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Abstract: Maternal obesity has been related to adverse neonatal outcomes and fetal programming.
Oxidative stress and adipokines are potential biomarkers in such pregnancies; thus, the measurement
of these molecules has been considered critical. Therefore, we developed artificial neural network
(ANN) models based on maternal weight status and clinical data to predict reliable maternal
blood concentrations of these biomarkers at the end of pregnancy. Adipokines (adiponectin,
leptin, and resistin), and DNA, lipid and protein oxidative markers (8-ox0-2’ -deoxyguanosine,
malondialdehyde and carbonylated proteins, respectively) were assessed in blood of normal weight,
overweight and obese women in the third trimester of pregnancy. A Back-propagation algorithm was
used to train ANN models with four input variables (age, pre-gestational body mass index (p-BMI),
weight status and gestational age). ANN models were able to accurately predict all biomarkers with
regression coefficients greater than R? = 0.945. P-BMI was the most significant variable for estimating
adiponectin and carbonylated proteins concentrations (37%), while gestational age was the most
relevant variable to predict resistin and malondialdehyde (34%). Age, gestational age and p-BMI had
the same significance for leptin values. Finally, for 8-oxo-2’-deoxyguanosine prediction, the most
significant variable was age (37%). These models become relevant to improve clinical and nutrition
interventions in prenatal care.
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1. Introduction

Obesity during pregnancy is associated with adverse maternal and neonatal outcomes, and with a
higher risk of developing cardiovascular and metabolic diseases in childhood and adult stages. Maternal
programming of disease has been widely described [1-9]. In particular, obesity programming of
the offspring has been postulated to occur periconceptionally and at the end of pregnancy, when an
increase in lipid and leptin expression is observed (reviewed by [4]). Maternal obesity is linked to
dysregulation of adipose tissue (AT) metabolism [8], and an imbalance in the pro-oxidant-antioxidant
system with an increase of reactive oxygen species (ROS) that results in oxidative stress [10-13].
ROS alter different cellular components such as proteins, lipids and DNA, generating oxidized
biomolecules that can be used as biomarkers of oxidative stress. Carbonylated proteins (CP),
malondialdehyde (MDA) and the oxidized base 8-ox0-2'-deoxyguanosine (8-oxodG) are indicators of
protein oxidation, lipid peroxidation and DNA oxidation, respectively [13].

Several studies in pregnancy have linked increased oxidative stress with lower birth weight [14,15],
impaired growth, and higher adiposity in infants [16]. Moreover, maternal AT secretes adipokines
such as leptin, adiponectin and resistin [17,18], which have been implicated in metabolic control
and fetal programming of adiposity in newborns and infants [19-23]. Thus, quantification of
maternal adipokines and oxidized biomolecules could be used as potential biomarkers of perinatal
and infant health outcomes [24,25]. Accordingly, prenatal mathematical modeling to predict these
biomarkers during pregnancy without blood sampling becomes critical to implement strategies
to improve maternal and neonatal outcomes. Artificial Intelligence, particularly artificial neural
network (ANN), is a powerful and rigorous tool for the analysis of non-linear and highly complex
relationships that learns from all data including experimental and clinical variables, by allowing a very
accurate estimation of parameters [26,27]. ANN has been applied in the perinatal field for diagnosis,
data mining and clinical decision [28-32]. However, currently no mathematical models have been
reported that predict maternal blood biomarkers from clinical and anthropometric data.

Consequently, the aim of this study was to develop and validate ANN models to predict blood
concentrations of adipokines and oxidative stress biomarkers at the end of pregnancy based on
pre-gestational weight status and clinical data. Secondly, we calculated the relative importance of
these factors in estimating the biochemical values. The third trimester of pregnancy was chosen for
the estimation of maternal biomarkers, since it is considered a critical window for developmental
programming by maternal obesity, distinct from early pregnancy [4].

2. Results

We studied pregnant women during the last trimester of pregnancy (normal weight n = 25,
overweight n = 21, obesity n = 22). Mean GA when biochemical measurements were done was
35.2 & 3.3 weeks. Table 1 shows maternal anthropometric and biochemical data by BMI classification.
Normal weight women were younger compared to obese women and had significantly higher
concentrations of adiponectin and resistin together with lower MDA and CP levels (p < 0.05).
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Table 1. Clinical characteristics and biochemical data in peripheral maternal blood classified according
to pre-gestational BMI.

