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1  | INTRODUC TION

Constant generation of reactive oxygen species (ROS) at low levels is 
essential for cells for avoiding extracellular invaders and maintaining 
cellular signaling. However, oxidative stress caused by over produc-
tion of ROS induces cell damage of macromolecules such as DNA, 
proteins, and lipids (Reuter, Gupta, Chaturvedi, & Aggarwal, 2010). 
Accumulation of such cell damage leads to chronic diseases includ-
ing cancer, cardiovascular diseases, neurodegenerative diseases, and 
others (Ray, Huang, & Tsuji, 2012). Various literatures have empha-
sized importance of antioxidants on attenuating oxidative stress and 
its associated chronic diseases (Baynes, 1991; Osawa & Kato, 2005).

Skin epidermis serves as barrier of body from environmen-
tal toxins and oxidative stress. Particularly, keratinocytes are pre-
dominant cells of the epidermis. Responding to hydrogen peroxide 
(H2O2) which plays a pivotal role among ROS, keratinocytes trigger 
apoptosis determined by released cytochrome c, cleaved caspases 
activities, and proapoptotic gene expressions (Zuliani et al., 2005). 
The oxidative damaged keratinocytes contribute the pathogenesis 
of skin-related diseases such as psoriasis, skin aging, and skin can-
cer (Bae et al., 2014; Kohen, 1999; Liu et al., 2011), thus emerging 
studies that antioxidants protect against H2O2-induced apoptosis in 
human keratinocytes HaCaT (Bae et al., 2014; Nguyen, Kim, & Lee, 
2013; Seo & Jeong, 2015).
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Abstract
Black soybeans are functional foods containing a variety of bioactives such as isofla-
vones, carotenoids, tocopherols, phenolic acid as well as anthocyanins. Here, we ex-
amined whether Cheongja#3 black soybean extract has a protective effect on 
oxidative stress-induced cell death in human keratinocytes HaCaT. First, we identi-
fied fat-soluble bioactives in three varieties of soybean extracts (Saedanbaek, 
Daechan, and Cheongja#3). In particular, black soybean Cheongja#3 had high 
amounts of lutein than other varieties. We demonstrated that Cheongja#3 extract 
reduced intracellular reactive oxygen species levels in HaCaT cells. Furthermore, 
Cheongja#3 protected cells from hydrogen peroxide (H2O2)-induced oxidative stress 
and triggered cell death determined by cell viabilities and apoptotic caspase activi-
ties. Next, we identified the underlying mechanism is due to increased Nrf2 antioxi-
dant system by Cheongja#3, thus increasing the expression of heme oxygenases 
(HO)-1. These results indicated that Cheongja#3 soybean extract has protective role 
against oxidative stress by upregulating the Nrf-2 antioxidant system in human ke-
ratinocyte HaCaT cells.
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Nuclear transcription factor erythroid-2-like factor 2 (Nrf2) is one 
of the major antioxidant systems that protect cells from oxidative 
stress (Motohashi & Yamamoto, 2004). Under normal condition, Nrf2 
action is blocked by Keap1. Responding to extracellular stimuli such as 
UV light, oxidative stress, and hypoxia, Nrf2 is released from Keap1, 
thus translocating to the nucleus to bind to its downstream genes con-
taining antioxidant response element (ARE) consensus sequence (Seo 
& Jeong, 2015). Heme oxygenase-1 (HO-1) is an antioxidant enzyme 
which contains an ARE site, and functions in the degradation of heme 
to bilirubin, carbon monoxide, and iron (Seo et al., 2011). Previous 
studies have reported that natural products from food sources induce 
antioxidant activity through upregulation of Nrf2-mediated HO-1 ex-
pression (Hseu et al., 2012; Nguyen et al., 2013; Seo et al., 2011).

