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Abstract 

Background:  Early unplanned hospital readmissions are associated with increased harm to patients, increased medi‑
cal costs, and negative hospital reputation. With the identification of at-risk patients, a crucial step toward improving 
care, appropriate interventions can be adopted to prevent readmission. This study aimed to build machine learning 
models to predict 14-day unplanned readmissions.

Methods:  We conducted a retrospective cohort study on 37,091 consecutive hospitalized adult patients with 55,933 
discharges between September 1, 2018, and August 31, 2019, in an 1193-bed university hospital. Patients who were 
aged < 20 years, were admitted for cancer-related treatment, participated in clinical trial, were discharged against 
medical advice, died during admission, or lived abroad were excluded. Predictors for analysis included 7 categories of 
variables extracted from hospital’s medical record dataset. In total, four machine learning algorithms, namely logistic 
regression, random forest, extreme gradient boosting, and categorical boosting, were used to build classifiers for pre‑
diction. The performance of prediction models for 14-day unplanned readmission risk was evaluated using precision, 
recall, F1-score, area under the receiver operating characteristic curve (AUROC), and area under the precision–recall 
curve (AUPRC).

Results:  In total, 24,722 patients were included for the analysis. The mean age of the cohort was 57.34 ± 18.13 years. 
The 14-day unplanned readmission rate was 1.22%. Among the 4 machine learning algorithms selected, Catboost had 
the best average performance in fivefold cross-validation (precision: 0.9377, recall: 0.5333, F1-score: 0.6780, AUROC: 
0.9903, and AUPRC: 0.7515). After incorporating 21 most influential features in the Catboost model, its performance 
improved (precision: 0.9470, recall: 0.5600, F1-score: 0.7010, AUROC: 0.9909, and AUPRC: 0.7711).

Conclusions:  Our models reliably predicted 14-day unplanned readmissions and were explainable. They can be 
used to identify patients with a high risk of unplanned readmission based on influential features, particularly features 
related to diagnoses. The operation of the models with physiological indicators also corresponded to clinical expe‑
rience and literature. Identifying patients at high risk with these models can enable early discharge planning and 
transitional care to prevent readmissions. Further studies should include additional features that may enable further 
sensitivity in identifying patients at a risk of early unplanned readmissions.
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Introduction
Hospital readmissions disrupt the normality of the lives 
of families and caregivers of patients; moreover, they are 
associated with harm to patients, reduced quality of care 
[1], and increases in overall health care costs [2, 3]. The 
hospital readmission rate is considered a performance 
indicator to measure a hospital’s quality of care [4]. Fur-
thermore, decreasing unnecessary hospital readmissions 
can potentially reduce financial and health care burden 
and improve the quality of care [5, 6].

One of the approaches for decreasing the hospi-
tal admission rate is to identify patients at risk of read-
mission; this will enable further investigations, and 
preventive strategies can then be developed because 
many readmissions are preventable [7, 8]. However, 
diverse and complex factors lead to readmissions, and 
clinicians cannot process all information to accurately 
identify at-risk patients [9]. Applying predictive models 
can direct medical attention toward patients with a high 
readmission risk, which leverages health care systems 
and saves health care expenditure.

Current models for readmission risk prediction include 
attributes describing patient’s initial admission; clini-
cal data have been developed and validated for this, but 
they have yielded moderate discriminative ability [10, 
11]. The complex interaction between readmission and 
potential risk makes accurate prediction of readmis-
sion difficult. Machine learning (ML) methods can har-
ness high-dimensional medical data to generate accurate 
patient risk stratification models and shape health care 
decisions through the customization of care to individual 
patients [12].