Variables Normal (n = 25) Overweight (n = 21) Obese (n = 22)
Age (years) 27.9 £1.90 30.3 +1.90 329 +1.40°
p-BMI (kg/m?) 22.0£0.30 27.6+0.302 35.1 & 1.00 be
GA (weeks) 34.4+0.70 35.6 + 0.60 35.8£0.70
Glucose (mg/dL) 80.0 +24 89.4 + 4.60 87.3 +4.10
Insulin (uIU/mL) 7.80 £2.0 10.6 £1.70 14.9 + 3.80
HOMA-IR 1.60 + 0.50 2.60 £0.70 3.80 £1.20
Leptin (ng/mL) 24.3 £ 3.50 39.7 £5.60 412 +£10.7
Adiponectin (ug/mL) 16.2 +2.30 123 +£2.10 9.20+1.90°
Resistin (ng/mL) 23.0 £ 3.00 20.1 +4.20 13.4 +220P
MDA (nmol/mg dry weight) 0.12 £ 0.006 0.13 £ 0.01 0.22 + 0.02 be
CP (nmol/mg protein) 10.0 + 0.40 109 £0.70 16.7 + 1.10 b¢
8-0xodG (ng/mL) 218 + 184 198 + 8.90 188 + 4.30

p-BMI: pregestational body mass index; GA: gestational age; MDA: malondialdehyde; CP: carbonylated proteins;
8-0x0dG: 8-hydroxy-2'-deoxyguanosine. Values represent mean + SEM (Standard Error of the Mean). p values were
estimated using one-way ANOVA with DMS post hoc test. 2 p < 0.05 overweight versus normal; ® p < 0.05 obese
versus normal; € p < 0.05 obese versus overweight.

In this study, mathematical models with neural networks were developed to: (1) predict the
concentration of either leptin, adiponectin, resistin, 8-oxodG, MDA and CP in maternal blood at
the third trimester of pregnancy (output variable) through a simple equation based on four input
variables: pre-gestational maternal age, p-BMI, weight status classification and gestational age at
which the sample was taken; and (2) to obtain the most critical pre-gestational parameters influencing
the predicted biomarkers.

ANN neurons are organized into multiple connected layers to predict a response. The chosen
architecture of the model was an input layer, a hidden layer and an output layer, trained and tested by a
back-propagation algorithm (BPNN), as previously described [29]. The percentage of the experimental
database (input and output variables) for training and validation was defined. For each model,
from one to several neurons were applied in the hidden layer until the minimum root mean square
error (RMSE) was obtained between experimental data and predicted values from the neural network
(Figure 1). The Levenberg-Marquardt algorithm was chosen for training the model by changing
the weights and biases to get the lowest value for the RMSE and being careful to avoid over fitting.
The ANN was developed by software toolbox Matlab®.

Inputlayer Hidden layer Output layer

Age

BMI [Adiponectin]

Classification

GA

b1 b2

Figure 1. Maternal artificial neural network model. Shown is a representative prediction model
for maternal blood adiponectin concentration involving four input variables (maternal age, p-BMI,
weight status classification and gestational age), eight neurons in the hidden layer and one output
variable (adiponectin concentration).
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After running distinct conditions, the hyperbolic tangential (TANSIG) transfer function presented
the best performance in the hidden layer for all models. In the output layer, the Log-sigmoid (LOGSIG)
transfer function was applied for adiponectin, resistin, leptin, and 8-oxodG, while the linear (PURELIN)
transfer function was used for MDA and CP.

