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Abstract
Species distribution models (SDMs) are important management tools for highly mo-
bile marine species because they provide spatially and temporally explicit information 
on animal distribution. Two prevalent modeling frameworks used to develop SDMs 
for marine species are generalized additive models (GAMs) and boosted regression 
trees (BRTs), but comparative studies have rarely been conducted; most rely on 
presence-only data; and few have explored how features such as species distribution 
characteristics affect model performance. Since the majority of marine species BRTs 
have been used to predict habitat suitability, we first compared BRTs to GAMs that 
used presence/absence as the response variable. We then compared results from 
these habitat suitability models to GAMs that predict species density (animals per 
km2) because density models built with a subset of the data used here have previ-
ously received extensive validation. We compared both the explanatory power (i.e., 
model goodness of fit) and predictive power (i.e., performance on a novel dataset) 
of the GAMs and BRTs for a taxonomically diverse suite of cetacean species using 
a robust set of systematic survey data (1991–2014) within the California Current 
Ecosystem. Both BRTs and GAMs were successful at describing overall distribution 
patterns throughout the study area for the majority of species considered, but when 
predicting on novel data, the density GAMs exhibited substantially greater predic-
tive power than both the presence/absence GAMs and BRTs, likely due to both the 
different response variables and fitting algorithms. Our results provide an improved 
understanding of some of the strengths and limitations of models developed using 
these two methods. These results can be used by modelers developing SDMs and re-
source managers tasked with the spatial management of marine species to determine 
the best modeling technique for their question of interest.
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1  | INTRODUC TION

Species distribution models (SDMs) are widely recognized as import-
ant marine spatial planning tools because they can describe and pre-
dict the distribution patterns of highly mobile marine species. SDMs 
have been developed for a wide range of marine predators and used 
to establish marine conservation areas, guide fisheries manage-
ment, and assess risks posed by anthropogenic activities (Abrahms 
et al., 2019; Benson et al., 2011; Gilles et al., 2016; Hartog, Hobday, 
Matear, & Feng, 2011; Hazen et al., 2017; Hobday, Hartog, Timmis, 
& Fielding, 2010; Keller, Garrison, Baumstark, Ward-Geiger, & 
Hines, 2012; Louzao et al., 2006; Redfern et al., 2019; Welch, Brodie, 
Jacox, Bograd, & Hazen, 2019). A variety of modeling techniques 
have been used to develop SDMs, including generalized additive 
models (GAMs), generalized linear models (GLMs), boosted regres-
sion trees (BRTs), Random Forests (RFs), and maximum entropy 
(MaxEnt) models (Austin, 2007; Elith et al., 2006; Hegel, Cushman, 
Evans, & Huettmann, 2010; Mi, Huettmann, Guo, Han, & Wen, 2017; 
Oppel et al., 2012; Robinson, Nelson, Costello, Sutherland, & 
Lundquist, 2017; Shabani, Kumar, & Ahmadi, 2016).

There is an extensive body of literature confirming the predictive 
ability of GAMs for cetacean ecological data (e.g., Becker et al., 2012, 
2014, 2018; Best et al., 2012; Cañadas & Hammond, 2008; Ferguson, 
Barlow, Fiedler, Reilly, & Gerrodette, 2006; Gilles, Adler, Kaschner, 
Scheidat, & Siebert, 2011; Hedley, Buckland, & Borchers, 1999; 
Keller et al., 2012; Lambert, Mannocci, Lehodey, & Ridoux, 2014; 
Mannocci et al., 2014). Recently, there has been increased interest 
in machine-learning techniques such as BRTs (Elith, Leathwick, & 
Hastie, 2008) and RFs (Breiman, 2001) that are able to test and fit 
multiple interactions among predictors and are tolerant of outliers, 
collinearity, and irrelevant predictors, making these techniques pow-
erful for analyzing complex ecological relationships (Breiman, 2001; 
De'Ath, 2007; Elith & Leathwick, 2009; Elith et al., 2008; Leathwick, 
Elith, Francis, Hastie, & Taylor, 2006).

When evaluating the performance of SDMs, there has been an 
emphasis on statistically comparing models with different conceptual 
frameworks (Austin, 2007; Elith & Leathwick, 2009; Franklin, 1998; 
Guisan & Thuiller, 2005). A robust comparison sometimes involves 
simulated data so that the “true” relationship between the response 
and predictor variables is known and results are not confounded 
by differences in responses, predictors, or model parameterization 

(Austin, 2007; Brodie et al., 2019). The use of real data is also valu-
able, because cross-validation with spatially and/or temporally novel 
datasets can be used to quantitatively assess model performance 
with data that were not used to build the models (Hijmans, 2012; 
Shabani et al., 2016). Comparing the results from different models 
built with real data can provide important insights for the spatial 
management of marine species (Robinson et al., 2011) and increase 
our understanding of both the strengths and weaknesses of differ-
ent modeling techniques, helping to guide future modeling efforts.

The majority of SDM comparison studies using real data have fo-
cused on terrestrial species (e.g., Elith et al., 2006; Franklin, Wejnert, 
Hathaway, Rochester, & Fisher, 2009; Robinson et al., 2011; Segurado 
& Araújo, 2004; Shabani et al., 2016; Syphard & Franklin, 2009). 
Comparative modeling studies have been developed for marine spe-
cies such as fish (BRTs, RFs, GAMS; Leathwick et al., 2006; Stock 
et al., 2019), seabirds (GLMs, GAMs, RFs, BRTs, and MAXENT; Oppel 
et al., 2012), and additional taxa (Robinson et al., 2017), but results 
from these marine-based model comparisons have not been consis-
tent across species. Few comparison studies have focused on ce-
tacean SDMs (e.g., GLMs vs. GAMs, Becker et al., 2010; GAMs vs. 
MAXENT, Fiedler et al., 2018). Studies that have compared cetacean 
SDMs have primarily used nonsystematic survey data for model de-
velopment (e.g., GLMs, GAMs, BRTs, MAXENT, and support vector 
machines; Derville, Torres, Iovan, & Garrigue, 2018; BRTs vs. gen-
eralized additive mixed models [GAMMs], Abrahms et al., 2019, 
Hazen et al., 2017) and have rarely explored how species distribu-
tion characteristics (i.e., spatial distribution and habitat preference) 
affect model performance. Finally, ensemble modeling has emerged 
as a robust method for combining multiple modeling results (e.g., 
Abrahms et al., 2019; Forney, Becker, Foley, Barlow, & Oleson, 2015; 
Marmion, Parviainen, Luoto, Heikkinen, & Thuiller, 2009; Oppel 
et al., 2012; Pikesley et al., 2013; Scales et al., 2016; Woodman 
et al., 2019), prompting a need to better understand the strengths 
and weaknesses of different modeling approaches to inform uncer-
tainty-based weightings.

U.S. west coast waters are habitat for over 25 cetacean species, 
which are all protected under the Marine Mammal Protection Act 
(MMPA), and some species are also protected under the Endangered 
Species Act (ESA). Given the overlap of cetacean habitat with 
hotspots of human use such as the shipping lanes leading into the 
ports of San Francisco and Long Beach (Moore et al., 2018), there 
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is a need to understand the spatial and temporal habitat use of 
these species. SDMs for cetaceans have been developed for U.S. 
west coast waters from systematic ship survey data collected by 
the Southwest Fisheries Science Center (SWFSC) since 1991, and 
these GAMs have been extensively evaluated using cross-valida-
tion (Barlow et al., 2009; Becker et al., 2010; Forney, 2000; Forney 
et al., 2012) and predictions on independent datasets (Barlow et al., 
2009; Becker et al., 2012, 2014, 2018; Calambokidis et al., 2015; 
Forney et al., 2012). The most recent models provide spatially ex-
plicit density predictions at a 0.1˚ (approximately 10km x 10km) 
grid resolution (Becker et al., 2016), and they have been used by the 
Navy to assess potential impacts on cetaceans as required by U.S. 
regulations such as the MMPA and ESA (U.S. Department of the 
Navy, 2013, 2015, 2017). However, a comparison between different 
model types developed using these systematic data has not been 
performed, despite the potential for insight into both model perfor-
mance and management of these species.

