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1, Wilberth Bibiano-MarinID

1, Fabián Correa-MoralesID
2, Oscar

D. KirsteinID
3, Pablo Manrique-SaideID

1, Gonzalo M. Vazquez-ProkopecID
3*

1 Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Merida,

Yucatan, Mexico, 2 Centro Nacional de Programas Preventivos y Control de Enfermedades (CENAPRECE)

Secretaria de Salud Mexico, Ciudad de Mexico, Mexico, 3 Department of Environmental Sciences, Emory

University, Atlanta, Georgia, United States of America

* gmvazqu@emory.edu

Abstract

Background

There is an increased need to mitigate the emergence of insecticide resistance and incorpo-

rate new formulations and modes of application to control the urban vector Aedes aegypti.

Most research and development of insecticide formulations for the control of Ae. aegypti has

focused on their peridomestic use as truck-mounted ULV-sprays or thermal fogs despite the

widespread knowledge that most resting Ae. aegypti are found indoors. A recent modifica-

tion of indoor residual spraying (IRS), termed targeted IRS (TIRS) works by restricting appli-

cations to 1.5 m down to the floor and on key Ae. aegypti resting sites (under furniture).

TIRS also opens the possibility of evaluating novel residual insecticide formulations cur-

rently being developed for malaria IRS.

Methods

We evaluated the residual efficacy of chlorfenapyr, formulated as Sylando 240SC, for 12

months on free-flying field-derived pyrethroid-resistant Ae. aegypti using a novel experimen-

tal house design in Merida, Mexico. On a monthly basis, 600 female Ae. aegypti were

released into the houses and left indoors with access to sugar solution for 24 hours. After

the exposure period, dead and alive mosquitoes were counted in houses treated with chlor-

fenapyr as well as untreated control houses to calculate 24-h mortality. An evaluation for

these exposed cohorts of surviving mosquitoes was extended up to seven days under labo-

ratory conditions to quantify “delayed mortality”.

Results

Mean acute (24-h) mortality of pyrethroid-resistant Ae. aegypti ranged 80–97% over 5

months, dropping below 30% after 7 months post-TIRS. If delayed mortality was considered

(quantifying mosquito mortality up to 7 days after exposure), residual efficacy was above
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90% for up to 7 months post-TIRS application. Generalized Additive Mixed Models quanti-

fied a residual efficacy of chlorfenapyr of 225 days (ca. 7.5 months).

Conclusions

Chlorfenapyr represents a new option for TIRS control of Ae. aegypti in urban areas, provid-

ing a highly-effective time of protection against indoor Ae. aegypti females of up to 7

months.

Author summary

Vector control (VC) for managing Aedes aegypti and reducing transmission of Aedes-
borne diseases is largely focused on peridomestic insecticide applications. However, the

indoor resting behavior of Ae. aegypti and the acceleration of insecticide resistance owed

to reduced modes of action have diminished the effectiveness of many VC tools. A tar-

geted Indoor residual spraying (TIRS) modality in experimental housing units was

employed to investigate the potential of chlorfenapyr, a pyrrole-class insecticide with

known effectiveness to resistant mosquito species. This was the first investigation for

chlorfenapyr use against locally resistant Ae. aegypti (Merida, Mexico) with this approach.

Two treatment arms were investigated in the present study: TIRS and a control house

where only water was sprayed. A comparison of entomological efficacy for TIRS applied

to interior perimeter walls below 1.5 m with chlorfenapyr (formulated as Sylando 240SC)

at 250 mg/m2 over 12 months was assessed. TIRS chlorfenapyr treatments were highly

efficacious and led to acute mortalities (after 24 exposure) above 80% up to 5 months;

delayed mortalities (to Ae. aegypti) were monitored over seven days post exposures vs

untreated controls. When delayed mortality was considered, residual efficacy of chlorfe-

napyr extended to 7 months. These data provide evidence that TIRS chlorfenapyr is an

effective Aedes management tool that surpassed efficacy profiles for other TIRS insecti-

cides that have been previously reported with this method. Further, Chlorfenapyr emerges

as a novel addition to Ae. aegypti VC, and future studies should focus on its effectiveness

and residual power as part of Phase II-III TIRS trials.

