
fphys-09-01573 November 16, 2018 Time: 17:14 # 1

PERSPECTIVE
published: 20 November 2018

doi: 10.3389/fphys.2018.01573

Edited by:
Erica A. G. Vidal,

Universidade Federal do Paraná,
Brazil

Reviewed by:
David B. Edelman,

Dartmouth College, United States
Simonetta Mattiucci,

Università degli Studi di Roma La
Sapienza, Italy
Mirela Petric,

University of Split, Croatia

*Correspondence:
Katina Roumbedakis

katina.roumbedakis@gmail.com

Specialty section:
This article was submitted to

Invertebrate Physiology,
a section of the journal
Frontiers in Physiology

Received: 05 February 2018
Accepted: 22 October 2018

Published: 20 November 2018

Citation:
Roumbedakis K, Drábková M,

Tyml T and di Cristo C (2018) A
Perspective Around Cephalopods

and Their Parasites, and Suggestions
on How to Increase Knowledge

in the Field. Front. Physiol. 9:1573.
doi: 10.3389/fphys.2018.01573

A Perspective Around Cephalopods
and Their Parasites, and Suggestions
on How to Increase Knowledge in
the Field
Katina Roumbedakis1,2* , Marie Drábková3,4, Tomáš Tyml3,5 and Carlo di Cristo1

1 Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy, 2 Association for Cephalopod
Research, Naples, Italy, 3 Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice,
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Although interest in several areas of cephalopod research has emerged over the last
decades (e.g., neurobiology, aquaculture, genetics, and welfare), especially following
their 2010 inclusion in the EU Directive on the use of animals for experimental
purposes, knowledge regarding the parasites of cephalopods is lacking. Cephalopods
can be intermediate, paratenic, or definitive hosts to a range of parasites with a
wide variety of life cycle strategies. Here, we briefly review the current knowledge in
cephalopod parasitological research, summarizing the main parasite groups that affect
these animals. We also emphasize some topics that, in our view, should be addressed
in future research, including: (i) better understanding of life cycles and transmission
pathways of common cephalopod parasites; (ii) improve knowledge of all phases of
the life cycle (i.e., paralarvae, juveniles, adults and senescent animals) and on species
from polar deep sea regions; (iii) exploration of the potential of using cephalopod-
parasite specificity to assess population boundaries of both, hosts and parasites; (iv)
risk evaluation of the potential of standard aquacultural practices to result in parasite
outbreaks; (v) evaluation and description of the physiological and behavioral effects of
parasites on their cephalopod hosts; (vi) standardization of the methods for accurate
parasite sampling and identification; (vii) implementation of the latest molecular methods
to facilitate and enable research in above mentioned areas; (viii) sharing of information
and samples among researchers and aquaculturists. In our view, addressing these
topics would allow us to better understand complex host-parasite interactions, yield
insights into cephalopod life history, and help improve the rearing and welfare of these
animals in captivity.

Keywords: Cephalopoda, parasites, pathogens, diseases, welfare

CEPHALOPODS AND THEIR PARASITES: A SHORT OVERVIEW

The incidence of a given parasite in a cephalopod species depends on the presence of a potential
definitive host and intermediate host(s) (in parasites with complex life cycles, i.e., those that use
multiple hosts to complete their life cycle), as well as on biotic and abiotic factors (González et al.,
2003). Cephalopods can be definitive hosts for protists, dicyemids, monogeneans and crustaceans,
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as well as intermediate or paratenic hosts for digeneans, cestodes
and nematodes (summarized in Table 1; for review see also
Table 1–5, Hochberg, 1990). As intermediate or paratenic
hosts, cephalopods can accumulate parasites throughout their
lifespan, thus increasing the chance of predation by the
next host and, consequently, the probability of parasite
transmission. This is especially relevant for cestodes and anisakid
nematodes, which use cephalopod hosts as important vectors
for transporting them to other intermediate or to definitive
hosts (e.g., Pascual et al., 1995; Abollo et al., 1998; Petrić et al.,
2011).

