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Abstract

Patients with coronavirus disease 2019 (COVID-19) often exhibit diverse disease progres-

sions associated with various infectious ability, symptoms, and clinical treatments. To sys-

tematically and thoroughly understand the heterogeneous progression of COVID-19, we

developed a multi-scale computational model to quantitatively understand the heteroge-

neous progression of COVID-19 patients infected with severe acute respiratory syndrome

(SARS)-like coronavirus (SARS-CoV-2). The model consists of intracellular viral dynamics,

multicellular infection process, and immune responses, and was formulated using a combi-

nation of differential equations and stochastic modeling. By integrating multi-source clinical

data with model analysis, we quantified individual heterogeneity using two indexes, i.e., the

ratio of infected cells and incubation period. Specifically, our simulations revealed that

increasing the host antiviral state or virus induced type I interferon (IFN) production rate can

prolong the incubation period and postpone the transition from asymptomatic to symptom-

atic outcomes. We further identified the threshold dynamics of T cell exhaustion in the transi-

tion between mild-moderate and severe symptoms, and that patients with severe symptoms

exhibited a lack of naïve T cells at a late stage. In addition, we quantified the efficacy of treat-

ing COVID-19 patients and investigated the effects of various therapeutic strategies. Simu-

lations results suggested that single antiviral therapy is sufficient for moderate patients,

while combination therapies and prevention of T cell exhaustion are needed for severe

patients. These results highlight the critical roles of IFN and T cell responses in regulating

the stage transition during COVID-19 progression. Our study reveals a quantitative relation-

ship underpinning the heterogeneity of transition stage during COVID-19 progression and

can provide a potential guidance for personalized therapy in COVID-19 patients.

Author summary

Coronavirus disease 2019 (COVID-19) is currently destroying both lives and economies.

However, patients infected with severe acute respiratory syndrome (SARS)-like
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coronavirus (SARS-CoV-2) usually present heterogeneous and complicated progressions,

such as different incubation periods (short and long), symptoms (asymptomatic and

symptomatic) and severity (mild-moderate and severe). Currently, various clinical data

and experimental data are available from different countries, which has great significance

for integrating different types of data to comprehensively understand the diverse disease

progression in COVID-19 patients and guide individual treatment strategies. Here, we

developed a multi-scale computational model to describe the dynamical process of

patients infected with SARS-CoV-2, including intracellular viral dynamics, multicellular

infection process, and immune responses. By combining data integration, stochastic

simulation and quantitative analysis based on the multi-scale mathematical model, we

addressed an important question regarding how IFN response and T cell exhaustion

quantitatively affect heterogeneous progression in patients with respect to incubation

periods, symptoms and severity. Furthermore, the efficacy of various therapeutic strate-

gies for treating COVID-19 patients with different severity degrees was evaluated and vali-

dated. The computational framework in this study can also be extended to explore the

dynamical process of other coronavirus infections.

Introduction

Coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory

syndrome (SARS)-like coronavirus (SARS-CoV-2), is currently destroying global health and

economies. Patients with COVID-19 exhibit different disease symptoms, including mild, mod-

erate and severe cases [1, 2]. The severity of disease in infected individuals correlates with the

numbers of immune cells (CD4+ and CD8+ T cells, B cells and natural killer cells [3], as well as

serum levels of pro-inflammatory cytokines (IL-6, TNF, etc.) characterized as a cytokine storm

[1, 2, 4, 5]. Importantly, the diverse incubation periods of SARS-CoV-2 infection in different

patients make it incredibly difficult to predict the disease progression or to initiate clinical

treatment on time [6, 7]. The mean incubation period of SARS-CoV-2 is estimated to be 3–7

days [8, 9], and asymptomatic COVID-19 patients effectively transmit SARS-CoV-2 during

their incubation periods [10].

There are many cellular and molecular factors that influence COVID-19 severity. Angioten-

sin-converting enzyme-2 (ACE2), the functional receptor of SARS-CoV-2, plays a crucial role

in the pathogenesis of COVID-19 by allowing viral entry into human cells [11]. ACE2 is highly

expressed on target cells, including absorptive enterocytes and epithelial cells [11–13]. During

viral infection, the spike (S) protein of CoV-2 interacts with ACE2, and the cellular transmem-

brane serine protease 2 (TMPRSS2) [14] mediates the viral envelope to host cell membrane

fusion, leading to the release of viral nucleocapsid into the cytoplasm of host cells. After viral

infection, cellular detection of viral replication is largely mediated by a family of intracellular

pattern recognition receptors (PRRs) that sense aberrant RNA structures [15], resulting in the

engagement of cellular antiviral defenses [16]. However, high IL-6 levels are associated with

severe disease and death [17, 18], whereas the expression of interferon-γ (IFN-γ) tends to be

slightly lower in severe cases than in moderate cases, primarily due to the decrease in CD4+,

CD8+ T cells and NK cells [19]. Total T cells, and CD4+ and CD8+ T cell counts are negatively

correlated with serum IL-6, IL-10, and TNF-α levels in COVID-19 patients, and patients in

the disease resolution period exhibit decreased IL-6, IL-10, and TNF-α concentrations and

restored T cell counts [20]. Therefore, IL-6 and IL-10 can be used as predictors for rapid prog-

nosis of COVID-19 patients with higher risk of disease deterioration, and the neutrophil-to-
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lymphocyte ratio and neutrophil-to-CD8+ T cell ratio have been identified as powerful predic-

tors of severe COVID-19 [21].

COVID-19 progression involves multiple complex steps of virus-host interactions.

COVID-19 in different individuals exhibits diverse severity, including asymptomatic and

symptomatic, mild, severe and critical, etc. [22], suggesting that individual heterogeneity is

important for understanding the mechanism of COVID-19 and designing personalized treat-

ment. Usually, clinical and biological experiments are not well poised to explore individual

heterogeneity. To better understand the relationship between individual heterogeneity and

disease severity in COVID-19 patients and to identify more effective treatments for different

patients, in this study, we developed a data-driven multi-scale mathematical model to predict

the clinical course of SARS-CoV-2 infection and quantitatively explored the factors underlying

COVID-19 disease severity. By combining differential equations with stochastic modeling,

as validated through different sources of experimental, epidemiological, and clinical data, we

analyzed individual heterogeneity using stochastic simulation and quantitative analysis. Our

results will contribute to understanding COVID-19 disease heterogeneity and to identifying

novel clinical therapies.

Results

Host immune responses associated with COVID-19 severity based on

multiple data analysis

To investigate host immune responses in COVID-19, we collected multiple datasets with adap-

tive immune cell counts, cytokines levels, proteomics, and single cell RNA-sequencing from

COVID-19 patients with different symptoms (see Methods). First, we examined T cell

response by comparing the counts of T cell subsets between 50 healthy donors and 157

COVID-19 patients (117 moderate and 40 severe symptoms) from Yale New Haven Hospital

(Dataset 4) (Fig 1a–1d). The percentage of naïve CD4+ and CD8+ T cells were not significantly

different between healthy donors and in severe patients (Fig 1a and 1b). Both CD4+ and CD8+

T cells exhibited significantly lower levels in patients than in healthy donors, and severe

patients presented even lower level than that in moderate patients (Fig 1c and 1d).

Previous studies have shown that the reduction in T lymphocytes is linked to T cell exhaus-

tion [19]. We examined the expression of the marker gene Tim-3 for T cell exhaustion in 41

COVID-19 patients from the Fifth Medical Center of PLA General Hospital of China (Dataset

2). The percentage of CD4+ and CD8+ T cells expressing Tim-3 on their surface was signifi-

cantly higher in severe patients than in mild patients (Fig 1e and 1f). We further analyzed the

distribution of Tim-3 transcription based on single cell RNA-sequencing data from 8 moder-

ate patients and 13 critical patients from Charité-Universitätsmedizin Berlin and University

Hospital Leipzig (Dataset 5). Critical patients exhibited significantly increased frequencies of

cytotoxic T lymphocytes (CTLs) and regulatory T cells (CD4+T/Treg), and elevated Tim-3

transcription levels (Fig 1g and 1h), implying increased higher level T cell exhaustion in critical

patients [23]. These data analyses suggest that exhaustion of T cells is associated with the

reduction of T cells and accelerates the malignant development of COVID-19.