Introduction

Controlling the anthrophilic disease vector Aedes aegypti has long been conducted by perido-

mestic application of truck-mounted ultra-low volume spraying, thermal fogging and larvicid-

ing [1,2]. Adult female Ae. aegypti are typically found indoors in urban settings, where they

feed frequently and almost exclusively on human blood [3–5] and rest on surfaces that are

unreachable with the routinely used insecticide methods. Peridomestic mosquito control tac-

tics, therefore, lead to poorly-efficient and in the best case, transient control of the epidemio-

logically important biting female mosquitoes (e.g., [5]) and thus, with limited impact in

preventing arboviral disease transmission [6].

A novel application technique, which exploits Aedes aegypti resting behavior, termed tar-

geted indoor residual spraying (TIRS), focuses the selective application of residual insecticides

in lower walls (<1.5m) and other primary Ae. aegypti resting locations (under beds and furni-

ture), reducing insecticide volumes and treatment time [7,8]. The development of TIRS was

rooted on prior success in controlling Ae. aegypti using perifocal spraying of DDT [6,9,10],
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and recent evaluations in a novel experimental house setting in Merida, Mexico [7]. Effective-

ness of TIRS implementation has been confirmed in Cairns, Australia, where coverages of 60%

or more led to reductions in dengue virus incidence of>86% [8]. Furthermore, modeling

studies indicate that the highest effectiveness of TIRS occurs when the method is deployed

preventively prior to the regular transmission season, instead of reactively to cases [11–13].

Preventive TIRS, while considered an approach that can overcome the limitations of IRS and

increase insecticide application effectiveness, is dependent on having insecticide molecules to

which Ae. aegypti is susceptible and insecticide formulations that can provide sustained con-

trol for 5 months or more [12].

Recent advancements in new and repurposed chemistry to mitigate mosquito-borne dis-

eases have been seen from the development of non-pyrethroid IRS formulations to control

malaria vectors [14–18]. Some of the innovation in new molecules stands from their unique

toxicity mechanisms, which rely more on mosquito physiology than on “usual” neurological

or simple detoxification pathways. Chlorfenapyr (commercially available as Phantom Termiti-

cide -Insecticide in the United States, BASF for urban pest control and Sylando 240SC, BASF

for public health use) is a new insecticide class (pyrrole) that acts as a physiological toxin,

requiring activation as a pro-insecticide [19,20] to exert mosquito mortality [19]. Chlorfenapyr

is a halogenated pyrrole that uncouples oxidative phosphorylation processes in mitochondria

[20]; in other words, affects insect’s ability to produce energy in their mitochondria which con-

sequently affects crucial and vital functions until eventual death. The mode of action of chlor-

fenapyr on an insect’s metabolism is particularly relevant for the control of vectors harboring

metabolic insecticide resistance mechanisms (e.g., cytochrome P450, glutathione S-transfer-

ases), as increased metabolic activity increases the activation of the toxin and increase mos-

quito mortality [19]. Furthermore, as these new physiological insecticides depend on the

mosquito metabolism to act, they generally present delayed toxicity (in the order of 1–5 days)

when insects are inactive or constrained to a cage, making their evaluation using conventional

neuro-toxic tests (e.g., WHO cone bioassay) challenging [21]. While chlorfenapyr has recently

been evaluated against Anopheles sp. Vectors, no rigorous evaluation of its efficacy on Ae.
aegypti has been published.