Soybeans are rich in proteins, carbohydrates, dietary fiber, and 
phytochemicals. Isoflavones are unique components in soybeans 
and offer a variety of health benefits against obesity, cancer, dia-
betes, kidney diseases, osteoporosis, and cardiovascular disease 
(Anderson & Major, 2002; Anderson, Smith, & Washnock, 1999). In 
particular, black soybeans have been reported to contain even more 
nutrients including anthocyanins in their seed coat (Liao, Chen, & 
Yang, 2005). Their biological activities including antioxidative and 
anti-inflammatory effects help to reduce the risk of cancer and met-
abolic disorders (Ganesan & Xu, 2017). Cheongja#3 is a cultivar of 
black soybean which is well known to contain high amounts of an-
thocyanins as well as tocopherols (Lee et al., 2009; Lee, Park, et al., 
2015). Several previous studies have shown that Cheongja#3 had  
antiobesity effects in cells, mice, and humans (Jeon, Lee, & Cheon, 
2015; Kim, Kim, et al., 2012; Kim et al., 2015; Lee, Sorn, Park, & Park, 
2016), as well as neuroprotective effects (Bhuiyan, Kim, Ha, Kim, & 
Cho, 2012; Kim, Chung, et al., 2012). However, there has been a lack of 
information on the protective effects of Cheongja#3 with respect to 
oxidative damage in human keratinocyte HaCaT. Here, we tested the 
effect of Cheongja#3 on reducing oxidative stress-induced cell death 
and examined underlying mechanism of such action in HaCaT cells.

2  | METHODS AND MATERIAL S

2.1 | Preparation of soybean extract

Three soybean cultivars (Saedanbaek, Daechan, Cheongja#3) 
were newly developed by National Institute of Crop Science as 
previously reported (Lee, Choi, et al., 2015; Lee et al., 2009; Min 
et al., 2015), and all soybeans were provided form the National 
Institute of Crop Science. These soybeans were grounded into 
powder at 500 g for 5 min, respectively. Forty grams of each pow-
dered soybean was extracted in 500 ml of 40% ethanol solution 
(EtOH) for 24 hr. After repeating three times, the solutions were 
filtered and freeze dried.

2.2 | Reagents

Dulbecco’s modified Eagle’s medium (DMEM), antibiotic antimycotic 
solution, hydrogen peroxide (H2O2), 3-(4,5-Dimethylthiazol-2-yl)-2,

5-Diphenyltetrazolium Bromide (MTT), dimethyl sulfoxide (DMSO), 
and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) were purchased from 
Sigma-aldrich (St. louis, MO, USA). Fetal bovine serum (FBS) was ob-
tained from Gibco (Waltham, MA, USA). RIPA buffer was purchased 
from Thermo Fisher (Waltham, MA, USA). Phosphate inhibitor and 
protease inhibitor were purchased from Gen DEPOT (Barker, TX, 
USA). DCF-DA kit was purchased from Abcam (Cambridge, UK), 
and caspases-3 was from Cayman chemicals (Ann Arbor, MI, USA). 
Antibodies against caspase-3, caspase-6, and caspase-7 were ob-
tained from Cell signaling Technology (Danvers, MA, USA). Antibody 
against Nrf2 was from Thermo Fisher scientific. Antibodies against 
heme oxygenase (HO), Lamin B, and β-actin were from Santa Cruz 
(Dallas, TX, USA). ECL prime was purchased from GE Healthcare life 
sciences (Buchinghamshire, UK).

2.3 | Cell culture

HaCaT cells were kindly provided from Dr. Ji-Hong Lim (Department 
of Integrated Biosciences, Konkuk University) and cultured in DMEM 
containing 10% FBS and antibiotics (100 units/ml penicillin, 100 μg/
ml streptomycin, and 250 ng/ml amphotericin B) and incubated at 
5% CO2 and 37°C in a humidified air.

2.4 | Ultra performance liquid chromatographic 
(UPLC) analysis

Fat-soluble micronutrients were extracted by using the slightly modi-
fied Folch method (Folch, Lees, & Sloane Stanley, 1957) and analyzed 
by previously reported UPLC method (Delpino-Rius et al., 2014). The 
UPLC (ACQUITY UPLC I-Class, Waters Co., Milford, MA, USA) sys-
tem was equipped with a BEH C18 column (1.7 μm, 2.1 × 50 mm, 
Waters Co.), binary pump delivery system, autosampler, and pho-
todiode array detector. The mobile phase A was acetonitrile/metha-
nol (7:3, v/v), and the mobile phase B was water. Each sample was 
injected into the BEH C18 column (1.7 μm, 2.1 × 50 mm). The gra-
dient conditions are described in Table 1. γ-Tocopherol (at 292 nm) 
and lutein (at 450 nm) were quantified by each standard curve. Each 
peak was confirmed by retention time and its unique spectrum. The 
interassay coefficient of variation (CV) was under 4% (n = 10), and 
the intraassay CV was under 4% as well (n = 10).