Previous studies have shown that a cytokine storm in COVID-19 may result in the emer-

gence of severe patients and increase mortality [24–26]. We analyzed the published data of

cytokine levels in COVID-19 patients from Datasets 3 and 4. The cytokines IL-6, IL-10, and

IFN-γ were present at markedly higher levels in nonsurvivors patients than in survivors from

the data of Renmin Hospital of Wuhan University (Fig Aa-c in S1 Text), and exhibited obvious

increases from healthy donors and moderate patients, to severe patients from data of the Yale

New Haven Hospital (Fig Ad-f in S1 Text). These results suggest that higher level cytokines
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such as IL-6, IL-10, and IFN-γ are associated with severe symptoms and death cases in

COVID-19 patients [27]. Additional integrative data analysis is shown in Figs B and C in S1

Text (Section 1 in S1 Text for the detailed description).

Based on the above data analysis, we proposed three assumptions in model development:

(1) the depletion of T cell counts is associated with T cell exhaustion; (2) T cell exhaustion is

dependent on the density of cytokines because persistently high cytokine levels is known to

induce T cell exhaustion [28]; (3) the comprehensive effect of IL-6, IL-10, and IFN-γ is repre-

sented by a single variable of cytokines, but the complex network that regulates cytokines activ-

ities is currently not well understood and is not included in this study.

A multi-scale model of SARS-CoV-2 infection dynamics and host immune

responses

To investigate disease progression in patients infected with SARS-CoV-2, we established a

computational model that includes various scale dynamics. The model includes viral infection,

viral spreading among multiple cells, and immune responses through IFN response, cytokines

and effector T cells (Fig 2). The intracellular viral dynamics describes molecular-level events

within individual cells, including the infection, binding, entry, replication of SARS-CoV-2,

and IFN response signaling pathways (Fig 2 Intracellular), whereas the multicellular infection

process describes the infectious cell-to-cell transmissions and the immune response that

involves interactions between infected cells, cytokines, and T cell activities (Fig 2 Intercellular).

The progression and severity of COVID-19 are dominated by the population size of infected

cells (Fig 2 Organism).

SARS-CoV-2 primarily infects susceptible cells through receptor proteins (ACE2, NRP1).

The CoV spike glycoprotein (S protein) of SARS-CoV-2 binds to receptors on the cell surface

with high affinity, and the genomic RNA is released into the target cell. Inside the target cell,

SARS-CoV-2 RNA employs organelles and synthases to complete viral replication and

Fig 1. Multiple data on T cell response from COVID-19 patients with different symptoms. a. The percentage of naïve CD4+ T cells over CD4+ T cells. b. The

percentage of naïve CD8+ T cells over CD8+ T cells. c. Counts of CD4+ T cells. d. Counts of CD8+ T cells. a-d include healthy control (HC: n = 50), moderate (n = 117)

and severe (n = 40) patients from Yale New Haven Hospital (Dataset 4). e. The percentage of Tim-3 expression on CD4+ T cells. f. The percentage of Tim-3 on CD8+ T

cells. e-f include healthy control (HC: n = 6), mild (n = 29) and severe (n = 12) patients from the Fifth Medical Center of PLA General Hospital of China (Dataset 2). g.

The distribution of Tim-3 expression levels in CD4+ T/Treg cells. h. The distribution of Tim-3 expression levels in cytotoxic T lymphocytes (CTLs). g-h include

moderate (n = 8) and critical (n = 13) patients from Charité-Universitätsmedizin Berlin and University Hospital Leipzig (Dataset 5). Significance was determined by

two-sided, Wilcoxon rank-sum test.

https://doi.org/10.1371/journal.pcbi.1009587.g001
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assembly, which results in a large number of newly synthesized viruses. Upon viral replication,

the interferon signaling pathway, one of the virus-mediated innate immune signaling path-

ways, is activated and engages type I interferons (IFNs) and antiviral proteins (AVPs), and to

restrict the process of viral replication [29]. The newly synthesized virus leaves the target cell

by means of budding, and other susceptible cells are further infected, forming a cascade of cell

infection [30] (Fig 2 Intracellular).

Intracellular SARS-CoV-2 RNAs are recognized by host pattern recognition receptors

(PRRs), which triggers activation of the host immune response. The active immune cells

secrete cytokines, such as IL-6, IFN, etc., and activate the naïve T cells. The active T cells

undergo differentiation and proliferation to produce a large amount of activated T cells and

effector T cells. These cells continuously clear the infected cells, and secrete inflammatory cyto-

kines, which may lead to chronic inflammation [31]. The inflammatory microenvironment

further induces dysfunctional immune responses and exhaustion of effector T cells [28] (Fig 2

Intercellular).

Herein, a mathematical model was established to describe the time evolution of the number

of infected cells and the host immune response in accordance with the above process. In the

model, we considered a system of multiple cells (here we assumed a constant cell number N
for simplicity) that are potential target cells of SARS-CoV-2. The cells are heterogeneous with

Fig 2. Framework of multiscale model of SARS-CoV-2 infection. Intracellular: The S protein of SARS-CoV-2 binds to receptor proteins (ACE2, NRP1) on the cell

surface. Viral dynamics within a target cell are considered, which include (1) the release of RNA of SARS-CoV-2, (2) virus-activated IFN expression, (3) positive

feedback of IFNs, (4) activation of AVPs by IFNs, (5) natural depletion of IFNs, (6) inhibition of the virus by AVPs, (7) viral RNA replication, (8) protein synthesis,

assembly of novel SARS-CoV-2 and budding into the extracellular environment, (9) natural degradation of AVPs, and (10) degradation of viral RNA. The progeny

viruses leave the target cell by budding and further infect additional susceptible cells. Intercellular: The status of target cells is divided into uninfected and infected.

There is a supplied source of normal cells that will be transformed into infected cells if they are infected by the virus. The infected cell is identified and cleaned by

effector T cells. With respect to cellular communication, T cells mediate the immune response to SARS-CoV-2. PRRs on the cell surface sense SARS-CoV-2 and

activate the immune response. Immune cells secrete cytokines, such as IL-6, IL-10, IFN-γ, etc., and activate naïve T cells. The activated T cells undergo differentiation

and proliferation, and emerge as effector T cells. Activated T cells and effector T cells clear the infected cells and secrete cytokines. Some of cytokines (pro-

inflammatory cytokines) induce chronic inflammation, dysfunction of the immune response, and exhaustion of the effector T cells, which contribute to disease

progression. Organism: The population size of infected cells dictates the progression and severity of COVID-19. The progression of COVID-19 is divided to two

phases, symptomatic and asymptomatic. Furthermore, the severity of symptomatic patients is primarily divided into mild-moderate and severe.

https://doi.org/10.1371/journal.pcbi.1009587.g002
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distinct levels of receptor proteins on their surface. Therefore, we have a set of (4N + 1) differ-

ential equations, which describe the dynamics of intracellular virus RNA concentrations

Xi
inði ¼ 1; 2; � � � ;NÞ, bounded cell surface receptor proteins Ri(i = 1, 2, � � �, N), IFN concentra-

tions [IFNs]i(i = 1, 2, � � �, N), AVP concentrations [AVPs]i(i = 1, 2, � � �, N), and extracellular

virus concentration Xex. Moreover, the infected cells (cell number Ninfected) promote the host

immune response through the secretion of cytokines, which induces the production of effector

T cells. The effector T cells clear the infected cells and secrete cytokines that induce further T

cell exhaustion. The interactions among cytokine concentrations, effector T cells, and the

infected cells are formulated as dynamic processes using two differential equations for among

cytokine concentrations [Cytokines] and the effector T cells number [Teffector]. Here, we

assumed that the naïve T cells number remains constant throughout the process and that the

total cell number is maintained at a constant level so that one uninfected cell is added to the

system when an infected cell is cleaned by the effector T cells. The above assumptions lead to

a system of (4N + 3) differential equations for the multiple scale process from viral dynamics

to immune responses (see the Methods section for the detailed mathematical model and

formulations).

Based on the dynamic model, we introduced a ratio of infected cells (RIC) to quantify dis-

ease progression after SARS-CoV-2 infection, which was defined as the ratio between the

number of infected cells (Ninfected) to total cells (N) in the model, i.e.,

RIC ¼
Ninfected

N

A summary of key parameters and their biological significance, effects, and clinical/experi-

mental evidences are listed in Table 1.

Progression dynamics of SARS-CoV-2 infection

To investigate the early stage dynamics of COVID-19 progression, we ran the model for 30

days after SARS-CoV-2 infection without considering of T cell exhaustion (ρ = 0) (Fig 3).

From numerical simulation, the ratio of infected cells (RIC) remained low for a few days

after SARS-CoV-2 infection, and most cases switched to a higher ratio of about 0.1�0.2 in 14

days. Nevertheless, there were also some cases that exhibited persistently low levels RIC (RIC <

0.05) even 30 days after infection (Fig 3a). These results suggest the existence of two

Table 1. Summary of key parameters, biological significance, effects, and available clinical and/or experimental evidence.