The objective of this study was to compare the explanatory and 
predictive power of the two most prevalent modeling frameworks 
used to develop SDMs for cetaceans, BRTs and GAMs, and evalu-
ate how species distribution characteristics affect model perfor-
mance. Ultimately, a better understanding of model performance 
will improve the application of SDMs for marine spatial planning 
and conservation efforts. We used systematic cetacean survey data 
collected by SWFSC between 1991 and 2014 to develop SDMs for 
seven taxonomically diverse species or subspecies that have dif-
ferent spatial distributions and habitat preferences: short-beaked 
common dolphin (Delphinus delphis delphis; Figure 1), long-beaked 
common dolphin (Delphinus delphis bairdii), striped dolphin (Stenella 
coeruleoalba), northern right whale dolphin (Lissodelphis borealis), 
Risso's dolphin (Grampus griseus), fin whale (Balaenoptera physalus), 
and humpback whale (Megaptera novaeangliae). We selected these 
species to provide a comparison of (a) species with widespread dis-
tributions (short-beaked common dolphin and fin whale) versus re-
stricted distributions (long-beaked common dolphin and humpback 

whale) in the study area, (b) species that occur in more dynamic 
nearshore habitat (northern right whale dolphin) versus less variable 
offshore habitat (striped dolphin), and (c) a species for which previ-
ous density GAMs did not perform as well as expected (Risso's dol-
phin; e.g., Becker et al., 2010; Forney et al., 2012). Since the majority 
of BRTs developed for marine species have been used to predict 
habitat suitability (probability of presence or relative abundance), 
which is then converted to presence/absence, ideally using a mean-
ingful threshold value (Abrahms et al., 2019; Brodie et al., 2018; 
Derville et al., 2018; Hazen et al., 2017; Maxwell et al., 2019; Scales 
et al., 2017), we first compared BRTs to GAMs that used presence/
absence as the response variable. We then compared results from 
these models to GAMs that predict absolute density (animals per 
km2), since density models built with these data have previously 
received extensive validation. Results enhance our scientific under-
standing of how the ecology and life history of different species af-
fect the accuracy of models developed in different frameworks and, 
thus, the accuracy of potential management advice.

2  | METHODS

2.1 | Survey data

Cetacean survey data used to build the SDMs were collected in 
the California Current Ecosystem (CCE) during the summer and fall 
(July through early December) of 1991, 1993, 1996, 2001, 2005, 
2008, 2009, and 2014 using systematic line-transect methods 
(Buckland et al., 2001). With the exception of 2009, which cov-
ered a limited area to target common dolphins (Carretta, Chivers, & 
Perryman, 2011), transect lines were arranged in a systematic grid 
to provide even coverage of the survey region over the course of 
each survey. When combined across years, the surveys provided 
dense coverage of waters from the west coast of the United States 
to approximately 556 km offshore (Figure 2; Barlow, 2016; Barlow 
& Forney, 2007; Carretta et al., 2011). We used on-effort sampling 
data from transect segments where Beaufort sea state (a wind index 
inversely correlated with animal detection rate) was ≤5. The survey 
protocol was the same for all years (see Barlow & Forney, 2007; 
Kinzey, Olson, & Gerrodette, 2000). Research vessels traveled at ap-
proximately 18 km/hr along predetermined transect lines while two 
experienced observers searched with pedestal-mounted 25 × 150 
binoculars (approximately 10–15 m above sea-level depending on 
the research vessel). A third observer searched with unaided eyes 
and 7× hand-held binoculars and also recorded data on survey con-
ditions and cetacean sightings. When cetaceans were sighted, the 
research vessel approached the group as needed to identify the spe-
cies and estimate the number of individuals in the group. All observ-
ers independently provided best, high, and low group size estimates; 
we averaged the best estimates for each species to obtain a single 
group size estimate for each sighting.

The modeling dataset was created by dividing continuous portions 
of survey effort into approximate 5-km segments using the approach 

F I G U R E  1   Short-beaked common dolphin (Delphinus delphis 
delphis) in the California Current Ecosystem study area. Photograph 
taken by K.A. Forney under NMFS Permit No. 19091
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described by Becker et al. (2010). Species-specific sighting data were 
assigned to each segment (total number of sightings and average group 
size), and habitat covariate values were derived based on the segment's 
geographic midpoint. Sighting data were truncated at a distance of 
5.5 km perpendicular to the track line to eliminate the most distant 
groups (Buckland et al., 2001) and to maintain consistency with the 
species-specific effective-strip-width estimates (key parameters in 
line-transect density analyses that provide measures of how far ani-
mals are seen from the transect line) derived by Barlow, Ballance and 
Forney (2011) and used in this study to estimate cetacean densities.

2.2 | Habitat variables

As is the case for most cetacean SDMs, the selected habitat pre-
dictors are most likely proxies for unmeasured underlying ecological 
processes driving species distributions. The same suite of predictor 
variables was used for both model types (GAM, BRT) and included 
a combination of dynamic, bathymetric, and spatial covariates as 
described below. We also offered year as a potential predictor in 
all models to capture population trends for species whose abun-
dance has increased substantially during the time period considered 
in our analyses: the short-beaked common dolphin (Barlow, 2016), 
fin whale (Moore & Barlow, 2011), and humpback whale (Barlow, 
Calambokidis, et al., 2011).

2.2.1 | Dynamic variables

Dynamic variables used in this study are defined as those that 
change on temporal scales of days to weeks in the CCE study area 
(Bograd et al., 2009). Dynamic predictors derived from a data assimi-
lative CCE configuration of the Regional Ocean Modeling System 
(ROMS), produced by the U.C. Santa Cruz Ocean Modeling and Data 
Assimilation group (Moore et al., 2011; Neveu et al., 2016), have 
been shown to be effective in similar SDMs for these species in this 
study area (Becker et al., 2016, 2017, 2018). We used daily output 
for each ROMS variable at the 0.1 degree (~10 km) horizontal resolu-
tion of the model. We used output from both a historical reanalysis 
(1980–2010; Neveu et al., 2016) and a near-real-time data assimila-
tion system (2011–present; Moore et al., 2013; ocean model ing.ucsc.
edu) to cover the broad temporal span of our survey data (1991–
2014). Both systems provide data-constrained state estimates for 
our study area, but they differ in assimilation details and the specific 
data used. We limited the predictors to those consistent between 
the two sources (Becker et al., 2017): sea surface temperature (SST) 
and its standard deviation (sdSST), calculated for a 3 × 3 pixel box 
centered on the pixel containing the modeling segment midpoint, 
mixed layer depth (MLD, defined by a 0.5°C deviation from the SST), 
sea surface height (SSH), and its standard deviation, sdSSH. An off-
set (+0.035 m) was applied to the near-real-time SSH data to match 
the historical reanalysis dataset, which had a different reference 
level (Scales et al., 2017).

2.2.2 | Bathymetric variables

Bathymetric data were derived from ETOPO1 (obtained from 
https://www.ngdc.noaa.gov/mgg/globa l/global.html; 0.1-degree 
resolution; Amante & Eakins, 2009). Given its prevalence as an im-
portant predictor in past modeling studies in this ecosystem (e.g., 
Becker et al., 2010, 2016, 2018), we selected water depth (m) as a 
habitat variable to represent bathymetry, obtained for the midpoint 
of each transect segment.

2.2.3 | Spatial variables

Latitude and longitude are prevalent as covariates in many ceta-
cean modeling studies (e.g., Cañadas & Hammond, 2008; Forney 

F I G U R E  2   Completed transects for the Southwest Fisheries 
Science Center systematic ship surveys conducted between 1991 
and 2014 in the California Current Ecosystem study area and 
the eight geographic strata used to evaluate the accuracy of the 
spatial patterns of predicted habitat suitability/density. The four 
north–south strata are consistent with those used for line-transect 
abundance estimation (Barlow & Forney, 2007) and an offshore–
onshore division occurs at the 2,000 m isobath. Region names are 
as follows: (1) OR/WA west, (2) OR/WA east, (3) NorCA west, (4) 
NorCA east, (5) CenCA west, (6) CenCA east, (7) SoCA west, and 
(8) SoCA east. The green lines show on-effort transect coverage in 
Beaufort sea states ≤ 5. Also shown are names of geographic places 
mentioned in the text (SCB, Southern California Bight)

http://oceanmodeling.ucsc.edu
http://oceanmodeling.ucsc.edu
https://www.ngdc.noaa.gov/mgg/global/global.html
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et al., 2015; Hedley et al., 1999; Pirotta, Matthiopoulos, MacKenzie, 
Scott-Hayward, & Rendell, 2011; Tynan et al., 2005; Williams, Hedley, 
& Hammond, 2006). They were included as covariates in our study as 
they have been shown to increase the explanatory power of SDMs 
because they often account for unmeasured variables that might be 
important for driving species distributions (Becker et al., 2018). The 
inclusion of spatial covariates prohibits predictions outside of the 
study area, but allowed us to explicitly evaluate how the different 
modeling methods handled discrete spatial data.