Six ANN models were trained with maternal input variables (age, p-BMI, weight status and GA)
to predict the output variable: Either adiponectin, leptin, resistin, CP, MDA or 8-oxodG concentration
in maternal blood at the third trimester of pregnancy. After applying 30,000 runs (with 1000 epochs in
each model) in the hidden layer (1-9 neurons), the best network architecture performances were found
for each adipokine or oxidative stress marker estimation. For ANN models predicting the values of
adiponectin, leptin and CP, the final architecture was 4-8-1 (four input variables, eight neurons in the
hidden layer, and one neuron in the output layer (biomarker concentration)). The final topology for
the MDA model was 4-6-1, while, for resistin and 8-oxodG models, the best performance was 4-9-1.
The representative neural architecture for the prediction of adiponectin concentration is shown in
Figure 2, whereas the weights, biases and equations for the prediction of all adipokines and oxidative
stress marker concentrations are reported in Materials and Methods and Appendix A (Tables A1-A6).
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Figure 2. Experimental vs. ANN-simulated values for blood adipokine and oxidative marker
concentrations. Scatter plots of: (a) adiponectin; (b) leptin; (c) resistin; (d) carbonylated proteins;
(e) MDA; and (f) 8-oxodG maternal levels. Red lines indicate the linear regression model on scatter
points. Open circles and closed diamonds depict experimental data and learning data, respectively.

The regression coefficient for all ANN models were above 0.945 (R? > 0.9644 for adiponectin,
R? > 0.9675 for leptin, R? > 0.9484 for resistin, R? > 0.9453 for CP, R? > 0.9576 for MDA and R? > 0.9653
for 8-oxodG (Figure 3)). The statistical test from these plots showed that the upper and lower values of
the slope and intercept included 1 and contained 0, respectively, with a 99.9% confidence level for all
determinations (Materials and Methods and Tables A7 and A8 in Appendix A).
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Figure 3. Sensitivity analysis. Percentage of mathematical significance of the four pre-gestational
input variables (maternal age, p-BMI, weight status classification and gestational age) in maternal
ANN models for: (a) adiponectin; (b) leptin; (c) resistin; (d) carbonylated proteins; (e) MDA;
and (f) 8-oxodG concentrations.

Finally, we evaluated the relative importance of pre-gestational variables in the neural network
modeling of adipokine and oxidative stress marker concentrations, depicted as the percentage of
quantitative significance (Figure 3). The sensitivity analysis is based on the ANN weight matrix and
the Garson equation [33] (Materials and Methods). All maternal factors were essential in estimating
the studied biochemical markers. P-BMI was the most important predictor of adiponectin followed
by age. For leptin prediction, age, GA and p-BMI value had the same importance. The most relevant
factor in forecasting resistin was GA; other predictor factors were age and p-BMI value. For oxidative
markers, GA and p-BMI estimated MDA, while CP were predominantly predicted by p-BM], followed
by age and GA. Finally, for 8-oxodG, the meaningful variable was age, then GA and p-BMI. Weight
status was the weakest predictor in all models.

3. Discussion

Nutrition and metabolic changes occur during pregnancy to promote optimal fetal growth
and development. The presence of obesity in pregnancy is associated with nutrient and hormonal
imbalances, and with inflammation [34]. Altered leptin, adiponectin, and oxidative stress markers have
been documented in pregnant women with obesity [25,35], and have been associated with adverse
perinatal outcomes [36-38]. The early prediction of alterations in these markers at the end of pregnancy
is very relevant, considering the high prevalence of overweight/obesity in women of reproductive age
in many countries [39].

ANN is a tool that allowed the estimation of these biochemical markers with anthropometric
and clinical variables that are generally used in clinical practice. We present six ANN models that
accurately predict third trimester maternal concentrations of adipokines (adiponectin, leptin, and
resistin) and DNA, lipid and protein oxidative damage markers (8-oxodG, MDA and CP, respectively).
Regression coefficients between the experimental and predicted values for all determinations were
superior to R? = 0.945.

For adipokines, the model correctly estimated higher leptin concentrations together with lower
adiponectin and resistin values in obese mothers in comparison with normal and overweight pregnant
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women, a finding that has been reported before [25,40]. In particular, the ANN-predicted adiponectin
values (that learned from the experimental data) were similar to those found in the literature [41].

We found that leptin prediction was equally dependent on GA, p-BMI and maternal age. This is
in agreement with the literature where leptin concentration increases with gestational age in normal
pregnancies, mainly produced by adipose tissue, placenta, skeletal muscle and mammary gland
(reviewed by [42]). Many studies also have shown increased leptin concentrations with higher p-BMI
and in overweight/obese women [35,43,44].

Maternal adiponectin has been inversely related with BMI [45], GA and positively associated
with maternal age [46,47]. The ANN adiponectin model derived from this study was able to predict
these associations too. P-BMI was the most important parameter in estimating adiponectin and
carbonylated proteins.