Preliminary studies have demonstrated that for 30-day 
all-cause hospital readmission prediction, ML models 
are better than conventional predictive models [13, 14]. 
Nevertheless, only unplanned readmissions may lead 
to substandard care [15]. The likelihood of unplanned 
readmissions is the highest in the immediate postdis-
charge period [3], and early 14-day unplanned readmis-
sions were demonstrated to be associated with quality of 
inpatient care; thus, they were deemed avoidable in cases 
of high-quality care [1]. Recent studies have shown that 
readmissions within the first 7 days of hospital discharge 
may be more preventable than later 30-day readmissions 
[7, 16, 17] and are mostly related to potential gaps in care 
during the index hospitalization [16, 18]. In Taiwan, the 
rate of unplanned 14-day readmission for the same or 
related diagnosis is among the continuous monitoring 

indicators of care quality of the National Health Insur-
ance Administration; in turn, it affects the hospital 
accreditation and indirectly influences reimbursement to 
hospitals [19]. However, whether predictive models and 
significant predictors of 14-day unplanned hospital read-
missions vary from those of 7-day or 30-day unplanned 
readmissions has not been thoroughly investigated.

Furthermore, predicting readmission early can improve 
the quality of care. Although ML has been successful 
with large datasets for predicting 30-day unplanned read-
mission [12, 20], studies investigating ML-based risk pre-
diction models for identifying high-risk patients for 7- or 
14-day unplanned hospital readmission are also lacking.

Therefore, the objective of our study was to build ML 
models that can accurately predict 14-day unplanned 
hospital readmissions and to identify influential risk fac-
tors in a cohort of patients discharged from a tertiary 
teaching hospital in Taiwan.

Methods
Study design and participants
This retrospective cohort study included consecutive 
patients discharged from a 1193-bed tertiary care aca-
demic medical center in Tainan, Taiwan, from Sep-
tember 1, 2018, to August 31, 2019. Patients who were 
aged < 20  years, who were admitted for cancer-related 
treatment, who participated in pharmaceutical clini-
cal trial, who were discharged against medical advice, 
who died during admission, or who lived abroad were 
excluded from the study. The study protocol was 
approved by the institutional review board of the hospital 
(A-ER-108-309).

Predictor variables
Data for analysis included 7 categories of variables 
extracted from hospital’s medical record dataset: (1) 
demographic characteristics; (2) health care utilization 
6  months before index admission; (3) diagnoses 1  year 
before index admission including the total count of 
inpatient diagnoses in the past year (we collected 3 
major diagnoses of each hospitalization; if the patient 
was admitted twice 1 year before the index admission, 6 
inpatient diagnoses were collected), number of unique 
inpatient diagnoses in the past year (we deleted dupli-
cate diagnoses from the total inpatient diagnoses), total 
counts of outpatient diagnoses in the past year, and the 
number of unique outpatient diagnoses in the past year; 
(4) overall comorbidity and functional evaluation on 
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index admission including Charlson comorbidity index 
[21], presence of depression according to International 
classification of Diseases, Tenth Revision code [22], 
nutrition status according to Malnutrition Universal 
Screening Tool [23], and mood status according to Brief 
Symptom Rating Scale [24]; (5) health care services–
related variables during index admission; (6) one-time 
laboratory values recorded just before discharge; (7) dis-
charge-related variables. The detailed descriptions of all 
predictor variables are listed in Table 1.

Validation of hospital data
All variables that constitute the data for analysis were 
validated through the medical record review of randomly 
identified patient records at a 1:50 proportion for partici-
pants had 14-day unplanned readmission by one of the 
authors (MHC).

Preprocessing of features
We grouped certain categories together to reduce the 
numbers of categories of these features. Assuming that 
missing values are distributed randomly, we used imputa-
tion, which is a common approach for dealing with miss-
ing values [25]. Missing values in continuous features 
were filled with the median values of the features. We did 
not fill them with the mean values due to the asymmet-
ric distribution of features. As for categorical features, we 
filled missing values with modes if they had a relatively 
smaller proportion. Otherwise, we treated missing values 

as a new category. For binary features, we filled missing 
values with a negative value.