2.5 | DPPH radical scavenging assay

The ability of Cheongja#3 to scavenge free radicals was deter-
mined by the DPPH assay (Blois, 1958). Various concentrations of 
Cheongja#3 extract were dissolved in 40% EtOH and then mixed 
with equal volume of 0.2 mM DPPH solution (in EtOH). The mixtures 
were incubated at 37°C for 30 min. The absorbance was read at 
517 nm (Spectramax M2e, Molecular devices, Sunnyvale, CA, USA). 
Results are expressed as electron donating ability (EDA) (%).

EDA(%)=
Absorbance of control−Absorbance of samples

Absorbance of control
×100
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2.6 | Cell viability assay

Cell viability was measured by the MTT colorimetric assay (Mosmann, 
1983). Briefly, cells were seeded in 96-well plates and incubated overnight. 
Next, cells were pretreated with various concentrations of Cheongja#3. 
After 24 hr, cells were exposed to 500 μM of H2O2 for 24 hr. Five mg/ml 
of MTT solutions was added into the medium at a final concentration of 
0.5 mg/ml, and incubated for 4 hr. All medium were removed and DMSO 
solution was added into each well to resuspend the MTT formazan. The ab-
sorbance was measured at 540 nm (Spectramax M2e, Molecular devices).

2.7 | Measurement of intracellular ROS

Intracellular ROS were measured by the DCF-DA fluorescence assay 
(LeBel, Ischiropoulos, & Bondy, 1992). Cells were grown in black well 
clear bottom 96-well plates for 24 hr. Next, the cells were washed 
with phosphate-buffered saline (PBS) two times and stained with 
25 μM of DCF-DA for 30 min. Subsequently, the cells were treated 
with soybean extracts in the absence or presence of H2O2 for 3 hr. 
The fluorescence was read at 485 (excitation)/535 (emission) nm 
(Spectramax M2e, Molecular devices).

2.8 | Preparation of cytosolic and nuclear fraction

To separate cytosolic and nuclear fraction in cells, we followed previ-
ous study (Park et al., 2017). Cells were pretreated with Cheongja#3 
extracted at concentrations of 10, 100 μg/ml for 24 hr. And then 
500 μM of H2O2 was added to the cells for another 24 hr. Cells 
were collected and lysed with chilled lysis buffer A (20 mM Tris-Cl 
at pH7.8, 1.5 mM MgCl₂, 10 mM KCl, 0.2 mM ethylenediaminetet-
raacetic acid [EDTA], 0.5 mM dithiothreitol [DTT], 6% NP-40 and 
protease inhibitor cocktail). After centrifugation, the supernatant as 
cytosolic fraction was separated from pellet. Afterward, the pellets 
were lysed with buffer B (Buffer A containing 0.5 M DTT, 5% glyc-
erol, 400 mM NaCl, protease inhibitor cocktail, and phosphatase in-
hibitor cocktail), for 30 min on ice. The samples were centrifuged at 

18,000 g, 10 min, 4°C, and then supernatant as nuclear protein was 
transferred into fresh tubes for immunoblotting.

2.9 | Immunoblotting

As previously reported (Lee, Han, et al., 2016), samples were lysed with 
a RIPA buffer containing 25 mM Tris-HCl at pH7.6, 150 mM NaCl, 1% 
NP-40, 1% sodium deoxycholate, 0.1% SDS and protease inhibitors. The 
supernatants were collected by centrifugation, and equal amounts of 
protein were mixed with 4× sample buffer (250 mM of Tris-Cl at pH 6.8, 
8% SDS, 40% glycerol, 8% β-mercaptoethanol, and 0.01% bromophenol 
blue). Boiled samples were loaded into SDS-PAGE gels and transferred 
onto PVDF membrane (Millipore, Billerica, MA, USA). The membranes 
were blocked with 5% skim milk for 1 hr at room temperature and re-
acted with primary antibodies overnight at 4°C. The PVDF membranes 
were then incubated with a horseradish peroxidase-conjugated second-
ary antibody for 1 hr at room temperature. The protein band was devel-
oped using the enhanced chemiluminescence substrate.

2.10 | Caspase-3 activities assay (Colorimetric 
analysis)

Caspases-3 activities were analyzed using colorimetric assay kit provided 
by Cayman chemicals, and all experiments were preformed according 
to the manufacturer’s instruction. Briefly, cells were pretreated with 
Cheongja#3 for 24 hr and further incubated in H2O2 (500 μM) for 24 hr. 
After harvesting the cells, cells were lysed with lysis buffer provided in 
the kit. After centrifuge, supernatant was reacted with 1 M DTT and 
4 mM DEVD-p-NA substrate for 2 hr at 37°C. The absorbance was read 
at 405 nm using microplate reader (Spectramax M2e, Molecular devices).