In contrast to other molluscs, two characteristics of coleoid
cephalopods (all living cephalopods besides Nautilus spp.)
have crucial roles in their susceptibility to parasites and
disease: (i) the loss of external shell, which enables the
extensive neural and muscular development that allows high-
speed locomotion; and (ii) the evolution of complex skin
capable of sophisticated camouflage and signaling, but also
prone to lesioning (Kinne, 1990). By shedding the rigid
external shell of their ancestors, coleoids became more agile
predators and adopted a more active lifestyle. This likely
increased the frequency of parasite transmission since, predators
readily accumulate multi-host parasites that are transmitted
upward through the food web (e.g., digeneans, cestodes and
nematodes). Some parasites can even alter the behavior or
appearance of their intermediate hosts (e.g., modifying host
phenotypes) in order to increase the likelihood that they
will be predated on by their definitive hosts (Lafferty, 1999;
Heil, 2016), mechanisms that have yet to be explored in
cephalopod hosts. In addition to the increased likelihood
of transmission, the fragility of coleoid cephalopods’ skin
may increase the ease with which opportunistic pathogens
(i.e., infection by bacteria, kinetoplastids, dinoflagellates, fungi,
labyrinthulids) can invade the body (reviewed by Kinne,
1990).

To date, the most complete review of potential pathogenic
agents affecting cephalopods is in “Diseases of Marine Animals”
(DoMA; Kinne, 1990; chapters concerning cephalopods: Hanlon
and Forsythe, 1990a,b; Hochberg, 1990). In his summary,
Hochberg (1990) reported parasites for about 130 cephalopods,
which represents less than a quarter of the described species at
that time. Later reviews provided complementary information
regarding the main viral, bacterial, fungal, parasitic, chemical and
mechanical parasitic agents affecting cephalopods (see Pascual
et al., 1996; Castellanos-Martínez and Gestal, 2013; Sykes and
Gestal, 2014).

In the following paragraphs, we briefly overview the
current knowledge on the most common parasites found in
cephalopods. About 230 parasitic species of a variety of taxa
(e.g., Chromista, Protozoa, Diciemyda, Monogenea, Trematoda,
Cestoda, Acanthocephala, Nematoda, Annelida and Crustacea)
are reported in the literature to date (Table 1 and Figure 1A).
A map of the geographic distributions of cephalopod parasites
is provided in Figure 1B. We emphasize that the data provided
here likely over-represents tropical and temperate locations and
coastal environments, since these areas are more easily and
frequently sampled.

Aggregata spp.
Some of the most common parasites of cephalopods are the
coccidians Aggregata spp. (Apicomplexa, Aggregatidae). To
date, 10 species of Aggregata have been described parasitizing
cephalopods (for review, see Gestal et al., 2010), although other
(undescribed) species have also been reported (reviewed in
Hochberg, 1990), so the actual diversity is likely higher. Aggregata
spp. have complex heteroxenous life cycles, with crustaceans as
intermediate hosts and cephalopods as definitive ones (Dobell,
1925; Hochberg, 1990). Most recent research (e.g., Castellanos-
Martínez et al., 2013; Tedesco et al., 2017) has focused primarily
on Aggregata octopiana and Aggregata eberthi, parasites of
Octopus vulgaris and Sepia officinalis, respectively. This group
is associated with histological and ultrastructural lesions in
the digestive tract (mainly the caecum and intestine) of their
cephalopod hosts (Gestal et al., 2002a), with infections of the gills,
mantle, arms and mesentery also occasionally occurring (Pascual
et al., 1996; Mladineo and Bočina, 2007; Tedesco et al., 2017).
In addition, Aggregata infection can impair body growth due to
“malabsorption syndrome” (Gestal et al., 2002b).