Pregnancy per se is an oxidative stress condition due to a higher oxygen demand [48]. Protein
carbonylation is caused by the direct attack of free radicals, by interaction with transition metals,
by glycation or by adduct formation with final lipoperoxidation products (MDA) (reviewed by [49]).
In our models, CP and MDA estimated values were significantly increased in obese pregnancies
compared to normal weight mothers, suggesting an increased oxidative damage in the latter and in
line with the literature [24,50]. In this work, a higher p-BMI was related to decreased adiponectin and
increased MDA concentrations, in agreement with a negative correlation between adiponectin and
oxidative lipid damage during pregnancy [51].

Gestational age at sample collection was a relevant factor (34%) for resistin and MDA predictions,
suggesting that resistin and MDA levels are greatly influenced by gestational age at the end
of pregnancy, despite differences in maternal BMI. These results could be explained by the
resistin-dependent insulin resistance that is increased during pregnancy and is modulated in part by a
higher glucose transporter 1 (GLUT-1) expression in trophoblast cells induced by resistin [52].

Concerning oxidative damage markers, there is a physiological increase associated with women'’s
aging [53] as well as with advanced gestational age in normal pregnancies [54]. Interestingly,
for 8-oxodG, the meaningful variable was maternal age (37%). The link between oxidative stress
and aging has been discussed in recent years. In human clinical cohorts, increased 8-oxodG levels in
muscle and leukocyte DNA were observed with increasing age [55]. No studies have been reported in
pregnancy. Investigating changes in this DNA oxidative marker during pregnancy in different age
groups is pending.

Study Limitations and Strengths

A limitation of this study is the sample size (1 = 68), however, the model accurately estimated
blood concentrations with regression coefficients with values >0.9. Furthermore, other ANN studies
have shown validated results with smaller samples [30]. It is important to mention that these ANN
models will predict accurately adipokines and oxidative stress markers within the range in which
they learn, for example healthy women with singleton pregnancy, maternal p-BMI range between
18.6 and 48.3 kg/m?.

4. Materials and Methods

4.1. Study Design and Ethical Approval

This research was approved by the IRB of the Instituto Nacional de Perinatologia Isidro Espinosa
de los Reyes (register 3300-11402-01-575-17), and was conducted according to the relevant national
regulations and the Helsinki Declaration with its later amendments (1985). Participation was voluntary
and all women who agreed to participate signed an informed consent.
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4.2. Characteristics of the Population

Healthy women with singleton pregnancy, and with blood sample taken during the third trimester
of gestation (28—40 weeks of gestation) were enrolled in the study (n = 68). Samples were selected
by convenience and stratified by pregestational body mass index (p-BMI). Gestational age (GA) was
determined using the last menstrual period date; if GA with this method differed significantly from
first trimester ultrasound measurement, then the latter was used. Women with multiple pregnancies,
Type 2 Diabetes Mellitus or gestational diabetes mellitus, chronic or gestational hypertension, renal or
autoimmune disease, intrauterine fetal growth restriction, fetal structural abnormalities or drug intake
that affects metabolism and/or inflammation (metformin, steroids, insulin, and antihypertensives,
among others) were excluded.

4.3. Anthropometry

Pre-gestational weight was self-reported. Stature (cm) was measured with a stadiometer
(SECA 220, Hamburg, Germany) by trained personnel. P-BMI was calculated using the following
formula: Weight/stature?. BMI classification was done according to the World Health Organization
criteria, where a p-BMI > 18.5 was classified as normal weight, p-BMI > 25 as overweight, and >30
as obesity.

4.4. Biochemical Markers

Maternal blood samples were collected in the fasting state, in Vacutainer tubes (Becton-Dickinson,
Franklin Lakes, NJ, USA) and centrifuged at 4 °C for 15 min at 1000x g. The serum and plasma
samples were stored at —80 °C until the assays were performed.