2.2.4 | Interaction terms

One of the advantages of BRTs is their ability to automatically fit in-
teractions between predictor variables, while interactions must be 
explicitly defined when fitting GAMs. Previous comparative modeling 
studies have recognized the importance of interaction terms in SDMs 
and explicitly included them in GAMs to enable a more equitable 
comparison (Leathwick et al., 2006). Given the importance of spatial 
interaction terms in past cetacean SDMs (Becker et al., 2016, 2018; 
Forney, 2000; Palacios et al., 2019; Yuan et al., 2017), bivariate in-
teraction terms between latitude and each of the dynamic variables 
(SST, MLD, and SSH) were included individually when building the 
GAMs (see below for a description of the GAM modeling framework).

2.3 | Generalized additive models

Both the habitat suitability and density GAMs were developed in R 
(R Core Team, 2017) using the package “mgcv” (Wood, 2011), which 
uses cross-validation as part of the model selection process. We used 
restricted maximum likelihood (REML) to optimize the parameter esti-
mates and a variable selection process that uses a shrinkage approach 
to modify the smoothing penalty and effectively remove nonsignificant 
variables from the model (Marra & Wood, 2011). REML provides more 
accurate smooth term estimates than other methods such as Akaike's 
information criterion (AIC) that have been shown to be prone to un-
dersmoothing (Marra & Wood, 2011). To ensure that models were not 
overfit, we also removed variables that had p-values > .05 and then refit 
the models to ensure that all remaining variables had p-values < .05 
(Redfern et al., 2017; Roberts et al., 2016). Pairwise interaction terms 
were considered separately in the GAMs to avoid overfitting and to 
aid in the ecological interpretation of the interaction term (Becker 
et al., 2016). Correlations among the predictor variables in our study 
ranged from 0.003 to 0.66 (absolute values), but mgcv is robust to such 
effects (termed “concurvity”; Wood, 2008).

2.3.1 | Habitat suitability GAMs

To develop presence/absence models from the systematically collected 
survey data, we assigned values of 1 to those segments that included 
sightings and values of 0 to those segments with no sightings. We fit 

binomial GAMs using a logit link function so that the resultant models 
describe the probability of species presence, also termed “habitat suit-
ability” (Brodie et al., 2018) or “habitat preference” (Hazen et al., 2017).

2.3.2 | Density GAMs

The methods used to develop the density GAMs followed those de-
scribed in Becker et al. (2018). For species that occur in small groups 
(i.e., fin and humpback whales), we fit a single response model using the 
number of individuals per transect segment as the response variable 
with a Tweedie distribution to account for overdispersion (Miller, Burt, 
Rexstad, Thomas, & Gimenez, 2013). The other species are all members 
of the Family Delphinidae that tend to occur in groups with large and 
variable sizes, so we fit separate encounter rate and group size models. 
Encounter rate (number of sightings per segment) models were fit with 
all transect segments using a Tweedie distribution (i.e., assume the num-
ber of groups sighted per segment is Tweedie distributed, e.g., Foster & 
Bravington, 2013). Group size models were fit with only those transect 
segments that included sightings, using the natural log of group size as the 
response variable and a Gaussian link function. To account for observed 
geographic differences in the size of delphinid groups (Barlow, 2015; 
Cañadas & Hammond, 2008; Ferguson et al., 2006), group size was mod-
eled using a tensor product smooth of latitude and longitude (Becker 
et al., 2018; Wood, 2003). The natural log of the effective area searched 
(described below) was included as an offset in both the single response 
and encounter rate models to account for both varying segment lengths 
and the different detection probabilities recorded during the surveys.

Density (number of animals per km2) was estimated by incor-
porating the model results into the standard line-transect equation 
(Buckland et al., 2001):

where i is the segment, n is the number of sightings, s is the average 
group size, and A is the effective area searched:

where L is the length of the effort segment (km), ESW is the effec-
tive strip half-width (km), and g(0) is the probability of detection on 
the transect line. Following the methods of Becker et al. (2016), spe-
cies-specific estimates of ESW and g(0) were derived based on the 
recorded detection conditions on each modeling segment using coeffi-
cients estimated by Barlow, Ballance, et al. (2011) for ESW and Barlow 
(2015) for g(0).

2.4 | Boosted regression trees

BRTs use machine-learning methods whereby predictions from single-
tree models are combined to maximize predictive performance (Elith 

(1)Di=
ni ⋅si

Ai

(2)Ai=2 ⋅Li ⋅ESWi ⋅g(0)i
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et al., 2008). We fit the BRTs in R (R Core Team, 2017) using the package 
“dismo” (Elith et al., 2008), following the methods described in Leathwick 
et al. (2006) and Elith et al. (2008). For each set of models, we built pres-
ence–absence BRTs specifying a binomial distribution consistent with 
the habitat suitability GAMs described above. The BRTs were assigned 
a tree complexity of 3, a bag fraction of 0.6, and we adjusted the learn-
ing rate (“shrinkage”) for each model to ensure that at least 1,000 trees 
were included in the final model configuration (Elith et al., 2008). Due to 
the tendency of BRTs to overfit (Leathwick et al., 2006), we included a 
random number as a potential predictor in each model run to compare 
against the other variables’ contributions; only relevant predictors (i.e., 
those more significant than the random variable) were included in the 
final BRTs (Eguchi, Benson, Foley, & Forney, 2017).

We built BRTs for each species using four combinations of vari-
ables to reduce the potential for overfitting and to explore the effect 
of including geographic (latitude, longitude) terms in the models: (a) 
dynamic and bathymetric variables only; (b) dynamic, bathymetric, 
and latitude; (c) dynamic, bathymetric, and longitude; (d) all vari-
ables. These models were compared using explained deviance, the 
receiver operating characteristic curve (AUC; Fawcett, 2006), and the 
true skill statistic (TSS; Allouche, Tsoar, & Kadmon, 2006), all metrics 
commonly used to assess BRTs (Brodie et al., 2018; Elith et al., 2006; 
Franklin et al., 2009; Oppel et al., 2012; Scales et al., 2017). Each BRT 
iteration is stochastic, and although generally the key variables (i.e., 
those with the most influence) are consistent among individual mod-
els runs, we used the best BRT of 10 model iterations for this analysis.

2.5 | Model predictions

For each species, the three models (suitability BRT, suitability GAM, 
and density GAM) were each used to make predictions on distinct 
daily composites of environmental conditions for all 1991–2014 
survey days (n = 1,312) used to develop the models. We used the 
average of all composites to represent expected long-term patterns 
in species distributions that account for the varying oceanographic 
conditions during the 1991–2014 summer/fall SWFSC cetacean 
surveys. Log-normal 90% confidence intervals for the spatial pre-
dictions principally reflect temporal variability in population den-
sity/habitat suitability since this has been shown to contribute the 
greatest source of uncertainty in these models (Barlow et al., 2009; 
Becker et al., 2014; Boyd et al., 2018; Ferguson et al., 2006). The 
prediction grid was clipped to the boundaries of the approximate 
1,141,800-km2 study area to ensure that predictions were not ex-
trapolated outside the region used for model development.

2.6 | Performance evaluation

The explanatory power of the models was compared using a set 
of established SDM performance metrics including AUC, TSS, and 
visual inspection of predicted and observed distributions during the 
1991–2014 summer/fall SWFSC cetacean surveys (Barlow et al., 2009; 

Becker et al., 2010, 2016; Forney et al., 2012; Oppel et al., 2012; Scales 
et al., 2016; Woodman et al., 2019). AUC and TSS measure the discrimi-
natory ability of an SDM and can be calculated using any type of predic-
tion value. To calculate TSS for the GAM density models, we used the 
sensitivity–specificity sum maximization approach (Liu, Berry, Dawson, 
& Pearson, 2005) to obtain thresholds for species presence. To assess 
the ability of the models to predict spatial distribution patterns, we used 
the presence/absence GAMs and BRTs to estimate habitat suitability and 
the density GAMs to estimate abundance specific to eight geographic 
strata within the CCE study area (Figure 2): four north–south strata con-
sistent with those used for line-transect abundance estimation (Barlow 
& Forney, 2007), and an offshore–onshore division at the 2,000-m 
isobath, which roughly represents the transition from the continental 
slope to the continental rise. The four north–south strata included wa-
ters off Oregon and Washington (322,200 km2 north of 42°N), north-
ern California (258,100 km2 south of 42°N and north of Point Reyes at 
38°N), central California (243,000 km2 between Point Conception at 
34.5°N and Point Reyes), and southern California (318,500 km2 south 
of Point Conception). Given the different response variables, we used a 
nonparametric Spearman rank correlation test to compare the models’ 
ranked predicted values across the eight geographic strata to those de-
rived from the actual survey data (Becker et al., 2014).