Study outcome
The primary outcome was unplanned readmissions 
within 14  days of discharge after index admission. 
Unplanned readmission was defined as admission for 
the same or a related diagnosis according to the National 
Health Insurance Administration’s definition. After thor-
oughly evaluating readmitted patients’ diagnoses for 
readmission and their clinical courses, the attending phy-
sicians in charge of the readmissions made the distinc-
tion of unplanned readmissions.

ML techniques
We used 4 ML algorithms, namely logistic regression 
[26], random forest (RF) [27], extreme gradient boosting 
(Xgboost) [28], and gradient boosting with categorical 
features support (Catboost) [29], to build classifiers for 
prediction. Logistic regression is a traditional statistical 
model and usually used to be the baseline to compare to 
ML models [13]. RF, Xgboost, and Catboost have shown 
acceptable performance in predicting unplanned read-
missions in previous studies [30].

To address the assumption of non-collinearity for logis-
tic regression, we computed Variance Inflation Factor 
(VIF) values to detect if collinearity existed and removed 
features with collinearity. First, we computed VIF val-
ues for each feature. Then we removed the feature with 

Table 1  List of variables and their corresponding category utilized in predicting 14-day unplanned readmission risk

Category Variable

Demographic Age; Sex; Marital status; Religion; Education; Area of residence; Living alone

Health care utilization 6 months before index admission Number of hospitalizations; Emergency department visits; Outpatient visits

Diagnoses 1 year before index admission The total count of inpatient diagnoses; Number of unique inpatient diagnoses; 
Total counts of outpatient diagnoses; The number of unique outpatient diagnoses

Overall comorbidity and functional evaluation on index admission The 3 major diagnoses of index admission; Charlson comorbidity index; Depression 
diagnoses; Consciousness level; Activities of daily living according to dependency 
level in mobility, dressing, feeding, toileting, and bathing; Nutrition status; Mood; 
Urinary incontinence; History of fall

Health care services–related variables during index admission Index type of admission; Disease-Related Group of the index admission; Health 
education

One-time laboratory values recorded just before discharge Hematocrit; White blood cell count; Red blood cell count; Mean corpuscular 
volume; Platelet count; Hemoglobin; Prothrombin time; Blood Urea Nitrogen; Cre‑
atinine; Aspartate Aminotransferase; Alanine Aminotransferase; Lactate Dehydroge‑
nase; γ-glutamyl transferase; Total Bilirubin; Potassium; Calcium; Sodium; Albumin, 
C-reactive protein; Thyroid-Stimulating Hormone

Discharge-related factors Registered in the discharge planning services; Vital signs recorded 24 h before dis‑
charge (systolic and diastolic blood pressure, pulse rate, respiratory rate, and body 
temperature); Department of discharge; Attending physician’s employee identity 
and years of experience; Number of discharge medication categories; Total number 
of tablets in discharge medication; Discharge destination; Discharge with pressure 
injury (or injuries); Types of catheters at discharge; Index hospital length of stay
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the highest VIF value and compute VIF values again and 
repeated this procedure until all VIF values are smaller 
than 4.

Feature importance can be obtained with RF, Xgboost, 
and Catboost models based on their use of features dur-
ing training. Feature importance demonstrates how much 
the prediction changes as the feature values vary. Higher 
feature importance indicates the higher importance of 
the feature to the model prediction. Through feature 
selection based on feature importance, we selected the 
most influential features to enhance the model’s general-
izability and performance and make the model practically 
usable. We set several thresholds of feature importance 
and chose values that provided an appropriate number of 
features the model.

Models were trained using Python 3.6.9 on a Linux 
Intel Xenon Gold 6138 processor with 2.0 GHz RAM and 
a 450G CPU. An NVIDIA Tesla V100 32  GB GPU was 
used to speed up the training process for Catboost mod-
els. We implemented models with Scikit-Learn, Xgboost, 
and Catboost packages of Python. Model hyperparam-
eters not learnable during training and determined the 
structure of models, were set as the defaulted values of 
these packages.