Serum glucose, adiponectin, leptin, resistin, and insulin concentrations were measured by ELISA
commercial kits, as previously described [20]. Adiponectin, leptin and resistin (R & D Systems Inc.,
Minneapolis, MN, USA) had the following sensitivities: 0.891 ng/mL, 7.8 ng/mL and 0.055 ng/mL,
respectively; and assay ranges: 3.9-250 ng/mL; 15.6-1000 pg/mL and 0.2-10 ng/mL, respectively.
Insulin (Sigma-Aldrich, St. Louis, MO, USA) and glucose (DiaSys Diagnostic Systems GmbH,
Holzheim, Germany) sensitivities were: 2.15 pmol/L, and 1 mg/dL, respectively; and assay ranges
were: 15.6-500 pmol/mL and 1-400 mg/dL, respectively.

Homeostatic model assessment (HOMA) index was calculated according to [56]. Oxidative DNA
damage level was measured using an 8-oxodG ELISA kit (TREVIGEN, Gaithersburg, MD, USA) with a
sensitivity and assay range of 0.57 ng/mL and 0.89-56.7 ng/mL, respectively. Plasma malondialdehyde
(MDA) was quantified as described by Gerard et al. [57] with 1-methyl-2-phenylindole (Sigma-Aldrich,
St. Louis, MO, USA) as a standard. Sensitivity for MDA determination was 17 ng/mL and assay range
of 0.27-2000 ng/mL. Protein damage was evaluated by plasma carbonyl group content, which was
determined with 2,4-dinitrophenylhydrazine (DNPH), and measured according to Amici et al. [58].
Assay range and sensitivity for CP evaluation were: 1-10 mg/mL and 1.5 nmol/mg, respectively.

4.5. Statistical Analysis

Descriptive analysis (data distribution, frequencies) were done. One-way ANOVA with DMS
post hoc test was used to analyze differences by p-BMI categories (normal weight, overweight or obese).
Data are expressed as mean =+ SEM, and p values < 0.05 were considered statistically significant. Statistical
analysis was performed using the IBM SPSS v20.0 software (IBM Corporation, Armonk, NY, USA).

4.6. ANN (Learning, Testing and Validation)

An artificial neural network utilizes nodes (neurons) connected between each other in distinct
layers, their relationship being defined by weights (Wi, Wo) and biases (b1, b2) that are obtained
by iterations with the ANN algorithm. Figure 4 depicts a representative architecture for the neural
network model (multi-layer) with an input layer, a hidden layer and an output layer, trained and
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tested by a Back-propagation algorithm (BPNN). The ANN is “fed” randomly with the database and
calculates the error between the experimental and predicted values. Then, it back propagates changing
the weights and biases to obtain the smallest error. For all the models, the input variables chosen
from the entire database were four maternal parameters: Age, p-BMI, weight status (normal weight,
overweight, or obese) and GA at which maternal blood sample was taken. The output maternal
variable was one biomarker: leptin, adiponectin, resistin, 8-oxodG, MDA or CP concentrations at the
third trimester of pregnancy (input and output variables are depicted in Table 2).

Maternal age

Pre-pregnancy BMI Mﬂternﬂl [Adip()l(ine or
Gestational sge Experimental data Oxidative
Weight status —
{normal, overweight, marker] exp

ohese)

¥
Optimization

()4—% method
[Levenberg-Marquardt]

Y

[Adipokine or
Oxidative —
marker] sim

Neural network
{Weights and
Biases)

Figure 4. A representative network architecture of the maternal artificial neural network (ANN)
model. The learning procedure used by ANN for the prediction at the third trimester of pregnancy
of adipokine or oxidative stress marker concentrations in maternal blood (from 4 gestational
variables: maternal age, p-BMI, weight status classification and gestational age), trained by the
Levenberg—Marquardt optimization algorithm. The same architecture was utilized for adiponectin,
leptin, resistin, carbonylated proteins, MDA and 8-oxodG values estimation. + and - indicate changing
the weights and biases values to obtain the smallest error between exp and sim.

Table 2. Input (clinical and anthropometric variables) and output (biochemical values) range conditions
in the maternal ANN model.

Input Variables Range Output Variables Range
Age (years) 14-43 Leptin (ng/mL) 0.38-223.4
p-BMI (kg/ m?) 18.6-48.3 Adiponectin (ng/mL) 4.1-40.4
GA (weeks) 28.3-40.4 Resistin (ng/mL) 0.7-90.4
MDA (nmol/mg dry weight)  0.04-0.55
Weight Status Classification Normal, overweight or obese 8-0x0dG (ng/mL) 160-642
CP (nmol/mg protein) 5.72-30.5

p-BML: pregestational body mass index; GA: gestational age; MDA: malondialdehyde; CP: carbonylated proteins;
8-0x0dG: 8-hydroxy-2'-deoxyguanosine.