To compare the models’ ability to predict on novel data, we also 
built the models without the 2014 survey data and then used each of 
these models to predict on the 2014 environmental conditions of the 
summer/fall SWFSC survey. We selected 2014 for this evaluation be-
cause during this time waters in the CCE became anomalously warm 
as an unprecedented marine heatwave spread over the area (Bond, 
Cronin, Freeland, & Mantua, 2015; Cavole et al., 2016; Di Lorenzo & 
Mantua, 2016; Leising et al., 2015), providing a unique opportunity for 
cross-validation. A previous study (Becker et al., 2018) assessed the abil-
ity of the density GAMs to predict abundance and distribution during 
this novel year for some of the species considered here, and given their 
success, we wanted to compare novel predictions from the presence/
absence GAMs and BRTs. Following the methods of Becker et al. (2018), 
models were built with different combinations of the habitat variables 
and the model with the highest predictive performance was carried for-
ward to represent that model type. For each of the three models, we 
then computed overall study area ratios of observed-to-predicted val-
ues and inspected predicted 2014 distribution patterns as compared to 
the 2014 survey observations (Barlow et al., 2009; Becker et al., 2010, 
2016, 2018; Forney et al., 2012; Redfern et al., 2013).

Results were examined in light of the species-specific charac-
teristics that could affect model performance including study area 
distribution patterns and habitat preferences.

3  | RESULTS

3.1 | Explanatory performance

The 1991–2014 SWFSC surveys provided 82,659 km of on-effort 
data in Beaufort sea states ≤5 which were used to develop the three 
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different SDMs. The number of sightings available for modeling 
varied between species, ranging from 115 for northern right whale 
dolphin to 906 for short-beaked common dolphin (Table 1). Key pre-
dictor variables selected by the two different (habitat suitability and 
density) GAMs and BRT fitting algorithms (Table 1) were consistent 
with those found in previous studies that used subsets of the same 
survey data (Barlow et al., 2009; Becker et al., 2010, 2016, 2018; 
Forney et al., 2012; Redfern et al., 2013), although the BRTs included 
the greatest number of predictor variables.

Year was included as a continuous variable in the final habitat 
suitability and density GAMs and BRT for humpback whale, cap-
turing the increasing population trend of this species during the 
time period considered in our analysis (Barlow, Calambokidis, et al., 
2011; Calambokidis, Barlow, Flynn, Dobson, & Steiger, 2017). Year 
was also a key predictor variable in the short-beaked common dol-
phin and fin whale habitat suitability and density GAMs, but was 
not significant in the BRTs for these species (i.e., year had lower 
relative variable contribution than the random variable).

The overall study area ratios of observed-to-predicted density/
habitat suitability values were very similar for the GAMs and BRTs, 
yet the percentage of explained deviance, AUC, and TSS metrics 
were generally highest for the BRTs and lowest for the density GAMs 
(Table 1). The nonparametric rank correlations were significant for all 
species for both types of GAMs and the BRTs, although the density 
GAM exhibited better performance overall (Table 2). AUC, TSS, and 
the rank correlations all measure the discriminatory ability of an SDM 
(i.e., how well a model separates occupied from unoccupied sites; 
Vaughan & Ormerod, 2005); however, results from the rank correla-
tions suggest that the density GAMs were better able to capture 
large-scale spatial distribution patterns throughout the study area.

The 1991–2014 daily composite average density/habitat suitabil-
ity plots for the two model types showed similar overall distribution 
patterns for the majority of species, although there were obvious 
dissimilarities in portions of the study area (Figure 3). For example, 
the BRT for short-beaked common dolphin showed an abrupt tran-
sition in habitat suitability at approximately 40°N associated with 
the Mendocino Escarpment, while both the GAMs showed a grad-
ual decrease in density moving north of this latitude line (Figure 3a). 
Both types of GAM and the BRT predictions for fin whale showed 
this species’ widespread distribution throughout the study area, 
with areas of high density/habitat suitability extending from the 
Southern California Bight north to approximately 44°N, with areas 
of low density/habitat suitability in the southwestern portion of the 
study area (Figure 3f). North of 37°N the models differed, as the 
density GAM showed gradually lower density along the shelf where 
there were fewer sightings while the presence/absence GAM and 
BRT showed an abrupt lack of habitat suitability on the shelf extend-
ing continuously north to the U.S./Canadian border. All three mod-
els for humpback whale revealed a largely nearshore distribution, 
with highest density/habitat suitability extending from the northern 
portion of the Southern California Bight north to the U.S./Canadian 
border (Figure 3g); however, the BRT showed low-to-moderate 

habitat suitability in areas well offshore in the northern portions of 
the study area where there were no sightings of this species, despite 
good survey coverage (Figure 2).

Study area distribution patterns predicted by the three mod-
els were most similar for northern right whale dolphin (Figure 3c) 
and striped dolphin (Figure 3d) and differed most for long-beaked 
common dolphin (Figure 3b) and Risso's dolphin (Figure 3e), most 
notably for the BRTs. Both types of GAM and the BRT showed 
a swath of high density/habitat suitability for Risso's dolphin ex-
tending along the coast of the entire study area. However, offshore 
regions of predicted high density/habitat suitability differed in ex-
tent. Two well-defined offshore regions were predicted by both 
the GAMs, while the BRT predicted a more continuous area of 
moderately high habitat suitability throughout the offshore region 
extending north to about 40°N (Figure 3e). All long-beaked com-
mon dolphin models captured this species’ largely coastal distribu-
tion south of about 36°N, but the BRT showed an extension of low 
to moderate habitat suitability extending north along the entire 
coast (Figure 3b). The distribution pattern predicted by both GAMs 
is consistent with the documented occurrence of long-beaked 
common dolphin in the study area, as central/southern California 
is considered the northern extent of this species’ normal range 
(Carretta et al., 2011; Gerrodette & Eguchi, 2011). There have been 
recent sightings of long-beaked common dolphin north of 36°N 
(Ford, 2005; Huggins et al., 2011) and Ford (2005) anticipated that 
additional records of the species would occur during anomalously 
warm water periods. However, long-beaked common dolphins are 
not sighted north of Pt. Conception consistently enough to vali-
date the BRT predictions.

During the model development phase, we attempted to improve 
the BRT prediction for long-beaked common dolphin by building 
BRTs with various combinations of the dynamic, bathymetric, and 
spatial variables that could potentially eliminate the extension of 
low to moderate habitat suitability north of 36°N. Unfortunately, no 
combination of predictor variables we offered the BRT was able to 
successfully capture the limited distribution pattern of long-beaked 
common dolphin in the southern inshore portion of the study area, 
and all model predictions were worse (Figure 4) than the original 
(Figure 3b). As an experiment, we also built BRTs using data only 
south of 37°N, but when making predictions on the entire study 
area, these models still predicted high habitat suitability in the 
northern portions of the study area and in some cases well offshore 
(Figure 4d). In addition, the inclusion of latitude created apparent 
modeling artifacts in some of the BRT predictions (Figure 4a,d).

The lower and upper 90% confidence intervals (CIs) of density/
habitat suitability for the GAMs and BRTs showed overall similari-
ties throughout the study area, with regional differences apparent in 
species distribution patterns for both the lower and upper CIs that 
were similar to differences apparent in the multiyear average den-
sity/habitat suitability comparisons (Figure 3). For the majority of 
the species, the upper CIs for the BRTs were higher across the study 
area than those of the GAMs (e.g., Figure 3b,c,e–g).



5766  |     BECKER Et al.