TIRS evaluation of the carbamate Bendiocarb on a novel experimental house setting estab-

lished in Merida, Mexico (i.e., typical residential houses rented long-term and double-screened

to allow for free-flying mosquitoes to be exposed to diverse insecticide treatments), led to a

4-month residual efficacy against pyrethroid-resistant Ae. aegypti [22]. Such experimental

setup provides a unique opportunity to evaluate new insecticide formulations for TIRS against

Ae. aegypti, as it saves the cost of running experiments in the open field or in expensive lab

enclosures. Here, we evaluated the residual efficacy of chlorfenapyr (Sylando 240SC; BASF)

against a locally-derived, pyrethroid-resistant, strain of Ae. aegypti.

Methods

Ethics statement

This was an experimental study, and because mosquitoes were released into uninhabited

houses rented on long-term contracts, we did not require an Institutional Review Board

evaluation.

Experimental house layout

We conducted this evaluation within two experimental houses located in Ciudad Caucel, a

neighborhood of the subtropical city of Mérida, México [22]. The houses are rented long-term

by the Universidad Autónoma de Yucatán (UADY) after explaining the purpose and extent of

PLOS NEGLECTED TROPICAL DISEASES Chlorfenapyr TIRS

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009822 October 4, 2021 3 / 16

https://doi.org/10.1371/journal.pntd.0009822


the study to their owners. Distance between experimental houses was 0.3 km. The houses were

similar in floor plan and design; all were concrete, single-story and had a living-dining room,

two bedrooms, one bathroom and one kitchen (Fig 1). Houses were on average 57.8 ± 2.8 m2

(mean ± SEM) and uniformly had walls 2.5 m in height. Construction characteristics were that

of subsidized middle to low-income housing in Mérida, typical of areas with high ABD trans-

mission [23].

To prevent any mosquitoes used in the experiments from escaping from the houses, all win-

dows and doors were screened on both the outside and inside of each house before the study

began. Additionally, a double screened-door vestibule was built into the main entrance of each

house to allow personnel to enter and exit while preventing mosquitoes from escaping (Fig 1).

Sinks, drains and toilets were also sealed with window screening. Existing furniture within

houses was removed, and where furniture could not be removed (e.g., built-in kitchen or closet

cabinets) it was sealed with window screening. Houses were then refurnished with standard-

ized furniture and clothing that represented typical elements found within houses (Fig 1). Fur-

niture within the living room included two black plastic tables and four plastic chairs. Within

each bedroom was a bed made out of PVC tubing and black cloth, a black plastic nightstand

and six articles of clothing (3 black and 3 white) hung within the closet. Four plastic buckets (1

L) were half filled with water and a dark cloth and placed throughout each house to provide

Fig 1. Experimental houses from Merida, Mexico. Two houses with similar area (size: 144.5 ± 7.12 m3) and layout were used. Windows and doors (inside & outside),

including furniture were sealed. A double screened entrance was also installed. Simulated furniture was standardized in each house. Buckets of water with cloth piece

and oscillating fans were installed to keep optimal humidity and temperature as showed in the figure.

https://doi.org/10.1371/journal.pntd.0009822.g001
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moisture into the environment and reduce mosquito mortality due to desiccation. Ant baits

(Antex Gel, Allister de México with 0.05% abamectin) were placed next to each door or any

other location where ants were observed to enter the experimental houses. The house layout

was carefully designed to mirror elements and surface materials found in most homes but

ensuring standardization in a way that allowed replication and comparability between

replicates.

Insecticide application

Insecticide and untreated controls (water) were applied within experimental houses on 18

March 2019. Manual compression sprayers, IK-Vector Control Super (Goizper Group,

Antzuola, Spain) were fitted with 8002EVP nozzle and a Goizper Low Pressure Control Flow

Valve (output pressure 1.5 bar) to administer sprays to houses at a flow rate of 580 mL /

min ± 5%), according to following preparations: Sylando 240SC Target dose 250 mg/m2 and

286 mL diluted in 7.5L water as recommended by the manufacturer in the proposed label and

detailed in prior IRS trials conducted in Africa and India by WHOPES [24]. All applications

were performed by the same applicator. TIRS application was conducted as described in Dun-

bar et al. [22]. Briefly, insecticide (or water, for the control) was applied to walls below 1.5 m

and under furniture or to the undersides of furniture. Furniture was not removed from experi-

mental houses during the insecticide application and insecticide was not applied to clothing or

the plastic buckets with water.