Training and evaluation
The dataset was split into training (75%) and testing (25%) 
sets with stratified random sampling to fix the proportion 
of patients with unplanned readmission in both subsets. 
The predictive models for readmission were trained on 
the training set and were applied and evaluated on the 
testing set. The fivefold cross-validation approach was 
used to obtain reliable results for evaluating prediction 
models or for obtaining reliable results. The original 

training set was split into 5 folds through stratified ran-
dom sampling. For the ith iteration, fold i was treated as 
the validation set and the remaining 4 folds were used to 
train the model. The model was evaluated using the vali-
dation set. The procedure was repeated for 5 iterations. 
Evaluation results of 5 iterations were collected to com-
pute the mean value and standard deviation.

We used 5 commonly used evaluation indices to evalu-
ate the models, namely precision score (positive predict 
rate), recall score (sensitivity), F1-score, area under the 
receiver operating characteristic curve (AUROC), and 
area under the precision–recall curve (AUPRC). These 
evaluation indices are commonly reported in the evalu-
ation of classification problems with ML [31]. Further-
more, AUPRC is appropriate for prediction tasks with a 
low rate of positive cases [32]. Their definitions are listed 
in Table 2.

Model interpretation
We adapted SHapley Additive exPlanations (SHAP) [33], 
a game theory–based framework with feature impor-
tance calculation, to interpret our ML model. It assigns 
an importance value (SHAP value) to each feature to 
explain the predication of each observation. It can also 
summarize how every feature contribute to the predic-
tion. To calculate SHAP values on categorical features, 
the approach to turn every category in a categorical fea-
ture into dummy variables, namely “one-hot encoding”, is 
utilized naturally.

Results
Cohort characteristics
From September 1, 2018, to August 31, 2019, a total of 37, 
091 adult patients were discharged, with a total of 55, 933 

Table 2  Definitions of evaluation metrics

Notation/
evaluation 
index

Description/definition

TP True positive. The number of patients who had unplanned readmission and were also predicted to have unplanned readmission by the 
model

FP False positive. The number of patients who did not have unplanned readmission but were predicted to have unplanned readmission by 
the model

TN True negative. The number of patients who did not have unplanned readmission and were also not predicted to have unplanned read‑
mission by the model

FN False negative. The number of patients who had unplanned readmission but were not predicted to have unplanned readmission by the 
model

Precision TP/(TP + FP)

Recall TP/(TP + FN)

F1-score The harmonic mean of precision and recall. The formula is as follows: F1 = 2 / (1 / Precision + 1 / Recall)

AUROC Area under the receiver operating characteristic curve

AUPRC Area under the precision–recall curve
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discharges (including repeated admissions). Of these, 530 
patients had unplanned readmission and 31, 759 patients 
had no unplanned readmission (unplanned readmission 
rate: 1.64%). After exclusion, 301 and 24, 421 patients 
with and without unplanned readmission were included 
(unplanned readmission rate: 1.22%). The mean age of 
the cohort was 57.34 ± 18.13 years. The training and vali-
dation cohorts consisted of 24, 722 patients (Fig. 1).

Characteristics, including laboratory values, between 
patients with and without unplanned readmission are 
presented in Additional file 1.

ML model performance
By computing VIF values, we found that collinearity 
existed in the 70 original features. We remained 27 fea-
tures without collinearity (VIF < 4) and created a logis-
tic regression model with these predictors (Additional 

Fig. 1  Flowchart of study cohort selection
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file 2). Among the 4 ML algorithms, the logistic regres-
sion model had the worst performance, and Catboost 
had the best performance. Table 3 lists the performance 
results of models evaluated on the testing set and the 
different performance results of Catboost models dur-
ing the feature selection process. After feature selec-
tion, the Catboost model with 21 features (Catboost 
4 in Table  3) performed the best in terms of AUROC 
(0.9909) and AUPRC (0.7711), which considered both 
positive rate and sensitivity. If more features were 
removed (Catboost 5 and 6 in Table  3), the precision 

score decreased. Therefore, we adopted Catboost 4 
with 21 features as the final model. Figures 2 and 3 pre-
sent its receiver operating characteristic curve and pre-
cision–recall curve.