Species Predictor variables
Expl.
Dev. AUC TSS Obs:Pred

Short-beaked common dolphin (n = 906)

GAM HS LON:LAT + year +SST + SSH 
+MLD

12.2 0.77 0.41 1.00

BRT HS LAT, SST, depth, SSH, MLD, 
SSTsd, SSHsd

27.93 0.90 0.63 1.00

GAM Dens LON:LAT + year +SST + SSH 
+MLD

3.77 0.69 0.28 0.99

Long-beaked common dolphin (n = 131)

GAM HS LON:LAT + SSHsd 48.80 0.98 0.92 1.00

BRT HS LAT, depth, SST, SSH, SSTsd, 
SSHsd

57.09 0.99 0.92 1.01

GAM Dens LON:LAT + SST 51.00 0.97 0.88 1.00

Northern right whale dolphin (n = 115)

GAM HS SST + depth +LON:LAT + MLD 
+SSH

13.80 0.84 0.53 1.00

BRT HS SST, MLD, SSTsd, depth, SSH, 
SSHsd

51.75 0.98 0.88 1.00

GAM Dens SST:LAT + depth 13.10 0.80 0.45 1.02

Striped dolphin (n = 151)

GAM HS LON:LAT + SST +SSH 10.60 0.79 0.46 1.00

BRT HS depth, SST, SSH, LAT, MLD, 
LON

20.36 0.90 0.63 1.00

GAM Dens SST:LAT + depth 3.44 0.70 0.33 0.97

Risso's dolphin (n = 182)

GAM HS LON:LAT + MLD 12.30 0.78 0.44 0.99

BRT HS depth, SST, MLD, SSTsd, SSH, 
SSHsd

31.03 0.91 0.62 0.99

GAM Dens LON:LAT + SST 9.95 0.74 0.41 0.98

Fin whale (n = 441)

GAM HS LON:LAT + year +SSH + SST 
+depth + SSHsd

13.70 0.81 0.47 1.00

BRT HS SSH, SST, MLD, depth, SSTsd, 
SSHsd

42.22 0.96 0.70 1.00

GAM Dens LON:LAT + year +SSH + MLD 
+SST + depth

10.50 0.74 0.38 0.86

Humpback whale (n = 360)

GAM HS LON:LAT + SST +year + depth 
+MLD + SSHsd

37.40 0.94 0.77 0.99

BRT HS SST, depth, MLD, SSTsd, 
SSHsd, SSH, year

51.83 0.96 0.79 1.00

GAM Dens LON:LAT + SST +year + depth 
+MLD

51.30 0.93 0.72 0.96

Note: Variable abbreviations are as follows: depth, bathymetric depth; LAT, latitude; LON, 
longitude; MLD, mixed layer depth; SSH, sea surface height; SSHsd, standard deviation of SSH; 
SST, sea surface temperature; SSTsd, standard deviation of SST. The “LON:LAT” and “SST:LAT” 
terms in the GAMs indicate an interaction term. All models for short-beaked common dolphin, 
fin whale, and humpback whale were also offered a year covariate to capture their change in 
abundance during the 1991–2014 survey years (see text for details). Variables are listed in the 
order of their importance in each model. Comparative explanatory performance metrics (i.e., 
model goodness of fit) included percentage of explained deviance (Exp.Dev.), the area under 
the receiver operating characteristic curve (AUC), the true skill statistic (TSS), and the ratio of 
observed:predicted habitat suitability/density for the study area (Obs:Pred).

TA B L E  1   Summary of the final GAM 
and BRT habitat suitability (HS) and GAM 
density (Dens) models built with the 
1991–2014 survey data and the number of 
sightings available for modeling (n)
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3.2 | Predictive performance

The ability of the different model types to make accurate predic-
tions during the novel 2014 year differed substantially, and based 
on the observed: predicted ratios, the density GAMs generally out-
performed both the presence/absence GAMs and BRTs, particularly 
for northern right whale dolphin, fin whale, and humpback whale 
(Table 3). The density GAM had the best observed:predicted ratio 
(i.e., closest to 1) for six of the seven species, while the presence/
absence GAM had the best ratio for northern right whale dolphin 
(Table 3).

The plots of predicted 2014 distribution patterns as compared to 
the 2014 survey observations showed that both types of GAM were 
better able to predict shifts in distribution during the anomalously 
warm conditions in 2014 as compared to the BRTs (Figure 5). For 
example, two warm temperate/tropical species in our study, short-
beaked common and striped dolphins, have continuous distributions 
southward into Mexican waters (Mangels & Gerrodette, 1994; Perrin, 
Scott, Walker, & Cass, 1985), and the distribution of both species 
expanded to the north during the warm 2014 conditions, increas-
ing their abundance throughout the CCE study area (Barlow, 2016; 
Becker et al., 2018). The density GAM was able to capture the north-
ward expansion of both short-beaked common and striped dolphins 
(i.e., swaths of higher-than-average density were predicted north of 
40°N; Figure 5a,d). The presence/absence GAM was able to capture 
this northward shift for striped dolphin, while the BRTs predicted 
average to lower-than-average habitat suitability north of 40°N for 
both species (Figure 5a,d). The 2014 study area abundance estimate 
for short-beaked common dolphin was almost twice as high as in 
previous years. For waters off Oregon and Washington, average 
abundance was more than five times higher than in previous years 

(Barlow, 2016) due to the northward expansion in distribution during 
the warm 2014 conditions. Both types of GAMs for short-beaked 
common dolphin were able to capture the absolute increase in 
abundance/habitat suitability, while the BRT predicted average to 
lower-than-average habitat suitability throughout most of the study 
area (Table 3 and Figure 5a).

The long-beaked common dolphin BRT predicted suitable habi-
tat extending north along the coast of the entire study area in 2014, 
but lower than what was predicted for previous years. The 2014 
predictions from both types of GAMs better matched the known 
distribution of this species in the southern nearshore region of the 
study area, and areas with the highest predicted density were con-
sistent with long-beaked common dolphin sighting locations during 
the 2014 survey (Figure 5b).

Among all the BRTs, the best observed:predicted habitat suit-
ability ratio for the novel 2014 year was for northern right whale dol-
phin (0.88; Table 3). Interestingly, the difference plot for this species 
revealed that the BRT predicted lower-than-average habitat suitabil-
ity for the majority of the study area, with a very small region near 
the northern border predicted to have higher-than-average habi-
tat suitability for northern right whale dolphin (Figure 5c). During 
the 2014 survey, all sightings of northern right whale dolphin were 
north of 40°N, different from previous surveys where this species 
was sighted as far south as the Southern California Bight (Figure 5c). 
The density GAM also captured this northward shift in distribution 
in 2014, but the difference plot for the GAM contrasted sharply with 
that of the BRT, with higher-than-average density predicted for the 
northern portion of the study area and lower-than-average density 
predicted for the south (Figure 5c). For this species, the habitat suit-
ability GAM had the worst observed:predicted ratio of the three 
models (1.17), and the difference plot was very similar to the BRT, 
with lower-than-average northern right whale dolphin habitat suit-
ability predicted for the entire study area (Figure 5c).

All three types of models for Risso's dolphin overestimated den-
sity/habitat suitability in the study area in 2014, with observed:pre-
dicted ratios ranging from 0.52 to 0.61 (Table 3). There were both 
similarities and differences between the novel 2014 prediction plots 
for the different model types, yet none appeared to fully capture 
observed distribution patterns of Risso's dolphin during this novel 
year (Figure 5e). The difference plots for the Risso's dolphin 2014 
predictions also showed similarities and differences for the different 
model types, with the two GAMs capturing similar patterns of high-
er-than-average predictions while the BRT and density GAM cap-
tured similar patterns of lower-than-average predictions (Figure 5e).

Predicted distribution patterns from both fin whale GAMs were 
fairly consistent with sighting data from the 2014 surveys, but the 
BRT predicted higher-than-average habitat suitability in the south-
west corner of the study area, where there were no sightings of 
this species in 2014 or during the previous 1991–2009 surveys 
(Figure 5f). The density GAM had an observed:predicted abundance 
ratio close to unity (1.05), while study area habitat suitability was 
overpredicted by the presence/absence GAM (0.82) and underpre-
dicted by the BRT (1.62; Table 3).

TA B L E  2   Summary of the Spearman rank correlation 
coefficients (Rs) for geographic regions within the study area 
based on observed values (i.e., estimates from the 1991–2014 
survey data) and predictions from the final GAM and BRT habitat 
suitability (HS) and GAM density (Dens) models

Species
Rs GAM 
HS

Rs BRT 
HS

Rs GAM 
Dens

Short-beaked common 
dolphin

0.976 0.929 1.000*

Long-beaked common 
dolphin

0.792 0.792 0.798*

Northern right whale 
dolphin

0.643 0.786* 0.738

Striped dolphin 0.952 0.976* 0.976*

Risso's dolphin 0.762 0.738 0.833*

Fin whale 0.929* 0.881 0.929*

Humpback whale 0.833 0.833 0.833

Note: Regions are shown graphically in Figure 2. The critical value at 
≤0.05 (1-tailed test) with 7 degrees of freedom = 0.643. Significant 
correlations were found for all model predictions but the model(s) that 
exhibited better performance are marked with an asterisk (*).
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The density GAM for humpback whale captured the increase in the 
number of individuals in the study area in 2014 (Barlow, 2016; Becker 
et al., 2018), with higher-than-average predictions for the region be-
tween approximately 34°N and 38°N where there were multiple sight-
ings during the 2014 survey (Figure 5g). Conversely, the presence/
absence GAM and BRT predicted lower-than-average habitat suitabil-
ity for this region in 2014 (Figure 5g), and the observed:predicted ra-
tios for these two models show that they substantially underestimated 
habitat suitability for humpback whales in 2014 (Table 3).