Ciliates and Dicyemids
In the renal tissue, cephalopods harbor two very unique parasitic
groups, the apostome ciliates, Chromidina spp., and metazoans
Dicyemida ( = Rhombozoa). Five Chromidina spp. and over one
hundred dicyemids have been described infecting cephalopods
(Catalano, 2012; Souidenne et al., 2016). The exact impact on
the hosts is still uncertain; for instance, in O. vulgaris, low levels
of tissue abrasion caused by dicyemids could be observed by
electron microscopy (Ridley, 1968), but no impact was detectable
using light microscopy (Furuya et al., 2004). Consequently, these
organisms may eventually come to be considered symbiotic
rather than parasitic (Katayama et al., 1995; Furuya et al.,
2004). Bacterial symbionts are also observed in cephalopods:
for instance, the bacteria colonizing the pericardial appendage
of Nautilus sp. (Pernice et al., 2007; Pernice and Boucher-
Rodoni, 2012) as well as the well-established association between
Euprymna scolopes and Vibrio fischeri (Ruby, 1999, for review
see Gerdol et al., 2018). Further studies of such symbiosis
can improve not only our understanding of these complexes
associations in cephalopods, but also give insights on how
bacterial symbiosis occurs in mammals (Gerdol et al., 2018).

Monogeneans
A few studies have reported monogenean parasites in
cephalopods (see Sproston, 1946; Palombi, 1949; Dollfus,
1958; Bychowsky, 1961). The gyrodactylid Isancistrum subulatae
has been found in the arms and tentacles while Isancistrum
loliginis in the mantle cavity and gills of Alloteuthis subulata
(Llewellyn, 1984). Identifying monogeneans in cephalopods is
extremely difficult due to their delicateness, small size and the
thick layer of mucus in cephalopod tissues (Llewellyn, 1984), and
this could be the reason for their supposed rarity. In the future,
potential sites of occurrence (e.g., arms/tentacles, mantle, funnel
and gills) should be thoroughly examined for a better assessment
of their true prevalence.
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TABLE 1 | Parasitic taxa (approximately 230 parasites identified at species level) infecting cephalopods (sorted by order) reported in the literature to date.

Protozoa Chromista Dicyemida Monogenea Digenea Cestoda Acanthocephala Nematoda Annelida Crustacea

Nautilida • (1)

Spirulida • (1)

Sepiida • (7) • (31) (2) (6) (3) • (5)

Myopsida • (2) • (5) • (2) (3) (9) (3) • (4) • (5)

Oegopsida • (1) • (11) (2) (18) (1) (16) • (4)

Octopoda • (9) • (59) (3) (2) • (4) • (13)

Vampyromorpha

The role of the cephalopod host in the parasitic life cycle is indicated as: definitive •; intermediate ; definitive, intermediate or paratenic ; intermediate or paratenic ;
probably accidental . Number of parasite species identified for each cephalopod order is indicated in parenthesis. The current assessment reflects the original source
material updated with current species information according to World Register of Marine Species (WoRMS; available at http://www.marinespecies.org/index.php).

Digeneans
The majority of information regarding digenean parasites of
cephalopods is provided by Overstreet and Hochberg (1975)
and Hochberg (1990), with some information added over the
following decades (e.g., Shukhgalter and Nigmatullin, 2001;
Nigmatullin et al., 2009), including digenean records in squid
paralarvae (Vidal and Haimovici, 1999). Around 20 species have
been reported from nearly 30 cephalopod hosts, usually with low
prevalence of infection (Hochberg, 1990). Cephalopods do not
seem to play a major role in digenean life cycles (Hochberg, 1990),
though our knowledge is too limited to support this premise
definitively.