Parameter Description Effect(s) on disease heterogeneity Clinical and/or experimental evidence

K1 IC50 of AVPs on the

viruses

With K1 increasing, RIC develops potentially into

asymptomatic state and TIP could be prolonged

Asymptomatic infection is related to SARS-CoV-2 11083G>T mutation

enhancing viral inhibitory effects on the antiviral state of the host [14,

45]

λ2 The activation rate of

IFNs induced by viruses

Enhancement of λ2 prolongs TIP and leads RIC into

asymptomatic state

Asymptomatic SARS-CoV-2 infected subjects display a very high serum

type I IFN level [46]

ρ The rate of T cell

exhaustion

Increasing ρ leads to the switch of RIC from mild-

moderate into severe state; TIP has no association

with ρ

Elevated exhaustion level of T cells is present in severe patients [47]

K4 EC50 of cytokines

inducing T cell

exhaustion

Decreasing K4 promotes the switch of RIC from

mild-moderate into severe state

The cytokine storm may be responsible for increased PD-L1 expression

(responding to decreased K4 in our work), leading to CD8+ T cell

exhaustion [51]

[T0] Density of naïve T cells Decreased [T0] results in RIC developing into severe

state and could shortens TIP

Scarcity of naive T cells may be linked risk factors for severe COVID-19

[38]

Note: In our model, RIC is the ratio of infected to total cells and TIP is the simulated incubation period.

https://doi.org/10.1371/journal.pcbi.1009587.t001
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subpopulations with markedly different dynamics of RIC, who are either symptomatic (RIC�

0.05) or asymptomatic (RIC < 0.05). Hence, we introduced a threshold (RIC = 0.05) to quantify

the switch from symptomless to the state of presenting symptom after infection.

Clinically, COVID-19 patients exhibit incubation periods ranging from 2 to 14 days,

with an average of 5–6 days, and rare patients present with longer periods of incubation

greater than 14 days [31, 32]. Patients typically show no symptoms during the incubation

period [30]. To verify the above threshold of RIC, we defined the simulated incubation

period (TIP) of a patient as the time of RIC increasing across the threshold value 0.05, i.e.,

TIP ¼ arg max
t
fRICðtÞ � 0:05g. A simulation of 200 independent runs revealed good agree-

ment between the cumulative probability of simulated incubation period and clinical data (Fig

3b). Hence, it is reasonable to distinguish between asymptomatic and symptomatic states

using the threshold for the ratio of infected cells in the proposed model.

To further examine typical disease progression after SARS-CoV-2 infection, we selected

two simulated trajectories developed for symptomatic and asymptomatic states, respectively,

Fig 3. Progression dynamics in response to SARS-CoV-2 infection without considering T cell exhaustion (ρ = 0). a. Time course of the ratio of infected cells

(RIC) (out of 200 independent runs). The black dashed line is the threshold between the asymptomatic and symptomatic state. b. Comparison of incubation

periods between simulations and real data in COVID-19. The black line shows the cumulative probability obtained from default values in Table A in S1 Text (out

of 200 independent runs). The orange dots represent real data of incubation periods from Dataset 1. c. Two simulated trajectories were developed for the

symptomatic and asymptomatic states (red and blue lines, respectively). (i)-(vi) respectively for the ratio of infected cells (RIC), extracellular virus concentration

(Xex), intracellular virus concentration per cell (Xin), infected rate of susceptible cells, cytokine levels ([Cytokines]), and effector T cell counts ([Teffector]). Other

parameters were assigned default values shown in Table A in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009587.g003
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over 30 days (Fig 3c). During the early stage, both symptomatic and asymptomatic cases dis-

played similar viral dynamics, with low levels of RIC and virus concentrations inside and out-

side the cells (Fig 3c(i)–3c(iii)). Next, the extracellular virus concentration began to increase in

the symptomatic sample (Fig 3c(ii)), along with the increasing of cell infection rate (Fig 3c(iv)),

and the increasing of RIC (Fig 3c(i)). The infected cell numbers and virus concentrations

spiked when RIC increased across the threshold and developed to a stationary symptomatic

state in later stages. In contrast, the asymptomatic sample presented persistent low levels of

infected cells and virus concentrations the entire time (Fig 3c(i)–3c(iii)). The immune

responses showed a similar process of viral dynamics in that both cytokines levels and effector

T cell numbers were maintained at low levels during the early stage and spiked to high levels in

the symptomatic sample when RIC increased across the threshold (Fig 3c(v) and 3c(vi)). These

results reveal different dynamics in patients with symptomatic and asymptomatic clinical

manifestations. We note that the non-zero steady states of RIC and Xex are inconsistent with

clinical observations that some patients can recovery without treatment (Fig 3c(i) and 3c(ii)).

This is because there are some other immune mechanisms that lead to the viral clearance are

not included in the model. Therefore, in our simulations, we can consider the patients as viral

clearance when the values of RIC and Xex are low enough.

Type I interferon modulates the transition from asymptomatic to

symptomatic COVID-19

Type I interferon (IFN-I or IFN-α/β) is known to regulate patient response during the early

stage after viral infection. Previous studies have shown that impaired interferon responses or

inborn error type I IFN immunity may accelerate the clinical progression of patients infected

with SARS-CoV-2 [33, 34]. To quantify the effects of type I IFN regulation, we varied the

model parameters associated with viral replication (K1) and the interferon activation (λ2) to

explore their effects on the switch from an asymptomatic to symptomatic state. The parame-

ters K1 and λ2 associate with viral proteins, such as non-structure protein 6 (NSP6), which

limits type I IFN synthesis and inhibits the establishment of an antiviral state based on the

COVID-19 signaling pathways derived Kyoto Encyclopedia of Genes and Genomes (KEGG)

[14]. In addition, sensitivity analysis showed that changes in K1 and λ2 were sensitive for the

ratio of infected cells on day 30 after infection (Fig D and Section 3 in S1 Text for the detailed

description).

To determine the influence of the IFN response preceding T cell exhaustion, we set ρ = 0,

altered the parameters K1 and λ2, and performed 200 independent runs for each set of parame-

ter values. First, we decreased K1 or increased λ2, respectively, according to the default values

in Table A in S1 Text. For each simulated case, we examined the symptoms on day 30 and the

incubation period (TIP) (Fig 4a). When K1 and λ2 took default values (K1 = 47, λ2 = 0.3), more

than 50% of simulated cases were symptomatic on day 5 after infection, and most cases devel-

oped into a symptomatic state on day 15 (Fig 4a, blue). When K1 decreased (K1 = 45), some

simulated cases remained asymptomatic on day 30 after infection, and most of incubation

periods for the symptomatic cases were prolonged in the range from 10 to 15 days, while a few

were even longer than 25 days (Fig 4a, red). When λ2 increased (λ2 = 0.35), less than 20% of

simulated cases were symptomatic at day 30, and the majority of incubation periods for the

symptomatic cases were greater than over 15 days (Fig 4a, green). We further examined the

simulated results with K1 and λ2 varied over a parameter range 40� K1� 50, 0.2� λ2� 0.4.

The parameter range revealed three well separated domains according to symptoms on day 30,

a symptomatic domain in which most patients developed into symptomatic (Fig 4b, red), an

asymptomatic domain in which most patients remained asymptomatic on day 30 after
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infection (Fig 4b, blue), and a bimodal region in which patients may show diverse transition

dynamics from asymptomatic to symptomatic (Fig 4b). These results suggest that the IFN

response is significant for the symptoms and incubation period of COVID-19 patients at early

stages preceding T cell exhaustion.

To further explore the transition dynamics from asymptomatic to symptomatic states, we

calculated the distribution of RIC for all individuals on different days after infection. When the

parameters were taken from the symptomatic region (K1 = 47, λ2 = 0.3) or the asymptomatic

region (K1 = 47, λ2 = 0.35), most cases switched from RIC < 0.05 to RIC� 0.05 within 20 days

(Fig 4c, blue) or remained RIC < 0.05 on day 30 (Fig 4c, green). Nevertheless, when the param-

eters were taken from the bimodal region, the transition dynamics could be diverse, and the

ratio RIC exhibited an obvious bimodal distribution from days 10 to 30 after infection (Fig 4c,

red). These results indicate different transition dynamics in patients with various IFN

response. Except intracellular IFN-I response, we further explored the influence of intercellular

T cell response on asymptomatic patient and incubation period. The result exhibited that

increased number of naive T cells significantly prolonged the incubation period and raised the

proportion of asymptomatic cases, while the incubation period and the proportion of asymp-

tomatic cases were insensitive with T cell exhaustion (Fig E and Section 8 in S1 Text for the

detailed description).