4  | DISCUSSION

GAMs and BRTs have been established as two commonly used 
modeling frameworks to guide spatial management and conser-
vation strategies for cetaceans (e.g., Abrahms et al., 2019; Gilles 
et al., 2016; Hazen et al., 2017; Redfern et al., 2019). Improving the 
application of SDMs for spatial planning and conservation efforts 
requires a better understanding of the strengths and weaknesses of 
these modeling methods. Both methods are used to model nonlinear 
covariate responses, but the mechanics of the two approaches dif-
fer, as GAMs use flexible smoothing functions while BRTs use binary 
splits (regression trees). Our study compared both the explanatory 
power (i.e., model goodness of fit) and predictive power (i.e., perfor-
mance on a novel dataset) of habitat suitability GAMs and BRTs, as 
well as density GAMs, for a taxonomically diverse suite of cetacean 
species using a robust set of systematic survey data. Below we pro-
vide details on the models’ performance and discuss species-specific 
characteristics that could have affected these results.

4.1 | Model comparison: explanatory versus 
predictive performance

The key environmental variables (i.e., those that had the most influ-
ence on the respective model) and general trend of their response 
curves (Figure S1) were similar in the final 1991–2014 GAMs and 
BRTs, as were the study area ratios of observed: predicted density/
habitat suitability and the overall distribution patterns for the major-
ity of species (Table 1, Figure 3). These results are similar to those of 
Scales et al. (2016), who found the ranking of variable performance, 
model response curves, and spatial predictions of GAMs, BRTs, and 
RFs similar when predicting the foraging habitats of gray-headed al-
batross (Thalassarche chrysostoma). The percentage of explained de-
viance, AUC, and TSS metrics were consistently higher for the BRTs 
(Table 1), suggesting that this type of model has higher explanatory 
ability than the GAMs; however, the predictive power of the BRTs 
was lower than both types of GAMs based on both the ratios of ob-
served-to-predicted values for the novel 2014 year (Table 3) as well 
as the spatial plots of predicted values to the 2014 actual survey 
sightings (Figure 5).

This result is consistent with the findings of Oppel et al. (2012), 
who found that machine-learning techniques (BRT, RF, and Maxent) 

showed excellent explanatory performance when discriminating be-
tween presence/absence, but poor performance when predicting on 
independent test data. They found a similar pattern when they used 
RF to develop density models, and attributed the inferior predictive 
performance to machine-learning techniques overfitting more than 
parametric models (Oppel et al., 2012). In our case, it is likely that 
overfitting in the BRTs made it more difficult to predict on the anom-
alous 2014 oceanic conditions that were not reflected in the training 
datasets, whereas the smooths in the GAMs were better able to han-
dle such differences. Specifically, GAMs extend the splines between 
predictor and variable partial response to predict on novel conditions 
while BRTs assume a static relationship when predicting out of bounds 
(Zurell, Elith, & Schröder, 2012). However, with any modeling frame-
work, when extrapolating outside the range of values used to build 
the models, results should be interpreted cautiously, particularly if data 
are not available for cross-validation (Becker et al., 2014; Mannocci, 
Roberts, Miller, & Halpin, 2017).

Year was included in both types of GAMs for short-beaked com-
mon dolphin, fin whale, and humpback whale, while the BRT only 
included year for humpback whale (i.e., year had lower relative vari-
able contribution than the random variable in both the short-beaked 
common dolphin and fin whale models). Thus, the GAMs appeared 
to capture absolute changes in population size as populations re-
covered (fin and humpback whales) or moved into the CCE (short-
beaked common dolphin).

One of the advantages of BRTs is the implicit incorporation of 
interaction terms, such as between latitude and longitude, which 
must be explicitly defined in a GAM. However, for many of our BRTs, 
latitude and/or longitude created odd modeling artifacts in the pre-
diction surfaces. For example, a spatial interaction term (latitude:lon-
gitude) was included in both types of GAM for long-beaked common 
dolphin, and these models accurately captured this species’ limited 
distribution in the study area (Figure 3b). However, when latitude 
and/or longitude was included in the long-beaked common dolphin 
BRT, these models produced ecologically unreasonable swaths of 
habitat suitability along latitude lines (e.g., Figure 4a,d). Further, lati-
tude did not capture the expected patterns of long-beaked common 
dolphin habitat in the final 1991–2014 BRT, because low-to-mod-
erate habitat suitability was predicted for areas along the entire 
U.S. west coast (Figure 3b), outside the normal range of this spe-
cies (Carretta et al., 2011; Gerrodette & Eguchi, 2011). Spatial terms 
were effective in the BRTs for some of the species considered here 
(e.g., striped dolphin, Figure 3d), so we suggest that modelers use 
care when including spatial terms in BRTs.

4.2 | Model comparison: species with widespread 
vs. limited distribution

During summer and fall, short-beaked common dolphins and fin 
whales are known to occur throughout large portions of our study 
area (Barlow, 2016; Barlow & Forney, 2007; Becker et al., 2016; 
Calambokidis et al., 2015). Both types of the 1991–2014 GAMs and 
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the BRTs successfully captured the distribution patterns of short-
beaked common dolphins and fin whales in the study area (Table 2, 
Figure 3a,f), suggesting that both model types have strong explana-
tory capability for species with widespread distributions. Predictive 
performance differed by model type for these species, as the GAMs 
predicted study area abundance for the novel year within 5% (density 
GAMs) to 18% (presence/absence GAMs) of what was observed, while 
the BRTs underpredicted habitat suitability by more than 60% for fin 
whales and almost 90% for short-beaked common dolphins (Table 3).

In contrast, humpback whales and long-beaked common dol-
phins have more limited coastal distributions in our study area, with 
the latter typically occurring south of about 36°N (Barlow, 2016; 
Barlow & Forney, 2007; Becker et al., 2016; Calambokidis 
et al., 2015; Carretta et al., 2011). Elith et al. (2008) suggested that 
one of the advantages of BRTs over GAMs is that they could han-
dle sharp discontinuities when modeling species with distributions 
that occupied only a small proportion of the sampled environmental 
space. Our results are inconsistent with this finding, as the humpback 

F I G U R E  3   Predicted habitat suitability/density values and uncertainty measures from the 1991–2014 SDMs for (a) short-beaked 
common dolphin, (b) long-beaked common dolphin, (c) striped dolphin, (d), northern right whale dolphin, (e) Risso's dolphin, (f) fin whale, and 
(g) humpback whale. Panels show multiyear average (AVG) habitat suitability (HS)/density (Dens) based on daily predictions covering the 
survey periods (summer/fall 1991–2014), as well as the 90% confidence limits (low 90% and high 90%). To enable comparisons among the 
different model types, habitat probability/density values are presented in eight equal-numbered bins based on the range of values for the 
1991–2014 average, with a 9th color added to emphasize higher values within the upper 90% confidence limit. Predictions are shown for the 
study area (1,141,800-km2). Orange dots in the average plots show actual sighting locations from the SWFSC summer/fall ship surveys for 
the respective species
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whale and long-beaked common dolphin density GAMs performed 
well for both species, the presence/absence GAM had the best pre-
dictive performance among the three model types for long-beaked 
common dolphin yet the worst for humpback whale, and the BRTs 
for both these species exhibited poor predictive ability (Table 3). The 
BRT 1991–2014 spatial predictions for both species also had issues 
as evident from the habitat suitability plots; the long-beaked com-
mon dolphin BRT showed suitable habitat north of the typical range 
for this species (Figure 3b), and the humpback whale BRT showed 
low-to-moderate habitat suitability in areas to the northwest and 
well offshore, where there have been no sightings of this species 
during the SWFSC surveys (Figure 3g). Surprisingly, the BRTs for 
both species had some of the highest explained deviance, AUC, and 
TSS values among all the models (Table 1). This illustrates that both 
threshold-independent (AUC) and threshold-dependent (TSS) mea-
sures can be misleading in cases when species “prevalence,” that is, 
the proportion of the study area in which a species occurs, is low 
(Fiedler et al., 2018; Fourcade, Besnard, & Secondi, 2018; Somodi, 
Lepesi, & Botta-Dukát, 2017). Our results are consistent with others 
who have suggested that AUC alone is not a robust measure of SDM 
predictive performance because it does not provide information on 
the spatial distribution of model errors (Lobo, Jiménez-Valverde, & 
Real, 2007) and that model selection based solely on TSS can be 
misleading (Ruete & Leynaud, 2015). This result has important im-
plications for management efforts in areas where the distribution 
of a species is poorly known, because reliance on the BRT AUC and 
TSS metrics alone could result in misguided conservation strategies 
(e.g., ill-defined boundaries for protected areas, ineffective mitiga-
tion measures, etc.).