Significant predictors
The final Catboost model has 21 useful features. Figure 4 
shows the importance of these features with the average 
value and standard deviation in 5-fold cross-validation.

Table 3  Performance metrics of the LACE model and machine learning models based on the testing set with fivefold cross-validation 
(Mean ± Standard Deviation, Unit: %)

AUROC = area under the receiver operating characteristic curve; AUPRC = area under the precision–recall curve

Model (#Features) Precision Recall F1-Score AUROC AUPRC

LACE (4) 2.97 ± 0.15 68.67 ± 3.86 5.70 ± 0.29 70.58 ± 1.88 34.63 ± 0.00

Logistic Regression: original features (70) 45.76 ± 15.72 4.00 ± 2.00 7.35 ± 3.59 80.46 ± 2.43 10.26 ± 2.23

Logistic Regression: original features (27) 43.62 ± 20.73 5.00 ± 1.05 8.84 ± 2.00 82.88 ± 3.57 11.66 ± 3.54

Random Forest: original features (70) 100.00 ± 0.00 41.33 ± 3.86 58.39 ± 3.79 97.89 ± 0.71 70.15 ± 4.23

Xgboost: original features (70) 93.23 ± 5.35 45.67 ± 3.89 61.25 ± 4.32 97.95 ± 0.52 66.52 ± 2.23

Catboost 1 (C1): original features (70) 93.77 ± 4.05 53.33 ± 5.27 67.80 ± 4.47 99.03 ± 0.07 75.15 ± 1.92

Catboost 2: features in C1 with importance > 0.5 (35) 95.12 ± 2.54 56.00 ± 5.33 70.29 ± 3.84 99.04 ± 0.09 76.11 ± 2.45

Catboost 3: features in C1 with importance > 0.6 (28) 95.09 ± 3.09 55.33 ± 5.31 69.74 ± 3.99 99.08 ± 0.08 76.69 ± 1.85

Catboost 4: features in C1 with importance > 0.8 (21) 94.70 ± 3.52 56.00 ± 6.02 70.10 ± 4.40 99.09 ± 0.08 77.11 ± 1.93

Catboost 5: features in C1 with importance > 0.9 (19) 93.20 ± 1.59 55.33 ± 5.72 69.29 ± 4.76 99.07 ± 0.10 76.80 ± 1.64

Catboost 6: features in C1 with importance > 1.1 (14) 91.46 ± 2.12 56.67 ± 4.47 69.86 ± 3.51 99.00 ± 0.11 76.97 ± 2.90

Fig. 2  Receiver operating characteristic curves of Catboost with 21 
features Fig. 3  Precision–Recall Curves of Catboost with 21 features
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Fig. 4  Feature importance in Catboost with 21 features

Fig. 5  Association between feature value and SHAP value in Catboost with 21 features



Page 8 of 11Lo et al. BMC Medical Informatics and Decision Making  2021, 21(1):288

Model interpretation
In Figs.  5 and 6, SHAP values are used to demonstrate 
how our Catboost model operates to classify patients as 
cases with 21 features. Among training sets in 5 folds, we 
randomly take one to demonstrate.