Fig 4. Disease evolution dynamics from asymptomatic and symptomatic states in response to SARS-CoV-2 infection without considering T cell exhaustion (ρ =

0). a. The percentage of cases (out of 200 independent runs) that developed into a state and the distribution of incubation period (TIP) for various IC50 values of viral

replication (K1) and IFN response rate (λ2) after infection. b. The distribution of symptomatic frequency. The color column indicates the percentage of symptomatic

cases (out of 100 individual runs) when K1 varies 40–50 and λ2 varies 0.2–0.4. c. The distribution (fraction of individual) of RIC at six different time points. The black

dashed lines show the threshold separating asymptomatic and symptomatic states. Different color lines correspond to the IC50 of viral replication (K1) and interferon

response rate (λ2). Other parameters were given default values as shown in Table A in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009587.g004

PLOS COMPUTATIONAL BIOLOGY Data-driven multi-scale mathematical modeling of SARS-CoV-2 infection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009587 November 24, 2021 9 / 28

https://doi.org/10.1371/journal.pcbi.1009587.g004
https://doi.org/10.1371/journal.pcbi.1009587


Characteristics of mild-moderate to severe symptoms in COVID-19

patients

COVID-19 patients exhibited distinct clinical manifestations in that 80% patients had only

slight or mild symptoms, and some of them recovered by themselves, while 20% patients may

further develop into severe situations where ventilators are required for survival [31, 35]. To

explore the transition dynamics from mild-moderate to severe symptoms, we introduced the

effect of T cells by setting ρ> 0, and varied the parameter K4 that quantifies the exhaustion

level of T cells.

We performed numerical simulation for 400 independent runs using the randomly selected

parameters 42� K1� 50, 0.2� λ2� 0.3, 0� ρ� 3 × 10−3, and 40� K4� 150. The ratio of

infected cells RIC on day 30 for all runs exhibited an obvious bimodal distribution, correspond-

ing to a high level ratio (0.4< RIC < 0.8) and a low level ratio (0.05< RIC� 0.4), respectively

(we also noted a few cases with RIC� 0.05, which corresponds to asymptomatic cases) (Fig

5a). These results suggest well defined mild-moderate and severe symptoms characterized by

the ratio of infected cells, i.e., we refer to mild-moderate cases as those with 0.05 < RIC� 0.4,

and severe cases as those with 0.4< RIC < 0.8.

To investigate the key parameters that are significant for patient symptoms, we showed

scatter plots for each case according to the parameter values and RIC on day 30 (Fig 5b).

Parameters values for both mild-moderate and severe cases were evenly distributed evenly in

the (K1, λ2) plane, while they were well separated in the (ρ, K4) plane, and severe cases primar-

ily showed larger exhaustion rates ρ and smaller coefficients K4. In the model, the parameters ρ
and K4 represented the effects of T cell exhaustion in later stage after SARS-CoV-2 infection.

These results suggested that T cell exhaustion plays essential roles in the transition between

mild-moderate and severe cases, which is consistent with clinical studies showing that

impaired exhaustion features in SARS-CoV-2-reactive CD8+ T cells exist in on severe

COVID-19 patients [36]. Some studies have shown that an impaired IFN response character-

izes in severe or life-threatening patients [9, 33], and deficient IFN production can lead to the

exhaustion of T cells, as T cell proliferation or T cell egress from lymphoid organs can be

inhibited by delayed IFN response [37].

Fig 5. Bimorphism of patient symptoms. a. Distribution of RIC on day 30 after SARS-CoV-2 infection. b. Scatterplot of varied parameters and RIC on day 30. c.

Distribution of the severity of COVID-19 patients. The color column shows RIC at day 30 when K4 varies between 40 and 150 and ρ varies within [0, 3 × 10−3]. The

black dashed line shows the threshold between mild-moderate and severe cases. Other parameters assigned the default values shown in Table A in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009587.g005
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To further identify the parameter values that characterize mild-moderate and severe cases,

we took parameters ρ and K4 over a range 0� ρ� 3 × 10−3, 40� K4� 150, and fixed other

parameters to their default values shown in Table A in S1 Text. The dependence of RIC on the

parameters ρ and K4 is shown in Fig 5c, illustrating good separation between mild-moderate

and severe cases. We noted that the value of RIC increased rapidly with increasing of ρ or

decreasing of K4. We further performed a bifurcation analysis of parameters ρ and K4 related

to T cell exhaustion (details in Section 6 in S1 Text). The result in Fig 6 demonstrated a bistable

status for cytokines and RIC in the range of 85< K4 < 98 when ρ was taken as 0.0025 (Fig 6a

and 6b). Similarly, a bistable region of ρ for cytokines and RIC was in the range of 0.0018 < ρ<
0.0024 when K4 was taken as 84 (Fig 6d and 6e). These results imply that there is a risk of tran-

sition from mild-moderate to severe cases. Interestingly, the distribution of effector T cells was

not similar to cytokines in the gray region (Fig 6c and 6f). In addition, we defined the first pas-

sage time from onset to severe cases and simulated the progression (details in Section 6 in S1

Text). The result indicated that the transition time decreases with increasing level of T cell

exhaustion (ρ), while the transition time lengthens linearly when the level of anti-exhaustion

of T cells (K4) increases (Fig F in S1 Text). These results could be of great assistance for clinical

prognosis in predicting subsequent clinical course in COVID-19 patients.

Activation and exhaustion of naïve T cells is related to the severity of

COVID-19

Clinical studies have shown that age is associated with the development of severe COVID-19

[31], and further analysis of SARS-CoV-2-specific adaptive immune response during acute

COVID-19 revealed that aging and scarcity of naïve T cells may be linked risk factors in severe

Fig 6. Bifurcation of parameter K4 and ρ for RIC, [Cytokines] and [Teffector] on day 30 after infection. a-c for parameter K4 when the value of ρ is taken as 0.0025. d-

f for parameter ρ when the value of K4 is taken as 84. Red solid circles and blue squares represent severe and mild-moderate cases, respectively. The other parameters

are default and are shown in Table A in S1 Text. The gray region indicates a bistable status for mild-moderate and severe cases.

https://doi.org/10.1371/journal.pcbi.1009587.g006
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patients [38]. To quantify the effect of naïve T cell scarcity, we varied the naïve T cells number

[T0] in the model to explore the dynamic of COVID-19 progression.

In simulations, we set [T0] = 2 × 105 cells/ml for a normal person, and [T0] = 1 × 105 cells/

ml for a scarcity of naïve T cells, and the mild T cell exhaustion rate ρ = 0.0005, and performed

100 independent runs. The normal cases developed mild-moderate symptoms mild-moderate

symptoms (0.05< RIC < 0.4), while naïve T cell scarcity cases developed into severe symptoms

(RIC > 0.4) (Fig 7a). Moreover, naïve T cell scarcity cases exhibited magnification of cytokine

levels (Fig 7b) and reduced effector T cells (Fig 7c) compared to normal cases. These results

indicate that a scarcity of naïve T cells may potentially lead to cytokine ectopic secretion and T

cell reduction, which is supported by observations that decreased naïve T cell production with

aging may result in an inappropriate inflammatory response, increasing the likelihood of a

cytokine storm [39].

Treatment efficacy and prognosis of COVID-19 patients

The above numerical simulations reproduced the disease progression in patients infected with

SARS-CoV-2. We further applied the model to evaluate the efficacy of different treatment

methods, acceleration of IFN response (ε1), restriction of viral replication (ε2), promotion of

extracellular virus clearance (ε3), and inhibition of T cell exhaustion (ε4) (details in Methods).

We let a quadruple (ε1, ε2, ε3, ε4) represents a combination of the four types of treatments,

and the quadruple (0, 0, 0, 0) indicates the control cases with no treatment. The efficacy of a

treatment strategy was quantified by the relative reduction of the ratio of infected cells on day

30 after infection (clinical therapy starts on day 15), which is formulated as

Eðε1; ε2; ε3; ε4Þ ¼
R30

ICð0; 0; 0; 0Þ � R30
ICðε1; ε2; ε3; ε4Þ

R30
ICð0; 0; 0; 0Þ

where R30
ICðε1; ε2; ε3; ε4Þ represents the ratio of infected cells on day 30 after infection when

treated with strategy (ε1, ε2, ε3, ε4). The efficacy takes a value from 0 to 1, and larger values

indicate increased efficiency of the treatment strategy.