4.3 | Model comparison: species occurring in more 
versus less heterogeneous habitats

The northern right whale dolphin is a cool-temperate species that 
occurs primarily in slope and shelf waters in the study area, which 
are oceanographically dynamic. Northern right whale dolphins ex-
hibit southward distribution shifts into the Southern California 
Bight during cool-water periods, such as the winter months (Becker 
et al., 2014; Dohl, Norris, Guess, Bryant, & Honig, 1980; Forney 
& Barlow, 1998). The striped dolphin is a tropical species inhabit-
ing warm offshore waters of the study area (Barlow, 2016; Becker 
et al., 2016; Forney et al., 2012), which are oceanographically less 
dynamic than the shelf and slope waters of the California Current 
Ecosystem (Chelton, Bernal, & McGowan, 1982; Haury, 1976; 
Hickey, 1979). Becker et al. (2010) found that the complexity of a 
species’ habitat influenced the predictive ability of GAMs and that 
greater sample sizes were required to parameterize models for spe-
cies that inhabit more heterogeneous or dynamic environments.

The 1991–2014 spatial distribution patterns of northern right 
whale dolphins and striped dolphins were successfully captured by 
all three models (Table 2, Figure 3c,d), suggesting that both model 
types have strong explanatory capability for species inhabiting hab-
itats of varying complexity. However, the novel predictions for 2014 
underestimated striped dolphin abundance (density GAM) and hab-
itat suitability (presence/absence GAM and BRT) by over a factor 
of two (Table 3). The range of striped dolphin extends continuously 
from the study area south to waters offshore Mexico (Mangels & 
Gerrodette, 1994; Perrin et al., 1985). During the anomalously warm 
water conditions in 2014, the available striped dolphin habitat within 

F I G U R E  4   Example predictions of long-beaked common dolphin habitat suitability from BRTs built with the 1991–2014 survey data 
and various combinations of predictor variables including (a) longitude (LON), latitude (LAT), and sea surface temperature (SST), (b) latitude, 
depth, and SST only, (c) dynamic and bathymetric variables only (SST, standard deviation of SST, mixed layer depth, sea surface height (SSH), 
standard deviation of SSH, and depth), and (d), a BRT developed using data south of 37°N that included latitude and depth only. Panels show 
the multiyear average (AVG) habitat suitability based on daily predictions covering the survey periods (summer/fall 1991–2014). Habitat 
suitability values are presented in eight equal-numbered bins to better depict predicted distribution patterns. Predictions are shown for the 
study area (1,141,800-km2). Orange dots show actual long-beaked common dolphin sighting locations from the SWFSC 1991–2014 summer/
fall ship surveys and illustrate the poor fit of these BRT predictions
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the study area likely increased substantially, resulting in an unprec-
edented influx of animals into the study area that was not fully cap-
tured by any model type. However, both types of GAM captured the 
northward distribution shift that was not evident in the BRT novel 
model predictions (Figure 5d).

The northern right whale dolphin GAMs and BRT all demon-
strated good performance when making 2014 predictions, and 
among the BRT models for all species, the predictions for this spe-
cies were the most accurate (observed:predicted habitat suitability 
ratio = 0.88; Table 3). During the unusually warm year 2014, the 
distribution of northern right whale dolphins shifted into the north-
ern portions of the study area, and there were no sightings south 
of 40°N where sightings had been common during the cooler years 

1991–2009 (Figure 3c). Both of the 1991–2009 GAMs for northern 
right whale dolphin were able to predict this northward shift in 2014, 
with zero to low densities predicted in the south and highest densi-
ties in the north (Figure 5c). The 1991–2009 BRT also captured this 
shift, as evident from the BRT 2014 predictions that show areas of 
highest habitat suitability in the northeast corner of the study area 
(Figure 5c).

The difference plots (Figure 5c) for the three models were dis-
similar; however, as the density GAM predicted higher-than-average 
density in the north and lower-than-average density in the south. In 
contrast, the presence/absence GAM and the BRT predicted lower 
habitat suitability for almost the entire study area. In this case, both 
habitat suitability models erroneously implied a lower study area 

TA B L E  3   Summary of the final GAM and BRT models built with the 1991–2009 survey data, the number of sightings available for 
modeling (n), and their ability to accurately predict study area habitat suitability (HS)/density (Dens) for the novel year (2014)

Species Predictor variables
Novel 2014 
Obs:Pred

Short-beaked common dolphin (n = 709)

GAM HS SST:LAT + SSH +year + MLD +SSTsd 1.05

BRT HS LAT, SST, depth, MLD, SSH, SSTsd, SSHsd 1.89

GAM Dens SST + SSH +depth + year +SSTsd 1.02*

Long-beaked common dolphin (n = 122)

GAM HS LON:LAT + SSHsd 0.87*

BRT HS LAT, depth, SST, SSH, MLD 0.40

GAM Dens LON:LAT + SST 0.80

Northern right whale dolphin (n = 108)

GAM HS SST + depth 1.17

BRT HS SST, MLD, LON, LAT, SSTsd, depth, SSH 0.88

GAM Dens SST:LAT + depth 1.05*

Striped dolphin (n = 103)

GAM HS depth + SST 2.41

BRT HS SSH, depth, LAT 2.46

GAM Den depth + SST 2.10*

Risso's dolphin (n = 171)

GAM HS LON:LAT + MLD 0.52

BRT HS LAT, depth, SST, LON, MLD, SSHsd, SSTsd. SSH 0.56

GAM Dens LON:LAT + SST +depth 0.61*

Fin whale (n = 362)

GAM HS LON:LAT + year +SSH + SST 0.82

BRT HS LAT, SSH, MLD, depth, SST, SSTsd, SSHsd 1.62

GAM Dens SST:lat + year +SSH + depth +MLD 1.05*

Humpback whale (n = 292)

GAM HS SST + depth +SSHsd + SSH +year 2.87

BRT HS SST, depth, MLD, SSTsd, SSHsd,SSH, year 1.78

GAM Dens LON:LAT + year +depth + SSHsd 1.15*

Note: Variable abbreviations are as follows: depth, bathymetric depth; LAT, latitude; LON, longitude; MLD, mixed layer depth; SSH, sea surface 
height; SSHsd, standard deviation of SSH; SST, sea surface temperature; SSTsd, standard deviation of SST. The “LON:LAT” and “SST:LAT” terms in the 
GAMs indicate an interaction term. All models for short-beaked common dolphin, fin whale, and humpback whale were also offered a year covariate 
to capture their change in abundance during the 1991–2009 survey years (see text for details). The novel 2014 Observed:Predicted (Obs:Pred) ratios 
reflect total study area values. For each species, the model with the best predictive performance (i.e., closest to 1) is marked with an asterisk (*).
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abundance of northern right whale dolphins, while the observed sur-
vey results indicated that there were nearly twice as many animals 
within a smaller (northern) area (Barlow, 2016). The density GAM 
successfully predicted this observed increase in abundance during 
2014 (observed:predicted density ratio of 1.05, Table 3). This result 
could be attributed in part to the different response variables, since 

the measure of presence/absence is not affected by the number of 
animals, whereas it has a direct impact on density. This result empha-
sizes the fact that an apparent decrease in habitat suitability does 
not necessarily equate to a decrease in abundance within a study 
area and thus has important considerations when using presence/
absence predictions in a management context (Boyd et al., 2018). In a 

F I G U R E  5   Predicted habitat suitability/density values from the 1991–2009 models compared to novel 2014 summer/fall predictions for 
(a) short-beaked common dolphin, (b) long-beaked common dolphin (c) striped dolphin, (d), northern right whale dolphin, (e) Risso's dolphin, 
(f) fin whale, and (g) humpback whale. Panels show the multiyear average (AVG) habitat suitability (HS)/density (Dens) values based on daily 
predictions covering the survey periods for summer/fall (July–December, 1991–2009). To enable comparisons among the different model 
types, habitat suitability/density values are presented in eight equal-numbered bins based on the range of values for the 1991–2009 period 
with a 9th color added to emphasize the higher 2014 predictions. Predictions are shown for the study area (1,141,800-km2). Orange dots 
show actual sighting locations from the summer/fall 1991–2009 and 2014 ship surveys, respectively. The difference between the predicted 
2014 and 1991–2009 average habitat probability/density values (i.e., 2014 predictions minus 1991–2009 average predictions) are shown in 
the fourth panel. Blue represents predicted 2014 values that were lower than the 1991–2009 average (i.e., <0), white represents values that 
were similar to the 1991–2009 average (i.e., within a small density difference up to 0.01, depending on species and based on the range of 
absolute density values), and yellow represents values that were substantially higher than the 1991–2009 average
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future study, we plan to develop methods for using machine-learning 
techniques such as BRTs to predict density from these multidecadal 
survey data and associated detection factors.