Cestodes
Cephalopods are second and/or third intermediate or paratenic
hosts for cestodes, acting as important vectors transporting
them to other intermediate (e.g., cetaceans; Aznar et al.,
2007) or definitive hosts (e.g., elasmobranchs and fishes;
Hochberg, 1990). Several species have been reported in
around 60 cephalopod hosts: larval and post-larval cestodes
from the orders Trypanorhyncha and Tetraphyllidea are
commonly found freely in cephalopod digestive tracts,
usually the stomach, caecum and intestine (Hochberg,
1990). However, they can also be found in the buccal
mass (in octopus; Roumbedakis, unpublished data) or
encysted in the digestive tract, mesentery and mantle cavity
(Hochberg, 1990). Phyllobotrium spp. is the most frequently
reported species (Hochberg, 1990). A general life cycle for
Phyllobothriidae has recently been suggested (Klotz et al.,
2018): procercoid development occurs in crustaceans (first
intermediate hosts), followed by plerocercoid development
in bony fish, sea turtle or squid (second intermediate
host). Marine mammals can harbor both plerocercoids and
merocercoids, acting as third intermediate or paratenic hosts,
and sharks serve as the definitive hosts, harboring the adult
parasites.

Nematodes
Larval nematodes are commonly found encysted in the
viscera and musculature of cephalopods (Hochberg, 1990;
Gestal et al., 1999; Abollo et al., 2001), making infected
animals aesthetically unattractive for human consumption

(Smith and Wootten, 1984). Anisakis (Anisakidae) is one
of the most abundant and frequent cephalopod parasites
causing important pathological effects to their hosts, such as
ulceration (Abollo et al., 2001), and even castration if encysted
in the gonads (Abollo et al., 1998). Transmitted through
food webs, these parasites have complex life cycles involving
multiple hosts: planktonic or bentho-planktonic crustaceans
are the first intermediate hosts; fish and squids act as second
intermediate or paratenic hosts and marine mammals (mainly
cetaceans) as definitive hosts (Mattiucci and D’Amelio, 2014;
Mattiucci et al., 2018). To date, a number of cephalopods
(S. officinalis, Ancistroteuthis lichtensteinii, Histioteuthis bonnellii,
Illex coindetii, Todarodes sagittatus, T. pacificus, Todaropsis
angolenis, T. eblanae, Nototodarus sloanii, Dosidicus gigas, and
Moroteuthis ingens) are known to be parasitized by six of the nine
Anisakis species (A. simplex, A. berlandi, A. nascettii, A. pegreffii,
A. physeteris, and A. typica) currently described (for review see
Tables 2–5, Mattiucci et al., 2018). Recent advances in anisakid
biology and systematics are comprehensively summarized by
Mattiucci et al. (2018). It is also worth noting that humans
may also become accidental hosts if live larvae of Anisakis spp.
are ingested through the consumption of raw or undercooked
infected squid and cuttlefish. Additionally, even when ingested
dead, Anisakis larvae can induce allergic reactions (Audicana
et al., 2002; Mattiucci et al., 2013) or gastrointestinal problems
(Audicana et al., 2002). Although rare, anisakiasis (the infection
of a human by this parasite) is likely underdiagnosed and thus
underestimated worldwide and may pose a greater threat to
public health in the future (Bao et al., 2017; Mattiucci et al.,
2018).

Crustaceans
Crustaceans, primarily copepods and isopods, usually parasitize
the gills and mantle cavities of coleoid cephalopods (Pascual et al.,
1996), but can also parasitize external surfaces, such as arms
or head (Hochberg, 1990). Some attention was lately focused
on tisbid copepods, parasites of deep-sea octopods. The details
of the Cholidya polypi morphology and life cycle as well as a
summary of Tisbidae infecting octopods are provided by Humes
and Voight (1997), while a genus/species with an endoparasitic
life stage infecting Vulcanoctopus hydrothermalis is described by
López-González et al. (2000).
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FIGURE 1 | (A) Relative abundance of parasitic taxa affecting cephalopods. (B) Place of capture of the cephalopod hosts. The current assessment reflects the
original source material updated with current species information according to World Register of Marine Species (WoRMS; available at
http://www.marinespecies.org/index.php).