To compare the efficacy in patients with moderate or severe symptoms, we solved the

model using different levels of T cell exhaustion in moderate (ρ = 0.0005) and severe (ρ =

0.0025) patients. For moderate patients, a single treatment of accelerating IFN response,

restricting viral replication, or promoting viral clearance was highly efficient (E> 0.8), but

Fig 7. Dynamics of COVID-19 in response to a scarcity of naïve T cells and a mild exhaustion of T cells (ρ = 0.0005) (out of 100 individual runs). a. Time course

of the average ratio of infected cells. b. Time course of average cytokines. c. Time course of average effector T cells. Red and blue lines indicate different levels of naïve

T cells with ([T0] = 105 cells/ml) and ([T0] = 2 × 105 cells/ml), respectively. The error bar indicates standard deviation. Other parameters were assigned default values as

shown in Table A in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009587.g007
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inhibition of T cell exhaustion alone exerted only marginal efficacy (E� 0.3) (Fig 8a), and the

density of both cytokines and effector T cells were low (Fig G and Section 7.1 in S1 Text for the

detailed description). For severe patients, however, inhibition of T cell exhaustion alone

resulted in an efficacy of (E> 0.6) and a decreased concentration of cytokines (Fig Ga in S1

Text), while the other three methods alone yielded low efficacy (E< 0.4) (Fig 8b) and the den-

sity of neither cytokines nor effectors was changed (Fig Gb). In addition, we ran further simu-

lations for drug efficacy using dose response curves (Fig H and Section 7.2 in S1 Text for the

detailed description). The results indicated that the maximum efficacy of targeting IFN

response (ε1), viral replication (ε2), and virus clearance (ε3) was close to 1 (Fig Ha-c, He-g and

Table B in S1 Text), but the maximum efficacy of targeting T cell exhaustion (ε4) only reached

0.8 (Fig Hh and Table B in S1 Text) for severe case and was even less at 0.3 in moderate cases

(Fig Hd and Table B in S1 Text), suggesting that antiviral treatment is more effective than

immunological treatment for both moderate and severe cases. We fitted the dose response

curves with Hill funcitons, and compared the Hill coefficient n and EC50 of the functions for

moderate and severe cases in response to the same treatment strategy (Table B and Section 7.2

in S1 Text for the detailed description). The coefficient n in moderate cases was generally

smaller than in severe cases, and the value of EC50 in severe cases was generally larger than in

moderate cases, implying that moderate cases are more sensitive to treatment than severe

cases, and higher doses are required for severe cases. These results suggest that antiviral treat-

ment should be recommended for moderate patients, while for severe patients, inhibition of T

Fig 8. Comparison of the simulated efficacy for different treatment strategies in moderate and severe cases. a and b are the simulated efficacy of eight treatment

strategies for moderate patients (ρ = 0.0005) and severe patients (ρ = 0.0025), respectively. Different colors correspond to treatment strategies. The table below the

histogram shows the detailed values of the quadruple (ε1, ε2, ε3, ε4). “-” indicates that corresponding values are 0. Other parameters were given default values as shown

in Table A in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009587.g008
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cell exhaustion should be considered. Our results are in agreement with opinions that immune

checkpoint inhibitors (ICIs) should be applied to treat severe COVID-19 patients [40, 41].

Moreover, for both moderate and severe patients, the combination of antiviral treatments

(acceleration of IFN response, restriction of viral replication or promotion of virus clearance)

and immune therapy (inhibition of T cell exhaustion) yielded highly efficiency for improving

patient symptoms (E> 0.8) (Fig 8), and the density of both cytokines and effector T cells were

low (Fig G in S1 Text). To quantify the relationship between therapeutic efficacy and combina-

tion therapy, we simulated different combinations in heterogeneous patients (Fig 9). On the

one hand, the result of combination antiviral treatments (Fig 9a, 9b and 9d) demonstrated that

the antiviral drugs could take less dose than EC50 (Table B in S1 Text) while maintaining high

efficacy for moderate cases. The results from treatments for severe cases (Fig 9g, 9h and 9j)

were similar to moderate cases, and the dose of antiviral treatment referred to the EC50 of a

single antiviral treatment for moderate patients. These results suggest that a combination of

treatments decreases drug dose while maintaining high efficacy for the treatment of COVID-

19. On the other hand, the immunological treatment combined with any antiviral treatment

did not result obvious improvements compared to the single antiviral treatment in moderate

cases (Fig 9c, 9e and 9f), but combination of the EC50 of ε4 in severe cases and low doses of

other antiviral drugs maintained high levels of treatment efficacy in severe cases(Fig 9h, 9k and

9l), suggesting that the combination of immunological and antiviral treatments should be

applied to treat severe cases.

Clinically, type I interferon treatment is a method of antiviral treatment for pathogenic

human coronavirus infections [42], and medical use of Arbidol, an antiviral treatment,

improves viral clearance and clinical outcomes in COVID-19 patients [43, 44]. To investigate

Fig 9. Therapeutic efficacy of united treatments for moderate and severe cases. a-f are combination of treatments for moderate cases. g-l are combination of

treatments for severe cases. The dotted lines indicate half maximal efficacy. The colored bar is the therapeutic coefficient.

https://doi.org/10.1371/journal.pcbi.1009587.g009
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the dynamics of antiviral treatment, we simulated treatment dynamics by accelerating of IFN

response (ε1 = 0.1) and promoting of extracellular virus clearance (ε3 = 1.0) for both moderate

(ρ = 0.0005) and severe (ρ = 0.0025) cases. For single drug treatment, the ratio of infected cells

for moderate cases rapidly decreased at the beginning of treatment and reached less than 0.05

(the threshold of the asymptomatic and symptomatic states) within 5 days after treatment (Fig

Ia in S1 Text), however, for severe cases, the ratio of infected cells reduced more slowly and

maintained the severe case (0.4 < RIC < 0.8) on day 15 after treatment (Fig Ib in S1 Text).

When combination of the two treatment strategies was applied, the ratio of infected cells in

both moderate and severe cases reached less than 0.05 within 10 days after treatment (Fig I in

S1 Text). These results illustrate the different dynamics of drug treatment for moderate and

severe patients.

Discussion

Patients with COVID-19 exhibit marked individual heterogeneity in their disease progression.

Quantitatively understanding how interactions between viral dynamics and host immune

responses affect disease progression is important for clinical diagnosis and treatment. In this

study, we developed a multi-scale mathematical model of the dynamics of SARS-CoV-2 infec-

tion. The model was established to describe the major biological processes associated with

viral dynamics and host immune response, as well as the dynamics of infected cell populations

in a viral microenvironment with respect to viral infection, viral replication, IFN response,

viral budding, and immune clearance that appear in single cells (Fig 2 Intracellular). This

model incorporates cross-talk among viral dynamics, cytokines and T cell responses with

respect to the progression of COVID-19 (Fig 2 Intercellular). Multiscale simulations allowed

us to quantify the heterogeneity of IFN responses (Fig 4) and T cell responses (Figs 5–7) that

may result in the different severities of COVID-19. Heterogeneity plays an important role in

the evolution of COVID-19 and lead to diverse disease progression in patients. The proposed

model provides a method to quantify the therapeutic effects of potential treatment strategies in

COVID-19 patients with different disease severities.

Numerical simulations demonstrate that IFN response is essential to modulate the transi-

tion from asymptomatic to symptomatic presentation and prolongs the incubation period (Fig

4a). We observed a diverse distribution of symptom presentation for heterogeneous IFN

response from patients with COVID-19 (Fig 4b). Based on statistical analysis of genomic data

from COVID-19 patients, asymptomatic infection is related to SARS-CoV-2 11083G>T muta-

tion at residue 37 of non-structure protein 6 (NSP6) [45]. This mutation enhances viral stimu-

lation of interferon and the expansion of viral inhibitory effects on the antiviral state of the

host [14]. Quantitative study confirmed our simulation that patients with high levels of IFN

response usually have asymptomatic manifestations [46]. These results can guide the disease

management of patients in accordance with their responses in early stages after SARS-CoV-2

infections.

Many patients with COVID-19 appear to transition from mild-moderate to severe symp-

tom in a short time, similar to a dynamic process of toggle switches between the two states.