4.6.1. ANN Model

The experimental database (1 = 68) was randomly divided into learning (79%) and validation
(21%) and then, the input variables were normalized in the range of 0.1 to 0.9, as previously
described [29]. The output variable was not normalized.

Each neuron (1) has weights (Wi and Wo) and biases (b1 and 02) in the hidden and output layers
(1) and (2):

nm=WixIni+WixIny+...... + Wi x Iny + bl 1
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where In is the input variable. The value of each neuron is the argument of the transfer functions

(f and g):
Adipokine or oxidative stress marker (output) = g (Wo x f (Wi x In + bl) + b2) 2)

where f is a hyperbolic tangent transfer function (TANSIG) and g is a linear transfer function (PURELIN)
or Log-Sigmoid function (LOGSIG).

We applied different transfer functions to obtain the best performance for the models. As a result
of the ANN model, Equation (2) with TANSIG-PURELIN was Equation (3):

2
—2(% Wi(s,k) ~Ink+b1(s,1)

)—1

s

output = 2{ Wo( - } + b2 3)

1+4e¢
For other ANN models, Equation (2) considering TANSIG-LOGSIG was Equation (4), where

Noutput is:
1

1+exp ( 7”autput,layev) )

output = (
)

— 2
Noutput layer = Z{Wo(l,s)' [ (Wi Tl 5p) 1 } + bz(l,l)
1 FME ,

S

4.6.2. ANN Learning

In this work, to change the weights and biases, we applied the Levenberg-Marquardt (LM)
algorithm, following our previously reported methods [29]. This uses the adaptation as follows:

Aw = (]T] + yl)il]Te ®)

where | is the Jacobian matrix (first derivative); e is a vector of network errors; y is the combination
coefficient with a value of 0.001 and [ is the identity matrix.

The root mean square error (RMSE) was applied as the error function which describes the
performance of the network according to the following Equation (6):

Q 2
( Zl (]/q,exp - ]/q,ANNsim) )
q:
RMSE = 6
0 (6)

where Q is the number of data points (1 = 68); ygexp is the experimental data and Yq,ANNsim 18 the
network prediction.

4.6.3. Results for Maternal Adipokines and Oxidative Stress Marker ANN Models
The proposed ANN models for MDA and CP followed Equation (7) with TANSIG-PURELIN:

S
MDA(or)CP_concentration = Y, | Wo(q 5 2 1| +b2 )

K
s=1 1+exp<72< x (Wi(srk)ln(k))erl(s)))

k=1

Equation (8) gives adiponectin, leptin, resistin and 8-oxodG with TANSIG-LOGSIG, where ngypyt is:

1
1+exp ( - noutput_layer) )

adiponectin_or_resistin_or_leptin_or8 — oxodG = (

®)

_ 2
Moutput_layer = Z{W"(l,s)' [ W T ) L
1+e Kk ’ ’

S
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Equations (7) and (8) give the maternal adipokine or oxidative stress marker concentrations with
weights and biases in Table A1 (Adiponectin ANN model, 4-8-1), Table A2 (Leptin ANN model, 4-8-1),
Table A3 (Resistin ANN model, 4-9-1), Table A4 (carbonylated proteins ANN model, 4-8-1), Table A5
(MDA ANN model, 4-6-1) and Table A6 (8-oxodG ANN model, 4-9-1) in Appendix A.

4.6.4. Statistical Tests for ANN Model Validation

ANN model validation was performed using linear regression models of the experimentally
measured adipokines and oxidative stress marker concentrations versus the simulated ones (learning
and validation database), obtaining the slope and intercept (Figure 3). Then, we applied a statistical
test (slope and intercept, [59]) in which the upper and lower intervals of the slope and intercept must
be near 1.0 and 0 respectively, with a 99.8% confidence level according to the Student t-test.