Mosquito strain

To test the residual efficacy of each IRS application method, groups of 100 Ae. aegypti females

three to seven days old from F4 generation were released within each experimental house. The

strain used (Juan Pablo strain, JP) was locally derived, had a high level of resistance to pyre-

throids but full susceptibility to carbamates [25,26]. The JP strain was reared and maintained at

the insectaries of the Unidad Colaborativa para Bioensayos Entomológicos (UCBE), UADY,

Mérida, México, at constant laboratory conditions (27˚C and 60% RH). Resistance is maintained

by periodic mixing of the colony with recently hatched larvae from field-collected eggs and mon-

itored using the CDC bottle bioassay [27] and genotyped using standard PCR methods [25,26]

to detect two of the most common single nucleotide polymorphisms of the voltage gated sodium

channel gene (i.e., at positions 1,016 and and 1,534) as described elsewhere [25,26]. Mosquitoes

released into houses had only been provided sugar solution and were non-bloodfed.

Intervention evaluation

Post-insecticide application, mosquitoes were released into the experimental houses (both in

houses treated with chlorfenapyr as well as untreated control houses) eleven times over a

12-month period; 1) +1 day, 2) +14 days, 3) +1 month, 4) +2 months, 5) +5 months, 6) +7

months, 7) +8 months, 8) +9 months, 9) +10 months, 10) + 11 months, and 11) +12 months

(see Table 1). Replication of this design occurred by conducting three independent releases, on

three consecutive days, for each period (Fig 2). To facilitate mosquito detection, all experimen-

tal houses were vacuumed and swept clean of any debris on the floor one day prior to mos-

quito release. After a 24 hr exposure in the houses, a team of four field technicians entered

each house and searched for live mosquitoes using a Prokopack aspirator [28] and searched by

hand for dead mosquitoes. This 24-h exposure period allowed quantification of acute mortal-

ity. Searching for Ae. aegypti ceased when either 100 mosquitoes were collected or > 20 min-

utes elapsed after the last mosquito was collected (circa 30–40 min / house). Sampling dates

are provided in Fig 2 for release of cohorts into experimental houses. Acute (24-h) mortality
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was calculated from the number of dead/live Ae. aegypti found at the end of the exposure

period in the houses. Exposed mosquitoes were held at the UCBE insectary inside bugdorm

cages (30x30x30 cm) for 7 days at 26 ± 2˚C and 75 ± 5%RH and monitored daily for signs of

intoxication to quantify “delayed mortality” because uncoupling of oxidative phosphorylation

and the necessary requirement for mosquitoes to enzymatically convert parent chlorfenapyr

(CL303630) to its n-dealkylated metabolite (CL303268) delay the appearance of toxicity effects

in mosquitoes [19,29]. On each house, we placed three unsprayed control cups (250 mL) con-

taining 10 JP strain females each during the 24-h exposure period to have an independent

measure of mosquito mortality due to the temperature and humidity conditions of the experi-

mental houses. This measure was estimated at the +5, +7, +8–12 months post-application eval-

uations, which coincided with the warmest periods of the year in Merida.

Statistical analyses

For each sampling period, acute and delayed mortalities were calculated per house by dividing

the number of dead individuals by the number of individuals released. Missing individuals

were assumed to be dead. Due to the mortalities in the control group (when they were

observed) which ranged from 2–23%, the mortality calculation was corrected according to the

Table 1. Sampling dates for Release of Mosquitoes into experimental houses in Ciudad Caucel neighborhood of Merida, MX. For each of the two experimental

houses, three consecutive releasing events were implemented in each period of time to evaluate, using days as replicates (also see Fig 2). The mosquito strain (Juan Pablo)

was pyrethroid-resistant; resistance was maintained by periodic reseeding of populations with field-collected eggs (see methods).