Clinical data have indicated significant differences in serum cytokines and active T cells in

patients with mild-moderate and severe symptoms. Numerical simulations based on the pro-

posed model revealed a bimorphism of symptoms that correspond to distinguished symptom

manifestations of either a mild-moderate or severe state (Fig 5a). The transitions between

mild-moderate and severe manifestation were closely associated with the model parameters

quantifying the exhaustion of T cells (Figs 5 and 6 and Fig F in S1 Text). Clinically, elevated

exhaustion level of T cells was present in severe patients [47], which is consistent with our
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numerical results. In addition, we simulated the infection dynamics under a scarcity of naïve T

cells, and found that a scarcity of naïve T cells leads to the severe state with high levels of cyto-

kines and a reduction in effector T cells (Fig 7). The simulation results indicate a disruption in

the balance between the exhaustion of T cells and cytokine production in restricting virus

spreading. Under normal conditions, cytokines produced from both infected cells and T cells

promote the generation of effector T cells from naïve cells. Moreover, increased of cytokines

induces the exhaustion of T cells [48] to maintain a balance between cytokine secrete and T

cell activation. Nevertheless, this balance can be broken due to a scarcity of naïve T cells, which

leads to severe and even life-threatening cases.

Based on the disease progression obtained from our model, we suggest potential methods

for treating patients with different symptoms. Single antiviral treatment is effective for patients

with moderate symptoms, while immunotherapy and combination treatment should be con-

sidered for severe patients (Fig 8 and Figs G and H in S1 Text). The results of quantitative

treatment for COVID-19 (Fig 9) suggest that a combined immunotherapy with antiviral drug

could be a potential strategy for COVID-19 severe patients. The timing of drug administration

is certainly important for the overall effects of combination therapy, and the problem of opti-

mal drug administration protocol is beyond the current study. Clinically, most moderate

patients are treated with antivirals, while many patients with severe symptom presentation are

treated with combined treatment [49, 50], which in agreement with our treatment strategies

for COVID-19 patients. We further modeled trajectories of two antiviral treatments, type I

interferon and Arbidol [44], for moderate and severe patients (Fig I in S1 Text). Although it is

difficult to make precise predictions in the absence of clinical trial data, our results highlight

the efficacy of single antiviral treatment for moderate patients and the necessity of combina-

tion treatments for severe patients.

There have been many published and preprint reports of predictive mathematical models

for the COVID-19 pandemic. These epidemiological models can be valuable for the prediction

and controlling of disease spreading [52, 53]. Pharmacokinetic model is also applied to quanti-

tatively predict treatment of drugs for COVID-19 [54]. Less attention has been paid to the pre-

dictive models of disease progression in heterogeneity outcome. Recently, a mechanistic,

within-host ODE model was established to study the immune response to SARS-CoV-2 and

the impact of delayed IFN on infection dynamics [55]. Virtual patient cohorts were generated

based on an algorithm of random parameter sampling, and dynamics of how immune mecha-

nisms drive disease outcomes was discussed. In our study, the stochastic and multiscale model

was developed to consider the inherent heterogeneity of the infection process and the related

clinical therapy dynamics. The multi-scale mathematical model proposed in this study was

intended to establish a predictive model for disease progression from viral infection to patient

symptoms and to provide quantitative understanding of the heterogeneous clinical courses in

patients with COVID-19. For example, the process of IFN response and T cell response modu-

late the evolution of COVID-19 stage, from which potential clinical methods are suggested

based on model simulations. The proposed model primarily incorporates viral dynamics with

host immune response. Further interactions between cytokines and immune cells were omit-

ted in the current model, which are important for the understanding of the molecular details

of T cell exhaustion and the cytokine storm that are crucial for severe patients and the cause of

death from COVID-19 [24, 25]. Extensions of the current model to include these details are

certainly required, and challenging, for a better understanding of the disease progression, espe-

cially the prediction of clinical course and early warning of a COVID-19-induced cytokine

storm. In addition, the proposed model framework can also be applied to study other corona-

viruses as long as there is available data.
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Methods

Collected data from the published literatures

Dataset 1: Clinical data on the incubation period of 69 COVID-19 patients from China.

The data were collected from the literature [56, 57].

Dataset 2: Clinical data of 41 COVID-19 patients from the Fifth Medical Center of PLA

General Hospital in Beijing, China. The data were retrieved from the reference, which

includes expression of exhaustion biomarkers, cytokines and T cell counts in 6 healthy donors,

29 mild and 12 severe patients [58].

Dataset 3: Routine blood data from 107 severe patients including 58 survivors and 49

deaths after clinical treatment at the Renmin Hospital of Wuhan University, China. The

data includes cytokines levels from 58 survivors and 49 deaths. All confirmed COVID-19

patients were severe before treatment [59].

Dataset 4: Clinical data from 50 healthy donors and 157 COVID-19 patients including

117 moderate and 40 severe symptoms, were collected from Yale New Haven Hospital,

United States. The data from 117 moderate cases and 40 severe cases includes cytokines,

CD4+ T cell and CD8+ T cell count, and the percentage of naïve CD4+ and CD8+ T cells [60].

Dataset 5: Single cell sequence data from 8 patients as moderate and 13 patients as criti-

cal from Charité-Universitätsmedizin Berlin and University Hospital Leipzig. Genomic

data of immune cells or epithelial cells from 8 patients as moderate and 13 patients as critical

are included in the dataset [61].

Dataset 6: Proteomic data from 46 COVID-19 and 53 control individuals from Taizhou

Hospital, China. Proteomic data of receptor proteins for SARS-CoV-2 are incorporated into

the dataset [62]. We only found the data for neuropilin-1 (NRP1) that is one of the receptors

for SARS-CoV-2 [63] so that receptor protein was approximately equivalent to NRP1.

Dataset 7: Kinetic data of effector T cells from 707 COVID-19 patients from Tongji

Hospital, Wuhan, China. This dataset involves T cells dynamics from patients with different

symptom presentations such as moderate (410 cases), severe (206 cases) and critical (91 cases)

in hospitalized patients [64].

Dataset 1 was used to validate the definition of incubation period in our model. The model

assumptions stemmed from data analysis to datasets 2, 3, 4 and 5. We estimated the distribu-

tion of receptor protein from dataset 6 and the part of the parameters in our model from data-

set 7 (Details in S1 Text).

Mathematical formulation of the multi-scale model

The multi-scale model describes the evolution of viral dynamics and host immune response in

respone to SARS-CoV-2 infection. The model was formulated using a set of differential equa-

tions for the intracellular virus RNA concentration Xi
in, interferons concentration [IFNs]i, anti-

viral protein [AVPs]i(i = 1, 2, � � �, N), extracellular virus RNA concentration Xex, cell surface

free receptor protein number Ri(i = 1, 2, � � �, N), cytokine concentration [Cytokines], and the

effector T cell density [Teffector]. The model equations are detailed below.

Viral dynamics. We assumed that each receptor protein on target cell surface can only

bind to one spike protein of SARS-CoV-2, and the receptor protein is freed when SARS-CoV-

2 releases its RNA into the host cell and the spike protein dissociates from the receptor protein.

These processes give a flux vi
1

as

vi
1
¼ konðRi

0
� RiÞXex � koffRi ð1Þ

Here, kon is the binding rate between SARS-CoV-2 and receptor, koff is the dissociation rate
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between SARS-CoV-2 and receptor, Ri
0

represents the total number of receptor protein on the

ith cell, and Ri represents the receptor proteins binding to SARS-CoV-2. We assumed that the

total number of receptor proteins on each cell is a constant over time, however the number

is variable for different cells, and obeys gamma distribution with parameters α1 and α2, i.e.,

Ri
0
� Gða1; a2Þ (details shown in Table A in S1 Text).

SARS-CoV-2 release its RNA to the host cell after the spike protein is bound to the receptor

on the target cell. The influx (vi
2
) of RNA to the host cell is proportional to the bound receptor

protein, and hence

vi
2
¼ kinRi ð2Þ

The receptor becomes free when the genomic RNA is released.

Inside infected cells, the RNA of SARS-CoV-2 directs RNA replication and viral assembly

using organelles and synthases from the host cell. During the process of viral replication, inter-

feron signaling pathway is activated to produce interferons (IFNs) and antiviral proteins

(AVPs), resulting in limited viral replication. In our model, we assumed that there is a time

delay in the processes of virus replication (τ1) because the process includes multistep reactions,

and the inhibition of viral replication is described by a Hill type function. Therefore, the influx

of viral replication (vi
3
) is described as below:

vi
3
¼ l1Xi

inðt � t1Þ
b1K

m1
1

Km1
1 þ ð½AVPs�

i
Þ
m1
� d1X

i
in ð3Þ

Here λ1, τ1, b1, m1, δ1 are constants (details shown in Table A in S1 Text).

With respect to interferons (IFNs), they are activated by viral RNA and exhibit positive

autoregulation [29]. So, the influx of IFNs pure synthesis is

vi
4
¼ l2Xi

in þ b2

ð½IFNs�iÞm2

ð½IFNs�iÞm2 þ Km2
2

� d2½IFNs�
i

ð4Þ

here m2, K2, δ2 are constants (details shown in Table A in S1 Text).