The regression coefficient (R?) was then obtained from linear regression models for each
biochemical value:

(Adipokines;,, or Redox marker,, = a+ b Adipokine or Redox marker,yp)

4.7. Sensitivity Analysis

To obtain the relative biological importance of maternal variables in predicting adipokine and
oxidative stress marker concentrations, we performed a sensitivity analysis, as proposed by [33],
based on the partitioning of connection weights:

Nh wil
ML % ’Who
Ni B mn
AN
I = )
S I L W |

k=1 | m=1 I\Zh |Wih ‘
=1 km

where [; is the relative importance of the input variable on the output variable; N; is the number of
input neurons; Nj, is the number of hidden neurons; W is the connection weight; and the superscripts
i, h and o refer to input, hidden and output layer.

5. Conclusions

The ANN models accurately predicted adipokine and oxidative stress marker concentrations in
the third trimester of pregnancy based on feasible and easy to measure clinical and anthropometric
variables, allowing to obtain the reference blood concentrations in pregnant women with or without
pre-pregnancy overweight and obesity. The early prediction of alterations in these markers (prenatal)
could be used by clinicians to implement strategies that improve metabolic and nutrition status,
influencing perinatal outcomes in overweight/obese women. The prediction of these maternal
biomarkers adds quantitative dimensions to the assessment of pregnancy follow-up, which could
particularly benefit the group of patients with normal pregnancy outcomes despite abnormal adipokine
and oxidative stress marker concentrations. Alterations in these markers may modify nutrient
utilization by the fetus, and thus, impact fetal growth. Being large for gestational age or macrosomic at
birth is associated with higher adiposity later in life. Consequently, the prediction of these alterations
early in pregnancy may guide clinicians in selecting different strategies to improve nutrition and
monitor fetal growth closely. Studies are in progress to evaluate if the models may be generalized to
other settings.
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ANN Artificial neural network

p-BMI Pre-pregnancy Body Mass Index

CpP Carbonylated proteins

8-oxodG oxidized base 8-ox0-2'-deoxyguanosine
MDA Malondialdehyde

GA Gestational age

CP Carbonylated proteins

MA Maternal age

Appendix A

Weight and biases for ANN models.

Table A1. Weights and biases for the ANN model predicting adiponectin concentration.

8 Neurons on Hidden Layer (k=8and I =1)

Wigs 1) Wiis 2) Wiis 3) Wigs 43
—0.052517  3.7407 0.30914  —0.83713
—28.294 —6.5884 1.4140 11.300
—6.9433 4.7470 —20.738 2.7172
Wiy —1.4014 —1.2418 2.5042 2.3499
12.935 —11.478 7.3280 6.8132
3.3992 6.2892 —2.5518 —4.9357
9.3624 —10.582 49177 6.7825
4.0123 27.372 10.360 3.5215
Wo{ls} W0{1,1} WO[l,Z} WO{1,3} WO{1/4| WO|1,5} WO{1,6} WO{1/7] WO{l,S}
7 4.0988 10.884 —096316  —54384 —6.5596 —2.8140 7.3260 —13.678
—0.45666
24.442
12.415
bl 1y —1.3457
—6.3817
—1.6500
—4.2754
—7.4087

b2
2 {1,1}
b2us o 54830
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Table A2. Weights and biases for the ANN model predicting leptin concentration.

12 of 17

8 Neurons on Hidden Layer (k=8 and I =1)

Wiy 1 Wiy o) Wi 3) Wis 4)
21829 079377  —8.8924  —4.8956
13.941 7.3074 9.7328  —0.5.0633
Wi 12.187 14506 —16.893  —12.973
skl 47113 —32460 —16992  —19.329
~18396  7.7265 5.3903 —15.068
~19.657  —21.542  10.787 14.645
~16.118 26497  —14738  2.4320
017226  —3.3014  7.6009 6.3612
Woys Woyy,1 Woyy,) Woyy ) Wopry  Wops  Wopg  Wopz  Wopg
St 22859 21313 1.0830  —0.93728 —2.0859 4.1075 046330 —2.5751
7.0867
~22.895
19.031
bliy 10810
~2.7510
—2.7589
6.3961
~5.1093
Bua 5,

Table A3. Weights and biases for the ANN model predicting resistin concentration.