In Fig.  5, red points refer relatively higher values and 
blue points refer relatively lower values in numerical fea-
tures. For categorical features, one grey point represents 
a category in the given feature. And its location on the 
horizontal axis indicates the SHAP value that patients 
who belong to this category would be assigned from this 
feature. Overall, the model yielded a higher probability 
of unplanned readmission to patients with more inpa-
tient diagnoses or higher numbers of unique inpatient 
diagnoses 1 year before index admission, indicating that 
these patients are more likely to have unplanned read-
missions. In addition, the distribution of grey points of 
feature “DRG” is wider than that of feature “Attending 
physician”, meaning that the variation of SHAP values of 
different DRGs is higher than that of different attending 
physicians. That is, compared to different attending phy-
sicians, different DRGs may contribute larger difference 
of unplanned readmission possibility. This corresponds to 
Fig. 4, which shows that the average feature importance 
of “DRG” is higher than that of “Attending physician” 
and that their bars of one standard deviation even do not 
overlap (7.02 ± 0.93 vs. 2.57 ± 0.58). Figure  6 shows the 
association of SHAP values with values of 2 physiological 
features, namely sodium and alanine aminotransferase.

Discussion
Although recent studies have used ML to predict 30-day 
all-cause or unplanned readmission risk, analyses for pre-
dicting 14-day unplanned readmission remain rare in the 

literature. To the best of our knowledge, this is the first 
study to use ML to predict 14-day unplanned readmis-
sion and to select features to establish prediction models 
and the first study to use ML for predicting unplanned 
readmissions by using local data in Taiwan.

Accurately identifying patients at risk of unplanned 
readmission shortly after discharge can enable early dis-
charge planning and transitional care to prevent recur-
rent readmissions. Our findings demonstrated that 
ML algorithms can predict a patient’s risk of 14-day 
unplanned readmission with good discrimination and 
precision. They also suggested that unlike conventional 
approaches such as logistic regression, other ML algo-
rithms have the advantage of convenient utility besides 
accurate prediction. That is, we do not need to consider 
collinearity of predictors when fitting an ML model such 
as Catboost.

The most important finding is that the final ML model 
demonstrated good discrimination (AUROC > 0.99 and 
AUPRC > 0.77) with excellent precision (0.9470) and 
moderate sensitivity (0.5600). Furthermore, we com-
puted the LACE score (calculated at discharge using 4 
items: length of stay, acuity of admission, comorbidities 
and emergent department visits 6  months before index 
admission) [34], a well-known readmission risk assess-
ment score [34], in our cohort. Although LACE had a 
relatively high sensitivity (0.6867), its precision score 
was extremely low. Our final ML model strongly outper-
formed LACE in terms of evaluation metrics except for 
the recall score (precision: 0.9470 vs 0.0297, F1-score: 
0.7010 vs 0.0570, AUROC: 0.9909 vs 0.7058, and AUPRC: 
0.7711 vs 0.3463). Besides LACE, according to previ-
ous reports, our ML model seemed to outperform other 

Fig. 6  Association of SHAP value with Sodium (Left) and Alanine aminotransferase (Right) in Catboost with 21 features
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well-known developed readmission risk assessment 
scores, such as PARR-30 [35] (calculated with age, place 
of residence, acuity of admission, emergent department 
visits in the last year, history in the prior two years of 
11 major health conditions drawn from the Charlson 
co-morbidity index, and the hospital of admission), and 
HOSPITAL score [36] (calculated with hemoglobin, dis-
charge from an oncology service, sodium level, procedure 
during the index admission, index type of admission, 
number of admissions during the last year, and length 
of stay). The performance of PARR-30 and HOSPITAL 
were AUROC: PARR-30 = 0.7, HOSPITAL: 0.72; preci-
sion: PARR-30 = 0.59; sensitivity: PARR-30 = 0.054). The 
benefit of ML is that it is trained for each hospital and 
weighted for individual characteristics. Furthermore, sev-
eral studies have demonstrated that ML models are better 
than conventional models for all-cause hospital readmis-
sion prediction [13, 14, 30, 37, 38], and some studies have 
evaluated models for unplanned admissions [12, 20, 39]. 
Goyal et al. used a national database of 59, 145 patients 
who underwent spinal fusion to evaluate seven ML algo-
rithms, and all models showed moderate performance 
with 30-day unplanned readmission (AUROC: 0.63–
0.66, sensitivity: 0.46–0.64, and precision: 0.07). Among 
the seven ML models, gradient boosting machines per-
formed the best [12]. Morgan et  al. compared ML with 
conventional risk prediction scores for 30-day unplanned 
readmissions in 14,062 patients at 3 different hospitals, 
and ML score predicted readmissions better than con-
ventional scores (AUROC: 0.81, precision: 0.375, and 
sensitivity: 0.283) [20]. Considering overall performance, 
our final model seems to have satisfying prediction preci-
sion and sensitivity. A likely explanation for the satisfy-
ing performance of ML in our study is that we adopted 
Catboost, a ML algorithm designed for processing cat-
egorical data. Among 21 features in the final model, 6 
of them are categorical features. Furthermore, the num-
bers of categories of features were extremely large in our 
data (e.g., 684 in DRG and 297 in attending physicians’ 
employee identity), which may be difficult for non-Cat-
boost models to deal with.