Antiviral proteins (AVPs) are synthesized by stimulated IFN downstream signal pathways

and are degraded naturally in the host cell. Hence, the influx of AVPs pure synthesis is

vi
5
¼ l3½IFNs�

i
� d3½AVPs�

i
ð5Þ

here λ3, δ3 are constants (details in Table A in S1 Text).

Finally, progeny virus is assembled by organelles and synthases from the host cell after viral

replication. Since this process involves multistep reactions, we assumed a lag time τ2 for the

process of viral budding, such that

vi
6
¼ q0Xi

inðt � t2Þ ð6Þ

here q0, τ2 are constants (details shown in Table A in S1 Text).

Multi-cellular responses and cell infection. All SARS-CoV-2 particles released from host

cells enter the extracellular environment. The extracellular virus can either bind to receptor

proteins in target cells and infect the host cells, or are cleared from the body. There are many

different types of cells in the tissue environment, and these cells may affect the identification

and binding of SARS-CoV-2 to target cells that express the receptor. Biologically, it is not a

trivial process to initiate an invading process of a cell by viruses. Cellular self-defense in target

cells protects the cells against pathogens [65], and viruses in a nearby cell can induce signals to

promote the binding between viral spike proteins and cell membrane proteins. Here, we
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ignored the detail process and assumed a random process that extracellular viruses identify a

target cell with a probability b
i
¼ bðXex;Ri

0
;AÞ that depends on virus concentration outside

the cell, cell membrane receptor protein number, and the binding affinity A = koff/kon. Hence,

we write

bðXex;Ri
0
;AÞ ¼ b0

ðXexRi
0
Þ
m0

ðK0ðAþ XexÞÞ
m0 þ ðXexRi

0
Þ
m0

ð7Þ

here, K0 is constant (details shown at Section 2.2 in S1 Text).

The binding affinity measures the equilibrium dissociation constant between the S protein

on SARS-CoV-2 and the receptor protein on target cells. In our model, all cells are initially

normal and uninfected, and once a cell is recognized by SARS-CoV-2 and the infection is initi-

ated, the status of the cell becomes infected. Let I(t)� {1, 2, � � �, N} the index of infected cells at

time t. Let vcell denote the volume of a single cell, and Vex denote the volume of extracellular

environment, the above biological processes lead to the following differential equations.

dXex

dt
¼

vcell
Vex

X

i2IðtÞ

q0X
i
inðt � t2Þ þ

1

Vex

X

i2IðtÞ

½koffR
i � konðR

i
0
� RiÞXex� � d4Xex ð8Þ

dRi

dt
¼ konðR

i
0
� RiÞXex � koffR

i � kinR
i ð9Þ

dXi
in

dt
¼

kinRi

vcell
þ l1X

i
in t � t1ð Þ

b1K
m1
1

Km1
1 þ ð½AVPs�

i
Þ
m1
� d1X

i
in � q0X

i
in t � t2ð Þ ð10Þ

d½IFNs�i

dt
¼ l2X

i
in þ b2

ð½IFNs�iÞm2

ð½IFNs�iÞm2 þ Km2
2

� d2½IFNs�
i

ð11Þ

d½AVPs�i

dt
¼ l3½IFNs�

i
� d3½AVPs�

i ð12Þ

Here vex = Vex/N denotes the mean volume that a single cell occupies the extracellular environ-

ment. From the above equations, the viral dynamics and cellular responses are coupled using

the indexes I(t) of infected cells.

T cell response for clearing virus. Next, to model the T cell response to virus, we consid-

ered the cytokine concentration [Cytokines] and the effector cell number [Teffector], and

assumed a constant naïve T number [T0] over time. The infected cells secrete cytokines and

activate the naïve T cells to produce effector T cells. The effector T cells continuously clear the

infected cells and secrete cytokines, which may lead to chronic inflammation and further

induce the exhaustion of effector cells. These processes are described by integrodifferential

equations given below

d½Teffector�

dt
¼ m1½T0�

½Cytokines�m3

½Cytokines�m3 þ Km3

3

� deffectorð½Cytokines�Þ½Teffector� ð13Þ

d½Cytokines�
dt

¼ m2RIC þ m3 Teffector½ � � d6 Cytokines½ � ð14Þ

Here, RIC denotes the ratio of infected cells to total cells.
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The coefficient δeffector ([Cytokines]) represents the rate of effector T cell exhaustion/clean-

ing, which is dependent on the chronic inflammatory environment due to the accumulation of

cytokines. Hence, we assumed that δeffector ([Cytokines]) depends on the accumulation of a

Hill type function of [Cytokines] over a period of effective time [66], which is formulated as

deffector Cytokines½ �ð Þ ¼ d5 þ rH t � t2ð Þ

Z t

t� t3

½Cytokines�ðsÞm4

½Cytokines�ðsÞm4 þ Km4

4

ds ð15Þ

here δ5 is the basal cleaning rate, ρ is the maximum rate of T cell exhaustion, and τ3 is the effec-

tive period of cytokines. The Heaviside function H(t − t2) is introduced to represent the start-

ing of T cell exhaustion, where

H tð Þ ¼

(
1 t > 0

0 t � 0
ð16Þ

Here t2 = TIP to indicates the starting time of T cell exhaustion from a symptomatic state. Clin-

ically, T cell exhaustion is associated with the expression of specific immune-inhibitory factors

including PD-1 and Tim-3 on the cell surface [20, 58], but the origin of T cell exhaustion

remains unclear [23, 28]. Here, we simply introduced variables ρ and K4 to model the effects of

T cell exhaustion.

Finally, we assumed that infected cells are cleared by effector T cells and that the clearing

rate is proportional to the effector T cell number, i.e., the clearing rate

ZðtÞ ¼ Z0½Teffector� ð17Þ

where η0 is a constant rate. When an infected cell is cleared, a normal cell is generated to main-

tain the total cell number N.

Numerical scheme

The proposed multi-scale model was established using a combination of deterministic and

random simulations. The schematic framework is summarized in (Fig 10).

The scheme starts with a tissue system of N normal cells and an initial extracellular SARS-

CoV-2 concentration Xex(0) = Xex,0. After viral infection, each cell undergoes state change

from normal to infected, and is cleaned by effector T cells. When an infected cell is cleaned, a

new normal cell is generated to replace the lost cell so that the total cell number N remains

unchanged. All new normal cells exhibit heterogeneous cell surface receptor protein numbers

that obey a gamma distribution Ri
0
� Gða1; a2Þ.

In numerical simulations, we started from t = 0 and simulated the infection progression

using a time step dt = 0.01h. At each time interval [t, t + dt], the extracellular virus binds to the

receptor proteins on target cells, releases the mRNA into the target cells, replicates the mRNAs

and synthesizes new virus, and the intracellular viruses are released into the extracellular envi-

ronment. Meanwhile, interferons (IFNs) and antiviral proteins (AVPs) are produced and

inhibit viral replication in the host cell. These processes are simulated following Eqs (8)–(12).

Each cell dynamically changes from normal to infected states following the infections process

(Fig 10). At each time step, a normal cell has a probability bðXex;Ri
0
;AÞ � dt of switching to an

infected state and the index set I(t) of infected cells changes over time. The T cell response is

triggered by the infected cells (Fig 10). Infected cells secrete cytokines, such as IL-2, IL-6, TNF-

α, etc., to induce the activation of naïve T cells. Effector T cells promote the cleaning of

infected cells, and secrete cytokines, including IL-2, IL-6, TNF-α, etc. Eqs (13) and (14). The

cytokines lead to the exhaustion of effector T cells following the exhaustion rate defined by
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Eq (15). The infected cells are cleaned by effector T cells so that each infected cell is removed

with a probability η(t) × dt during an interval [t, t + dt]. When an infected cell is cleaned, a

new normal cell is generated to replace the lost cell.

The above processes suggest a numerical scheme shown below (Fig J in S1 Text):

1. System initialization: Set the time t = 0 and the step size (dt = 0.01h). Initialize the system

states, including the total cell number (N = 5000), cell surface receptor protein numbers

Ri
0

(following the gamma distribution Γ(α1, α2)) in each cell, initial concentration of

extracellular SARS-CoV-2 (Xex,0), naïve T cell number ([T0]), and the initial conditions

½Xex�ð0Þ ¼ Xex;0;Rið0Þ ¼ 0; Xi
inð0Þ ¼ 0; ½IFNs�ið0Þ ¼ 0; ½AVPs�ið0Þ ¼ 0; ½Cytokines�ð0Þ ¼

0; ½Teffector�ð0Þ ¼ 0. Set the states of all cells to be normal (Si = 0), Ninfected = 0 and the

infected cells index I to be an empty set.