9 Neurons on Hidden Layer (k=9 and I =1)

Wis

Wiy Wiy Wiy Wiy
—0.12216 —6.136 2.6049 9.6953
27.276 11.076 —2.3404 59354
—049141 -1.0027 1.6407 —0.2277
16.723 —1.2056  16.100 —3.8005
12.611 8.6390 -1.4910 8.5175
—0.69780  2.7485 —60.73 1.1423
—0.11218 9.3635 —14.79 6.7889
—8.4773  2.8179 —10.031  0.56276
3.6918 1.3614 9.154 -5.7361

Wo{l,s}

Wop 1y Wopoy  Wops  Wopg  Wopsy Wopg  Wopyy  Woupg Wopg,
75398 12500 62809 —57172 9.6729 10.140 —0.10398 —6.2219 6.4819

b]‘[S,l}

blis )
0.5.1064
—24.66
0.68847
—12.01
—0.0111
1.0737
—9.0268
6.8763
—2.4130

bZ{ Is

0.81976
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Table A4. Weights and biases for the ANN model predicting carbonylated proteins concentration.

8 Neurons on Hidden Layer (k=8 and I =1)

Wigs 1) Wit o) Wi 5) Wi 4
~34952 24375 49253 53093
~14.758  —2.6467  —87481 35794
20876 ~ —11504 57321  —0.96934
Wiigry —0.67465 50937  —3.3881  2.6267
—28741 10542 14773 31.069
76510 ~ —25181 97527  —0.41751
~5.0850  —16182  —3.9322  0.55163
~33.142 33116  12.653 33422
Wopsg owy - Wonay o Wopg o Wopa o Wops  Wope  Wonz — Wopg
sl 55379 90540 35747 37903 33806 32181 —10.788 36.050
bls)
3.7180
9.8466
1.5882
by 93072
~12.59
2.2808
4.2440
~2.7282
20115

Table A5. Weights and biases for the ANN model predicting MDA concentration.

6 Neurons on Hidden Layer (k=6 and I =1)

Wi 1) Wi 2) Wigs 3) Wijs 4
—12.646 5.3087 30.714 —3.5685
—7.3917 22.045 —16.992 12.924
Wiy 7.7847 —4.6160 7.8948 2.3106
—7.2892 21.445 —-17.128 13.605
0.33297 22.854 —20.959 —4.7038
2.8826 —1.1998 4.1718 0.65482
Woys Woy1,1 Woyy 2 Woy 3) Woy1,4) Woyy 5) Woyy 6)
<1 0.07501 —3.1628 0.30868 3.1815 0.06675 —1.7149
—14.317
—5.8818
by —11.299
—5.9995
5.4172
—6.5706
by P20

—1.2413
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Table A6. Weights and biases for the ANN model predicting 8-oxodG concentration.

9 Neurons on Hidden Layer (k=9 and I =1)

Wi 1) Wiy Wisgy Wiy
12299  —52680 16350  —5.2381
~7.6752 057821  7.8892  —2.1634
11911 2.0545  0.74680  2.3719
14498 14829 18490  —6.7092
~13056 —0.94936 —054253 —8.9123
~14124 31471 33748 —1.0474
73859  —3.0612 14795  6.7889
14169 10927 85031 —5.7630
—6.0628  7.4203 94  —6.8565

Wi{s’k}

Wo 1s WO{L“ WO[l’z} WO{1/3} W0{1,4} WO{1’5] W0[1’6} W0‘1,7} WO{Lg] WO{Lg]
sh _57998 —11.464 —059086 —0.21468 0.18834 —0.50880 73576 —4.9478 7.7960

bls
10.626
3.6306
—3.0887
2.7216
Plsn 53955
12.883
1.1882
—6.1366
—2.4130
Rus 69216
Table A7. Slope and intercept values for adipokines statistical test.
Adiponectin Leptin Resistin
Mower Aupper Mower Aupper Aower Aupper
—0.0189  0.0546  —0.0124  0.0378  —0.0200  0.0531
biower bupper biower bupper biower bupper
0.8270 1.0287 0.8558 1.0535 0.8027 1.0480
Table A8. Slope and intercept values for oxidative stress markers statistical test.
Carbonylated Proteins MDA 8-oxodG
Mower Aupper Mower Aupper Aower Aupper
-1.1971 13036  —0.0075  0.0314  —0.0159  0.0254
blower bupper blower bupper blower bupper
0.8289 1.0916 0.8158 1.0367 0.8677 1.0760
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