CEPHALOPOD PARASITOLOGY:
SUGGESTIONS FOR THE FUTURE

Despite an increase in the understanding of cephalopod
parasitology during the last decades, there are still many gaps in
current knowledge. Here, we briefly discuss what we believe to be
the most critical issues/questions for basic and applied research
that require attention.

Parasite Life Cycles and Transmission
Pathways
The life cycles and transmission pathways of many cephalopod
parasites are still unclear. For instance, the methods of dicyemid
transmission are completely unknown (Catalano et al., 2013),
and it has been estimated that less than 5% of the life
cycle of marine helminths has been fully described (Poulin
et al., 2016). In the case of helminths, accurate identification
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of these parasites by classical methods depends on the
features of adult parasites, which normally occur in vertebrates.
However, the adult stages of larval helminths are frequently
unknown (Aznar et al., 2007), partially due to disparity in the
number of parasitological studies of invertebrates compared to
vertebrates (Poulin et al., 2016). Molecular tools combined with
phylogenetics can help identify trophic interactions that lead
to the transmission of parasites and to a better understanding
of parasite life cycles (e.g., Randhawa and Brickle, 2011). Also,
our understanding of interactions between diet, feeding behavior,
parasitic disease, and transmission pathways of cephalopod
parasites can be improved with similar combinations of
traditional approaches and modern molecular methods (e.g.,
Petrić et al., 2011).

Poorly Explored Life-Stages and Species
From Polar and Deep Sea Regions
Most of the cephalopod parasites have been described in shallow-
water species. Emerging exploration of polar and deep-sea will
likely expand our knowledge about the diversity of cephalopod
parasites. Similarly, the current knowledge is largely restricted
to juvenile and adult cephalopod hosts, with few parasites
known for paralarvae/early juveniles (Vecchione, 1987; Vidal and
Haimovici, 1999) and senescent animals (Pascual et al., 2010).
The extension of these limits (geographical-, life-stage-, and
habitat-wise-) may be the basis for new insights into host-parasite
relationships, offering important insights about the parasite
diversity and complexity.

Cephalopod Parasites as Biological Tags
in Population Studies
Studies of parasite distribution and host specificity can provide
information about host population structure, phylogeographic
distribution, migration patterns and general biology. Insights
into host specificity can also help predict the likelihood
of a parasite successfully establishing itself and spreading
in new populations, geographical regions and hosts (Poulin
and Mouillot, 2003), a possibility which becomes increasingly
important with accelerating global climate change.

Parasites are often utilized as “tags” for fisheries stock
assessment, especially in small populations and limited timescales
(MacKenzie, 1999; Mattiucci et al., 2015). Anisakis have been
used as biological markers to identify sub-populations of pelagic
and demersal fishes from the Mediterranean Sea (for review, see
Mattiucci et al., 2015). In cephalopods, such studies are rare,
mainly targeting squids (reviewed in Pascual and Hochberg, 1996;
Catalano et al., 2014b). Although taxonomy within this clade is
not yet well resolved (see Catalano, 2012 for review), dicyemids
could serve the same purpose for certain benthic cephalopods,
since they are closely bound to their hosts and differ across
the hosts’ geographical range (Catalano et al., 2014a). Another
promising taxon is Aggregata, which, in the Mediterranean, is
differentiated into three distinct clades, potentially reflecting
population differentiation of its widespread host, O. vulgaris
(Tedesco et al., 2017).

Possible Parasite Outbreaks in
Cephalopod Aquaculture
Cephalopod parasites rarely cause mortality or serious damage
to wild populations. However, synergic effects between different
stressors associated with captivity may favor parasites and
other pathogens, making parasite outbreaks more likely in
aquaculture. Coincident with the development and proliferation
of aquaculture, parasites and other pathogens have proliferated
(e.g., Overstreet, 1973; Lom and Dyková, 1992), many causing
serious economic and environmental problems. Although our
knowledge of cephalopod parasites in captivity is limited,
we can extrapolate (with some caution) from knowledge
obtained from other, already well-established, marine organism
cultures.