The second important finding is that our ML predic-
tion model successfully identified several useful predic-
tors, which have also been used in the conventional risk 
assessment scores, such as LACE, PARR-30, and HOS-
PITAL. In the present model, patient age and place of 
residence were not associated with readmission risk, 
but hospitalizations 6  months before index admission 
was an important feature. This finding is consistent with 
the results of an updated systemic review regarding 

prediction models of 28- or 30-day unplanned hospital 
readmissions, which showed that the number of previous 
admissions ranks the fourth among top 10 most impor-
tant variables and is included in 29 unplanned readmis-
sion prediction models [10]. Furthermore, the number of 
total discharge medication tablets and medication cate-
gories were influential features in our model. Prescribed 
drug–related readmissions represent a nonnegligible 
proportion of readmissions, particularly among older 
patients [30, 40, 41]. Our study did not include high-risk 
medications as a predictor variable, and future investi-
gation is warranted to understand the effect of different 
medications on 14-day readmission risk.

The strength of this study is that it includes multiple 
predictor variables from demographic characteristics, 
prior health care utilization, diagnosis-related variables, 
overall health and function assessment on the index 
admission, variables related to healthcare services during 
admission, laboratory tests on discharge, and discharge-
related variables for analysis. Among the 21 features in 
the final model, most of the predictors could be identified 
at an early stage of admission; therefore, these variables 
can be used to estimate the probability of readmission 
soon after patients are admitted [37]. Other variables 
may not be modified by actions taken at discharge, but 
the most effective interventions preventing readmission 
in fact are related to postdischarge support to patients 
and caregivers [42]. By using the prediction model, 
patients identified as at-risk can be closely monitored and 
early outpatient follow-up or referrals to home health 
care services can be arranged.

This study has several limitations. First, data were 
retrospectively extracted from medical records, which 
may have reduced our ability to identify all risk factors 
for readmission. Second, we did not consider readmis-
sion to another facility because the data were limited 
to readmissions in the same hospital. Third, this study 
involved patients of a single academic tertiary hospital, 
and our findings may not be generalizable to other facili-
ties; hence, further external validation is required. Finally, 
we used cross-sectional features; we lacked features with 
sequential or temporal trajectory of events in electronic 
health records over time, which contains important 
information about disease progression and patient status. 
Access to large volumes of patient records with a sequen-
tial trajectory of events, such as electronic health records, 
warrants further investigation to improve prediction 
sensitivity and performance. Nevertheless, our findings 
could lay the groundwork for future studies using ML as a 
risk stratification tool for early unplanned readmissions.
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Conclusions
ML prediction models can help clinicians to accurately 
identify patients likely to experience early unplanned 
readmission. Our study results enable clinicians to iden-
tify patients at a high risk of hospital readmission and 
also suggest interventions that can be initiated during 
hospitalization, such as providing adequate patient or 
family education before discharge. Although our work 
has scope for improvement, we believe that it has set the 
stage for further research to improve the accuracy of pre-
dicting early readmission risk.
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