2.11 | Statistical analysis

All experiments were performed in triplicate and expressed as 
mean ± SD. Data were analyzed using two-tailed unpaired student’s 
t test and considered as significant when p value under 0.05.

3  | RESULTS

3.1 | Fat-soluble micronutrients contents in three 
soybean extracts

In Table 2, we determined tocopherols and carotenoid contents by 
UPLC analysis in three varieties of soybean extracts (Saedanbaek, 
Daechan, and Cheongja#3). γ-Tocopherol was detected in 
Saedanbaek (2.6 mg/100 g) and Cheongja#3 (1.4 mg/100 g) ethanol 
extracts, but not in Daechan. In addition, Cheongja#3 extract had 
9.9 μg/100 g of lutein while Saedanbaek had 1.2 μg/100 g of lutein.

3.2 | Antioxidant activities of Cheongja#3

We have evaluated free radical scavenging activities using DPPH 
assay in these three varieties of soybean extracts. It was found 

TABLE  1 Chromatographic conditions of UPLC gradient elution 
methods. A gradient elution was carried out with acetonitrile 
(ACN)/methanol (MeOH) (7:3 = v:v) (Solvent A) and water (Solvent 
B) at a constant flow rate of 0.5 ml/min

%A %B
Flow rate 
(ml/min)

Initial 75 25 0.5

0.6 75 25 0.5

6.5 95.1 4.9 0.5

7.5 100 0 0.5

13.6 100 0 0.5

14.1 75 25 0.5

16.6 75 25 0.5

Note. UPLC: ultra-performance liquid chromatographic.
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that the Cheongja#3 soybean extract had the highest DPPH radi-
cal scavenging activity compared to the other soybean extracts 
(Figure 1a). Next, intracellular ROS levels have been determined in 
these three varieties of soybean extracts-treated human keratino-
cytes HaCaT cells. The intracellular ROS levels were decreased 
to 70.84% and 68.21% by the treatment of the Saedanbaek and 
Cheongja#3 extracts, respectively. On the other hand, Daechan 
soybean extracts did not show any effect on the intracellular ROS 
levels (Figure 1b). Furthermore, the intracellular ROS levels were 
significantly decreased in Cheongja#3 extract-treated HaCaT 
cells in a dose-dependent manner (78.27% at 10 μg/ml and 70.7% 
at 100 μg/ml compared to vehicle-treated cells) (Figure 1c). When 
treated with 1,000 μg/ml of Cheongja#3 extract, the ROS levels 
were similar to that of 100 μg/ml treatment in HaCaT cells (data 

not shown), suggesting enough concentration of antioxidant ac-
tivities. From these results, we can conclude that the Cheongja#3 
extract has strong antioxidant activities than the other varieties.

3.3 | Protective effects of Cheongja#3 on oxidative 
stress-induced apoptosis

Cheongja#3 extract had no cytotoxicity in the tested dose range  
(0–1,000 μM) for 24 hr (Figure 2a). And we found that exposure of cells 
to 500 μM of H2O2 resulted in sufficient cell death by approximately 
65% as compared with vehicle-treated cells (Figure 2b). In addition, 
pretreatment of Cheongja#3 soybean extract restored H2O2-induced 
cell death in HaCaT cells (Figure 2c). To determine whether Cheongja#3 
extract affected H2O2-induced apoptotic cell death, we analyzed sev-
eral apoptotic markers. As expected, H2O2-treated cells show increased 
caspase-3 enzymatic activities, whereas pretreatment of Cheongja#3 
extract decreased H2O2-activated caspases-3 enzymatic activities 
(Figure 3a). Cleaved caspase-3, caspase-6, and, caspase-7 protein lev-
els were also decreased in Cheongja#3-pretreated cells prior to expo-
sure of H2O2 (Figure 3b). Since the MAPK pathway is the main signaling 
source for inducing apoptosis (Sui et al., 2014), we tested phosphoryl-
ated p38, phosphorylated extracellular-signal-regulated kinase (ERK) 
1/2, phosphorylated c-jun N-terminal kinase (JNK) protein levels. 
Cheongja#3 extract downregulated H2O2-induced phosphorylated p38 
and JNK protein expression, whereas phosphorylated ERK 1/2 protein 
levels were not affected by Cheongja#3 extracts (Figure 3c).