The anomalously warm conditions in 2014 provided a unique 
opportunity to assess the predictive ability of the models given the 
substantial shifts in distribution exhibited by many of the species 
considered here, including both striped and northern right whale 
dolphins. Our study area represents the northern range of striped 
dolphin (Mangels & Gerrodette, 1994; Perrin et al., 1985), and in 
2014, there was likely an influx of animals into the study area from 
Mexican waters. Conversely, the distribution of northern right whale 
dolphins shifted into the northern portions of the study area in 2014, 
likely expanding their distribution north of the CCE study area into 
Canadian waters. Such movement of animals into or outside of a po-
litically defined study area can present challenges to marine spatial 
planners focused on developing study area specific conservation 
measures, particularly when geographically limited data make it 
difficult to discern between apparent changes in abundance versus 
shifts in distribution. Future efforts to develop SDMs based on study 
areas defined by a species range could help inform management de-
cisions and lead to a greater understanding of species ecology.

With the exception of the striped dolphin presence/absence 
GAM built with the 1991–2014 survey data, all the models for both 
striped and northern right whale dolphins show an abrupt discon-
tinuity that runs east to west at 40°N (Figures 3c,d and 5c,d). This 
reflects the location of the Mendocino Escarpment, a bathymetric 
feature evident in many of the models that included depth as a sig-
nificant predictor, although the abrupt change in habitat suitability/
density was most striking in the plots for striped and northern right 
whale dolphins. Although the Mendocino Escarpment is quite deep, 
empirical evidence suggests that this deep-water feature does have 
manifestations in terms of surface marine life (e.g., Pyle, 2005) and 
thus may provide an ecological component relevant to habitat mod-
eling. Increased biodiversity in this pelagic region may be due to 
the offshore transport of upwelling filaments associated with Cape 
Mendocino (Keister & Strub, 2008). Conversely, studies of subma-
rine canyons and seamounts suggest that these types of deep bathy-
metric features may provide hotspots for surface marine life and 
that enhanced dynamics such as increased vertical nutrient fluxes 
and material retention can promote productivity and subsequently 
attract higher trophic levels (Morato, Hoyle, Allain, & Nicol, 2010; 
Santora, Zeno, Dorman, & Sydeman, 2018). Internal waves interact-
ing with the Mendocino Escarpment can create deep-ocean mixing 
(Althaus, Kunze, & Sanford, 2003; Di Lorenzo et al., 2006), although 
more definitive studies are needed to see if there are mechanistic 
explanations for biological surface effects.

4.4 | Model comparison: a species for which 
previous GAMs have been challenging

Previous GAMs developed for Risso's dolphin using subsets of the 
data used here did not perform as well as expected, and there was 

poor correlation between predicted density patterns and sight-
ing data used to build the models (Becker et al., 2010; Forney 
et al., 2012). Sighting data reveal a longitudinal hiatus in the distribu-
tion of Risso's dolphins within the study area, with sightings con-
centrated either along the continental shelf (mainly south of 38°N) 
or in offshore deep waters (Barlow, 2016; Barlow & Forney, 2007). 
Becker et al. (2016) suggested that this sighting pattern might rep-
resent two separate populations of Risso's dolphin and included an 
interaction term between the 200-m isobaths and latitude to cap-
ture the observed spatial distribution in a GAM. For this study, we 
wanted to compare the ability of the GAMs and BRT to capture the 
distribution pattern of Risso's dolphin without including this interac-
tion term and using additional sighting data from the 2014 survey.

Similar to previous studies, the multiyear average density plot 
produced by the 1991–2014 density GAM did not correlate well with 
the sighting data, as there were no sightings in high-density regions 
and multiple sightings in the lowest density regions (Figure 3e). The 
presence/absence GAM exhibited similar patterns to the density 
GAM and also failed to accurately capture the observed 1991–2014 
distribution patterns. The 1991–2014 BRT average habitat suitability 
plot did a better job at capturing the disjunctive longitudinal sighting 
pattern south of 40°N but also showed highest habitat suitability 
continuous along the coast from approximately 38°N to 42°N and in 
the southeast corner of the study area where there were few sight-
ings during the 1991–2014 surveys (Figure 3e). The fact that none 
of the three models were able to capture the distribution patterns 
of Risso's dolphin likely indicates that the environmental variables 
offered to the models are not effective proxies for their habitat and 
prey. Large and small squid account for approximately 85% of the diet 
of Risso's dolphin (Pauly, Trites, Capuli, & Christensen, 1998). Squid 
are typically found at depths >200 m (Childress & Seibel, 1998), and 
identifying an available proxy that better captures the ecological 
processes driving squid distribution may improve the explanatory 
power of Risso's dolphin SDMs. Given their poor explanatory per-
formance, it is not surprising that both the GAMs and BRT for Risso's 
dolphin also had poor predictive performance (Table 3).

5  | CONCLUSIONS

This study provided a unique opportunity to compare the perfor-
mance of two commonly used SDM modeling frameworks, GAMs 
and BRTs, for a diverse suite of cetacean species to better under-
stand strengths and limitations of each approach. All three models 
(density GAMs and presence/absence GAMs and BRTs) exhibited 
good explanatory performance and did well at predicting spatial 
patterns for species that have widespread distributions through-
out the study area and for species that inhabit oceanographically 
diverse (i.e., more or less dynamic) environments. For species with 
limited distributions in our study area, the BRTs were not able to 
accurately capture their spatial distribution patterns despite strong 
performance as indicated by commonly used model evaluation met-
rics, confirming previous studies that have suggested that both AUC 
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and TSS can be misleading when used to evaluate SDMs (Fiedler 
et al., 2018; Lobo et al., 2007; Ruete & Leynaud, 2015). Further, the 
inclusion of latitude and longitude in some of the BRTs, most nota-
bly for long-beaked common dolphin, resulted in odd modeling ar-
tifacts and predicted spatial distribution patterns opposite to those 
documented for this species.

When predicting on anomalous novel data, the density GAMs 
exhibited higher predictive performance than the presence/absence 
GAMs and substantially higher predictive performance than the 
BRTs. This is likely due to both the different response variables and 
the different fitting algorithms. Since the density GAMs are predict-
ing absolute abundance, they are better able to respond to changes 
in the number of animals present in the study area, particularly for 
species whose distributions shrink but abundance increases (i.e., 
northern right whale dolphin in 2014). Similar to previous studies 
(Leathwick et al., 2006; Oppel et al., 2012), we found that BRTs had 
good explanatory power for most species but were not able to make 
accurate predictions on novel data, likely due to overfitting. Perhaps 
a better method of model selection to avoid overfitting could im-
prove the predictive power of BRT models.

While there may be no single best modeling framework for 
predicting cetacean density or presence/absence, our results have 
provided an improved understanding of some of the strengths and 
limitations of both GAMs and BRTs. These findings support the use 
of both model types for describing species relationships, but suggest 
that a cautionary approach should be used when applying BRTs to 
anomalous novel data, and when including spatial terms (latitude, 
longitude) in the suite of potential predictors. Model ensembles have 
been shown to be a powerful tool for leveraging the weaknesses and 
strengths of different model types (Abrahms et al., 2019; Woodman 
et al., 2019) and may be a useful option for future species distribu-
tion modeling work. Continual efforts to evaluate and improve the 
predictive performance of species distribution models will aid in the 
conservation and management of cetacean species worldwide.
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