2. Update cell states: For i from 1 to N:

a) If Si = 0, changes the cell state to Si = 1 with a probability p1 ¼ bðXex;Ri
0
;AÞ � dt. If the

cell state is changed, the index i is added to the index set I.

b) If Si = 1, cleans the cell with a probability p2 = η(t) × dt. If the cell is cleaned, the cell state

is reset with a newly generated receptor number Ri
0
� Gða1; a2Þ and the initial conditions

Si = 0, Ri ¼ 0;Xi
in ¼ 0, [IFNs]i = 0, [AVPs]i = 0.

c) If Si = 1 and is not cleaned, solve the differential equation for Ri, [IFNs]i, [AVPs]i and Xi
in

Eqs (9)–(12) for one step (t! t + dt) using a difference method (e.g., DDE23 in

Fig 10. Schematic diagram for the multi-scale modeling of SARS-CoV-2 infection. a. Susceptible cells in normal tissue are infected by SARS-CoV-2. b. Cell states

vary from normal to infected. Each normal cell becomes an infected cell with a probability of bðXex;Ri
0
;AÞ � dt, and the infected cell spreads virus to the

microenvironment and further infect other susceptible cells. c. The T cell response is triggered by infected cells that secrete cytokines (such as ILs, TNFs, IFNs, etc.).

Naïve T cells are activated by cytokines and produce effector T cells to clear infected cells. Meanwhile, the above Eqs (1)–(17) represent the multi-scale model in the

current study. This model includes viral dynamics, IFN response, and T cell response after SARS-CoV-2 infection. The viral dynamics and IFN response are coupled

through the indexes of infected cells, and the T cell response and cytokines are connected by the number of infected cells. Cytokines are produced by both infected cells

and effector T cells, promoting T cell exhaustion. Infected cells are removed with a probability of η(t) × dt. If an infected cell is cleared, a normal cell is generated to

keep the total number of target cells unchanged. d. Normal tissue develops into abnormal tissue, and the severity is measured by the ratio of infected cells in the tissue.

https://doi.org/10.1371/journal.pcbi.1009587.g010
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MATLAB), and update the intracellular SARS-CoV-2 concentration Xi
in, IFNs concentra-

tion [IFNs]i, and AVPs concentration [AVPs]i.

3. Update extracellular environment and the host immune response: Update the infected

cells number Ninfected, and solve the Eq (8) and Eqs (13)–(15) for one step (t! t + dt) with

updated index I and the number Ninfected, and update the variables Xex,[Cytokines],

[Teffector].

4. Update the time: Let t = t+dt, and either go to step 2 or terminate the simulation process.

Parameter estimations and sensitivity analysis

Some of the model parameters were obtained directly from published literature, i.e., the associ-

ation (kon) and dissociation (koff) between S protein of SARS-CoV-2, receptor protein were

taken as kon = 0.6759nM � h−1 and koff = 9.9365h−1 [67].

Other parameters were estimated by related studies. The mammalian cell volume (vcell) is

100� 10000μm3 [68] and the density of naïve T cell is approximately 4 × 10−3 g/cm3 [69] so

that the counts of naïve T cell ([T0]) are about 0.4� 4.0 × 105cells/ml. The half-life of IFNs,

AVPs and SARS-CoV-2 were determined from published studies; the half-life of IFNs ranged

from 1.3 to 4.7 hours [70], AVPs is 2�24 hours [29], and the half-life of SARS-CoV-2 is about

6.8 hours [71]. By the natural depletion rate δ = ln2/t1/2 (t1/2 is the half-life), the degradation of

IFNs, AVPs and SARS-CoV-2 were estimated as δ1 = 0.1h−1, δ2 = 0.4h−1, δ3 = 0.12h−1, respec-

tively. Extracellular viruses are easier to be clean by the humoral and cell-mediated immune

response so that we set δ4 = 2.5δ1 = 0.25h−1.

In Eq (7), parameters were set to m0 = 5, K0 = 48 × 10−11, β0 = 0.15 to satisfy the effect of

threshold between the virus and receptor protein (Fig Ka in S1 Text), R0 in the Eq (1) was

assumed to obey a gamma distribution Γ(α1, α2) and the parameters of α1, α2 were estimated

using the max likelihood estimation (MLE) (α1 = 12.11, α2 = 9.50) (Fig Kb in S1 Text).

We estimated other parameters by fitting simulation results with clinical data. We fitted

clinical data of T cell dynamics from dataset 7 to estimate the remaining parameters and

patients with different symptom presentation by varying the exhaustion rate (ρ) (Moderate: ρ
= 0.0005; Severe: ρ = 0.0025; Critical: ρ = 0.005) (Fig L in S1 Text). Before fitting the data, we

assumed that the initial time of patients in the hospital (t = TIP + t0) and t0 represents a time

interval from showing symptom to being hospitalized. The parameter t0 was taken as 1 day

based on the information of dataset 7. The parameters were estimated within relevant biologi-

cal ranges such that the number of effector T cells was well fitted to patients with different

symptoms. A detailed description and default values of the model parameters are shown in

Table A in S1 Text. In addition, we examined our model using two indexes: Q and L (the defi-

nitions of these indexes is in Section 3 in S1 Text). Details of model validation are provided in

the Section 9 in S1 Text. The results displayed in Table C and Figs L and M in S1 Text suggest

that the accumulation effect (15) is appropriate for true dynamics of effector T cells in

COVID-19 patients.

We applied the method of partial rank correlation coefficient (PRCC) [72] to perform sen-

sitivity analysis for estimated parameters related to viral dynamics. Sensitivity analysis was per-

formed using 200 sample runs and a perturbation magnitude of 0.1. The sensitivities of input

parameters to the ratio of infected cells (RIC) on day 30 after infection were calculated (Fig D

in S1 Text). The most sensitive parameters λ1 and b1 correspond to the rate of viral RNA repli-

cation and are attributed to the characteristics of the virus itself. The parameters λ2 and K1 are

also significant, which correspond to IFN response and the coefficient of inhibiting viral
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replication, respectively. We also note the two parameters vex and δ4 that were associated with

the process of susceptible cells infected by SARS-CoV-2.

Treatment model

The strategies of treatment for COVID-19 are primarily classified as antiviral treatment and

immune modulation. Antiviral treatment methods include type I interferons and Arbidol [44],

and immune modulations include immunoglobulins and hormone treatment [73]. Potential

immune therapy, such as blocking the inhibitory immune checkpoint molecules, has been

applied in severe cases [40]. To model the therapeutic effects, we considered four treatment

strategies, including acceleration of IFN response, restriction of viral replication, promotion of

extracellular virus clearance, and inhibition of T cell exhaustion. We introduced a quadruple

(ε1, ε2, ε3, ε4) to represent the effects of the above four strategies. Thus, the equations of the

preceding model were modified as follows:

d½IFNs�i

dt
¼ 1þ ε1ð Þl2X

i
in þ b2

ð½IFNs�iÞm2

ð½IFNs�iÞm2 þ Km2
2

� d2½IFNs�
i

ð18Þ

dXi
in

dt
¼

kinRi

vcell
þ l1X

i
in t � t1ð Þ

b1ðð1 � ε2ÞK1Þ
m1

ðð1 � ε2ÞK1Þ
m1 þ ð½AVPs�iÞm1

� d1Xi
in � q0Xi

inðt � t2Þ

ð19Þ

dXex

dt
¼

vcell
Vex

X

i2IðtÞ

q0X
i
inðt � t2Þ þ

1

Vex

X

i2IðtÞ

½koffR
i � konðR

i
0
� RiÞXex�

� d4ð1þ ε3ÞXex

ð20Þ

deffector Cytokines½ �ð Þ ¼ d5 þ rH t � t2ð Þ

Z t

t� t3

½Cytokines�ðsÞm4

½Cytokines�ðsÞm4 þ ðð1þ ε4ÞK4Þ
m4
ds ð21Þ

Here, ε1(ε1 > 0) represents acceleration of the IFN response, ε2(0 < ε2� 1) represents the

restriction of viral replication, ε3 (ε3 > 0) represents the promotion of extracellular virus clear-

ance, and ε4 (ε4 > 0) represents inhibition of T cell exhaustion. Moreover, we assumed that a

patient starts the treatment on day t3 = 15 after infection, so that the above equations were

applied when t� t3. The Eqs (18)–(21) were used to explore the treatment dynamics for

COVID-19 patients.
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