TABLE  2 Fat-soluble bioactive components in 40% EtOH 
extract of Saedanbaek, Daechan, and Cheongja#3. The 40% EtOH 
extract of soybeans were loaded on a C18 column. Tocopherols 
were detected at 292 nm and lutein detected at 450 nm

Cultivars

Soybean extracts

Saedanbaek Daechan Cheongja#3

γ-Tocopherol 
(mg/100 g)

2.6 N.D. 1.4

Lutein (μg/100 g) 1.2 N.D. 9.9

Note. N.D.: Not detected.

F IGURE  1 Antioxidant activities 
of soybean extracts. (a) In vitro DPPH 
free radical scavenging activities of 
Saedanbaek, Daechan, and Cheongja#3 
extracts at concentrations of 1 and 
10 mg/ml (b) Intracellular reactive oxygen 
species (ROS) levels assessed by DCF-DA 
probe. Three varieties of soybean extracts 
at 100 μg/ml were treated in the presence 
of 100 μM of H2O2 for 3 hr in HaCaT cells. 
(c) Intracellular ROS levels assessed by 
DCF-DA probe. Various concentrations 
(1, 10, 100 μg/ml) of Cheongja#3 extract 
were treated in the presence of 500 μM 
of H2O2 for 3 hr in HaCaT cells. Data 
are expressed as mean ± SD. *p < 0.05, 
**p < 0.01 versus H2O2-treated cells. 
DPPH, 2,2-Diphenyl-1-picrylhydrazyl

ED
A 

(%
)

0

20

40

60

80

100
(a)

(c)

(b)

–
Saedanbaek

Daechan
Cheongja#3

In
tr

ac
el

lu
la

r R
O

S 
le

ve
ls

 (%
)

0

20

40

60

80

100

120

140

****

+ + + +
– – + – –
– – + –
– – +–

–
–

H2O2
Saedanbaek

Daechan
Cheongja#3

–
–
–

–
–

–
–

– – – –
– –

– –

In
tr

ac
el

lu
la

r R
O

S 
le

ve
ls

 (%
)

0

20

40

60

80

100

120

***

–
Cheongja#3

+ + +
– –

H2O2



     |  2427YOON et al.

F IGURE  2 Effects of Cheongja#3 
on cell viabilities. (a) Cells were treated 
with various concentrations (1, 10, 100, 
1,000 μg/ml) of Cheongja#3 extracts 
for 24 hr followed by MTT assay to 
determine cell viabilities. (b) Cells were 
treated with various concentrations (0 to 
500 μM) of hydrogen peroxide for 24 hr 
followed by MTT assay to determine cell 
viabilities. (c) Cells were pretreated with 
various concentrations (10, 100 μg/ml) of 
Cheongja#3 for 24 hr. Afterward medium 
containing extract was removed and 
further incubated in the presence of H2O2 
for 24 hr followed by MTT assay to assess 
cell viabilities. Data are expressed as mean 
± SD. **p < 0.01
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F IGURE  3 Effects of Cheongja#3 on 
caspases activities in HaCaT. (a) Cells were 
treated with Cheongja#3 (10, 100 μg/ml) 
for 24 hr. Afterward medium containing 
extract was removed and then treated 
with H2O2 for another 24 hr. Caspase-3 
enzymatic activities were determined 
in HaCaT cells. (b) Cleaved caspase-3, 
caspase-6, and, caspase-7 protein levels 
were assessed by Western blotting. (c) 
MAPK protein p38, JNK, ERK protein 
levels were assessed by Western blotting. 
*p < 0.05 versus H2O2-treated cells
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3.4 | Activation of Nrf-2-mediated HO-1 by 
Cheongja#3

We further examined the mechanism of how Cheongja#3 extract 
attenuates H2O2-induced apoptosis. Nrf-2 protein expressions 
were increased in Cheongja#3-treated cells in both total cell lysate 
(Figure 4a) and nucleus fraction of cells (Figure 4b). In addition, 
HO-1, which is a gene downstream of Nrf2, was also increased by 
treatment of Cheongja#3 (Figure 4b). As expected, H2O2 slightly 
increased Nrf2 protein expression. We confirmed further increases 
of Nrf2 and HO-1 protein expressions in Cheongja#3-treated cells 
(Figure 4c).