In fish culture for instance, high population density is known
to favor rapid spread of infections, especially those caused
by parasites with direct life cycles, such as monogeneans and
caligid copepods (e.g., Thoney and Hargis, 1991; Johnson
et al., 2004). Both groups have already been reported in
cephalopods (e.g., Llewellyn, 1984; Pascual et al., 1996),
and are thus worth monitoring particularly attentively in
cephalopod aquaculture. High-density culture of hosts can
also disrupt an otherwise stable parasite life-cycle scheme. For
example, the myxosporeans Enteromyxum spp. normally
alternate between two hosts (fish and annelid), but are
known to be capable of direct fish-to-fish transmission in
high-density conditions (Diamant, 1997). Likewise, another
group of myxosporeans, Kudoa spp., which have been
reported in wild octopus populations and are known to
cause serious problems for marine fish aquaculture (Moran
et al., 1999), has been suggested as a potential parasite in
cephalopod culture (Yokoyama and Masuda, 2001). Aggregata
octopiana, despite having a complex life cycle, can also impact
octopus health during commercial ongrowing (Gestal et al.,
2007).

In captivity, even apparently harmless symbionts, such
as dicyemids and Chromidina spp., can become pathogens
and inflict tissue damage to debilitated cephalopods (e.g.,
blocking the renal sacs ducts, Sykes and Gestal, 2014). At least
three phylogenetically distant groups of potential eukaryotic
pathogens that are capable of both a free-living and parasitic
lifestyle (termed also saprophagic) can also be considered
as potential pathogens of cephalopods: histophagous ciliates,
known from cultured fish, crustaceans and bivalves (e.g.,
Cawthorn et al., 1996); amphizoic amoebae, known from
cultured fish, crustaceans, bivalves and sea urchins (e.g., Dyková
and Lom, 2004); and various fungal-like organisms known
from cultured fish, crustaceans and molluscs (e.g., Derevnina
et al., 2016). Since these pathogens are not limited by trade-
offs regarding transmission or virulence because of their
independent free-living stage (Kuris et al., 2014), they usually
cause devastating economic impacts in aquaculture. Several
‘fungus-like organisms’ and histophagous ciliates have already
been reported from cephalopods (Hanlon and Forsythe, 1990a;
Tao et al., 2016) but, to date, no amphizoic amoebae have been
identified.
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Standardization of Parasite Sampling
and Identification
Standardization of the sampling and identification methods used
for cephalopods is required. Given the particular anatomy of
the different cephalopod species, the publication of a guidelines,
that could be used for example for parasitological and health
status assessment of kept cephalopods or to determine their
cause of death, would greatly facilitate research. For parasite
identification, the use of classical methods (e.g., using taxonomic
keys) can be extremely difficult for larval stages (Catalano
et al., 2014b) or for species with high level of morphological
plasticity (Poulin and Morand, 2000). In addition, some of
the original parasite descriptions are not available in English
(e.g., dicyemids, Nouvel, 1947, 1948; Van Beneden, 1876;
Bogolepova-Dobrokhotova, 1953, 1960, 1962), are sometimes,
incomplete (see Furuya, 2007), and often muddled by a variety of
unresolved taxonomic and nomenclatural issues (e.g., nematodes,
Smith and Wootten, 1978) which impair precise parasite
identification.

The use of alternative approaches, such as search for additional
morphological characters that complement classical parasite
identification as suggested by Tedesco et al. (2017), the use of
genetic and molecular techniques (e.g., Kopečná et al., 2006;
Castellanos-Martínez et al., 2013; Souidenne et al., 2016; Tedesco
et al., 2017), as well as combinations of multiple methods, is
growing. Such approaches should help to better elucidate and
re-evaluate the taxonomic status and host-parasite relationships,
particularly where morphological plasticity might be of concern
(Pascual et al., 2007). Moreover, it may clarify relationships
within species complexes, such as that of A. octopiana infecting
O. vulgaris in Mediterranean areas (Tedesco et al., 2017). Finally,
taxonomic review of genera with morphological descriptions
and molecular markers would aid research and improve
assessment methods for cephalopod health and food safety in
aquaculture.

