression levels is shown at right.

Each row corresponds to one particular gene. LN: Lymph node.

(TIF)

S5 Fig. Canonical networks significantly enriched with the genes listed in Table 4. The top

axis represents the ratio of the genes altered by Y. pestis infection and the entire gene list of

this canonical network. The bottom axis represents–log(p value), where the p value represents

the enrichment factor calculated by the hypergeometric test.

(TIF)

S6 Fig. Bar plots of qPCR results. For each gene, 5 time points were represented with error

bars. The assay results showing zero fold changes were marked as �.

(TIF)

S1 Table. The longitudinal profile of bacterial loads in tissues of interests: Lungs, Subman-

dibular LN, Mediastinal LN and Blood.

(XLSX)

S2 Table. Gene list enriching ubiquitin network in submandibular LN.

(XLSX)

S3 Table. Gene list enriching microtubule network mined from three organs of interest.

(XLSX)

S4 Table. Gene list linked to other relevant networks mined from three organs of interest.

(XLSX)
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