4  | DISCUSSION

In this study, we have demonstrated that black soybean, Cheongja#3, 
had effects on attenuating oxidative stress-induced apoptosis via 
upregulating Nrf2-mediated HO-1 antioxidant system in human ke-
ratinocytes. Due to the abundant amounts of anthocyanins such as 
delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, and petunidin-
3-O-glucoside in black soybean Cheongja#3, many studies have 
previously reported the health benefits of black soybeans such as 
antiadipogenic activities (Jeon et al., 2015; Kim, Kim, et al., 2012) 
and neuroprotective effects (Bhuiyan et al., 2012; Kim, Chung, et al., 
2012). Additionally, γ-tocopherol and lutein have been identified in 
Cheongja#3 extracts by UPLC. Tocopherols and carotenoids are 
well known for their antioxidant functions in prevention of various 
chronic diseases (Agarwal & Rao, 2000; Valentin & Qi, 2005). We 
believe that these fat-soluble micronutrients in Cheongja#3 create a 
synergistic effect with the antioxidant functions of black soybeans 
in Cheongja#3 soybean extract than that is not found in other soy-
bean varieties (Lee, Park, et al., 2015).

Many scientific literatures have reported that oxidative 
stress certainly can induce apoptosis in cells (Simon, Haj-Yehia, & 
Levi-Schaffer, 2000). Upon initiating apoptosis, cytochrome C 

is released from mitochondria and triggers cleavage of caspases 
(Bergmann, Yang, & Srivastava, 2003). We have detected cleaved 
caspase-3, caspase-6, and, caspase-7 in the H2O2-treated cells, but 
found antiapoptotic effects of Cheongja#3 by the rescued cleaved 
caspases. Mitogen-activated protein kinase pathway, especially 
phosphorylated p38 and JNK, is en route to apoptosis in response 
to environmental stress such as ROS (Chen, Liu, Yin, Luo, & Huang, 
2009; Sui et al., 2014). Phosphorylated JNK and phosphorylated p38 
protein expressions were increased upon treatment of H2O2 as other 
studies have shown. On the other hand, Cheongja#3 extract restored 
upregulation of the protein expressions. Thus, the antiapoptotic  
effects of Cheongja#3 were regulated through phosphorylated p38 
and JNK expression.

The transcription factor Nrf2 plays an important role in redox 
homeostasis via upregulation of its downstream antioxidant defense 
enzymes such as HO-1. Nrf2 deficiency leads to various chronic dis-
eases by failing detoxify environmental stresses such as medication, 
ingestion of food preserves, diesel exhaust, and others (Motohashi 
& Yamamoto, 2004). Since nuclear Nrf2 protein is a key contributor 
in antioxidant system, most of studies analyzed nuclear Nrf-2 protein 
levels to assess antioxidant capacity. Our results have demonstrated 
increased Nrf-2 and -mediated HO-1 expression both in total cell 
lysate and nucleus fraction, denoting mechanism of antioxidant ac-
tivity in Cheongja#3 extracts.

The epidermis, the most outer layer of body, undergoes frequent 
oxidative stress, resulting in a high incidence of skin diseases. In ac-
cordance with this, recent studies have reported that antioxidants 
such as echinacoside isolated from Herba Cistanches and liquiritin 
from Glycyrrhiza root reduce oxidative stress in keratinocytes—
the major cell constituents of the epidermis in human and mice  
(Li et al., 2018; Zhang et al., 2017). Current study demonstrated 
that Cheongja#3, which is rich in antioxidants, and had a protective 
effect on oxidative stress, suggesting a promising functional food 
against skin diseases.

In summary, we demonstrated that Cheongja#3 extract had 
γ-tocopherol and lutein in addition to anthocyanin, which is 

F IGURE  4 Effects of Cheongja#3 
on antioxidant Nrf2 protein levels. (a) 
Cells were treated with 10, 100 μg/ml 
of Cheongja#3 for 24 hr. Nrf2 protein 
levels were assessed in total cell lysate 
using Western blotting (b). Nrf2 and 
HO-1 protein levels were analyzed in the 
nucleus cell lysate using Western blotting 
(c) Cells were treated with Cheongja#3 
extracts. Afterward medium containing 
extract was removed and then treated 
with H2O2 for another 24 hr. The Nrf2 and 
HO-1 protein levels were determined by 
Western blotting
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well-studied previously. Cheongja#3 enhanced free radical scav-
enging activities and reduced intracellular ROS levels. It had 
protective effects on oxidative stress-induced apoptosis by at-
tenuating cleaved caspases and phosphorylated JNK and p38. 
Furthermore, they increased nucleus Nrf2 protein levels, thus 
proving its mechanism of antioxidant activities. Collectively, 
Cheongja#3 black soybean has biological function against oxida-
tive stress in human keratinocytes.
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