The use of non- or minimally invasive methods for in vivo
detection of cephalopod parasites should be explored in the
near future. For instance, it has been suggested that Aggregata
infection could be diagnosed through the presence of sporocysts
in the feces of living animals or through inspection of the
terminal intestine by gentle retraction of the ventral mantle
or by endoscopy (Sykes et al., 2017). Detection of cephalopod
parasite infection using ultrasound imaging or swabbing for
parasite molecular/DNA sampling might also be possible. The
development of these methods would facilitate early diagnosis,
ultimately preventing disease outbreaks and improving animal
welfare in captivity.

Cutting Edge Molecular Methods
Transcriptomics, genomics and proteomics (“omics”) are
relatively new tools for understanding direct host parasite
relationship on a molecular level. By enabling the study of the
microbiome and metagenome of different cephalopod organs
in relation to parasitic infection, the consequent pathology and
immune response of hosts can be better understood (see for
example Castellanos-Martínez et al., 2014a,b). Additionally,

low coverage genome re-sequencing or reduced representation
sequencing (RADseq methods, Davey and Blaxter, 2010)
provide a tool for probing the genomic structure of populations
with an unprecedented level of clarity for both host and
parasites. Ultimately, such genomic information coupled
with environmental data results in a “seascape genomics”
approach, which can reveal both local genetic adaptations
as well as the broader dynamics of gene flow (Riginos et al.,
2016).

Effect of Parasites in Cephalopod
Physiology and Health
Host responses to parasites may involve a variety of physiological
mechanisms (e.g., neural, endocrine, neuromodulatory and
immune) that can interact and alter host behavior (see
review in Thompson and Kavaliers, 1994). For example, in
fishes, parasitism can cause conspicuous host behavior (e.g.,
impaired sensory and swimming performance, increased time
at water surface, etc.), increasing predation risk (Lafferty and
Morris, 1996). Parasites can also affect fish performance in
terms of growth and reproduction, consequently impacting
their health and welfare (Barber, 2007). Unfortunately, in
cephalopods, the effects of parasitism are usually reported
only at histopathological level, whereas physiological and
behavioral effects are virtually unexplored. Experimental studies
combining both behavioral and quantitative physiological
indicators will help to better understand host-parasite systems
and, hopefully, enable better assessment of cephalopod
welfare. New technologies such as “omics” approaches and
electron and florescent microscopy will certainly facilitate this
research.

Resource Sharing
Although researchers have been able to build on previous
research to some extent (e.g., through examination of collection
of parasites and voucher specimens kept in museums, or gene
mining in NCBI genetic database), there is much to be gained
from employing a more open approach. The sharing of material
through lab networks or open databases can reduce research
effort and cost, maximize data use, and minimize the number of
animals sampled. This is especially relevant for animals difficult
to obtain, such as deep-sea cephalopods.

A database of cephalopod parasites and their cephalopod
hosts available from the scientific literature, as already published
for other species (e.g., Global Mammal Parasite Database,
www.mammalparasites.org), possibly with extension of curated
database of molecular barcodes, should be considered. In
this regard, efforts are currently underway to publish a free
online database of parasites and other pathogenic agents of
cephalopods, the “Cephalopods’ Pathogenic Agents Database
(CephPAD),” which will include information on the affected
tissue, anatomical-pathological findings, clinical presentation
and mortality. An Atlas of Cephalopod Pathogens and Diseases
is also in progress as follow-up to the activities of the
COST Action FA1301. These initiatives will greatly facilitate
the assessment of pathogenic agents and might facilitate
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early diagnosis of cephalopod pathogenic agents when they
occur.
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