Post-application releasing Days post application Releasing dates Number of Mosquitoes

1 day 1 19–21 March, 2019 n = 600

2 weeks 14 2–4 April, 2019 n = 600

1 month 30 16–18 April, 2019 n = 600

2 months 60 27–29 May, 2019 n = 600

5 months 150 11–13 August, 2019 n = 600

7 months 210 21–23 October, 2019 n = 600

8 months 240 20–22 November, 2019 n = 600

9 months 270 15–17 December, 2019 n = 600

10 months 300 19–21 January, 2020 n = 600

11 months 330 16–18 February, 2020 n = 600

12 months 360 17–19 March, 2020 n = 600

https://doi.org/10.1371/journal.pntd.0009822.t001

Fig 2. Study design. Each arrow represents a releasing event. R = replicate.

https://doi.org/10.1371/journal.pntd.0009822.g002
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formula of Abbott (1925). On each evaluation date, corrected acute mortalities were compared

to the 80% threshold set by WHO as the cutoff for effective insecticidal effect of indoor residual

spraying [30]. Further, both acute and delayed mortalities were compared between treatment

and control using binomial generalized linear mixed models (GLMM) in R 4.0.5 statistical

software (https://www.r-project.org/) using package lme4. For each date, treatment was classi-

fied as fixed effect and experimental replicate was classified as a random effect.

A Generalized Additive Mixed Model (GAMM) determined the association between acute

and delayed mortality and the time (in days) since TIRS application. Time to intervention was

calculated by estimating the number of days that elapsed between TIRS and the entomological

evaluation. The full model had the form: Mortality = α+ f(Days) + Z(Replicate)+ε. Where Z

(Replicate), represents a random effects term associated with observations from the same time

point, α the model constant and ε the error term. We fitted f(Days), the non-linear term of

mortality and days since TIRS, by applying a penalized cubic spline function to the data and a

Gaussian link function to fit the model. The parameter f(Days) was fitted separately to the con-

trol and chlorfenapyr data. Exploration of fitted f(Days) allowed assessing the temporal trend

in Ae. aegypti mortality after TIRS. Specifically, since f(Days) describes the non-linear fit of

the time since TIRS application to the mortality data, we used the parameter’s 95% credible

interval (95%CI) to quantify: 1) if the 95%CI of f(Days) differed significantly between control

and chlorfenapyr treatments; and 2) at what time point the predicted non-linear fit for chlorfe-

napyr (with 95% CI) went from positive to negative, indicating a loss of impact of the insecti-

cide on mosquito mortality. The package mgcv was used to fit and plot the results of the

GAMM.

Results

TIRS was implemented according to standard protocol (spraying walls below 1.5 m and under

furniture) on March 18, 2019. A total of 7,200 Ae. aegypti females were released within the

experimental houses throughout the trial. Recapture of released mosquitoes (dead and alive)

averaged 97.5 ± 5.3% (Mean ± SEM; n = 66 releases). Based on prior studies applying TIRS, we

attribute high recovery to pre-cleaning the floors of experimental houses the day before mos-

quitoes were released and to effective management of ants using baits. Mortality within cups

left inside houses to monitor natural mortality averaged 3.2 ± 1.1, 4.8 ± 0.8, 2.3 ± 1.5, 1.9 ± 0.6,

4.4 ± 1.3%, 1.5 ± 0.7% and 5.0 ± 1.7% (Mean ± SEM) for evaluations from +5, +7, +8, +9, +10,

+11 and +12 months post-application, respectively, indicating negligible effect of high summer

temperatures on mortality. Before the first release, recently emerged female Ae. aegypti mos-

quitos were tested for susceptibility to permethrin, deltamethrin and chlorpyrifos (100 females

per insecticide). At the diagnostic time for each insecticide, 72%, 94% and 100% female mos-

quitoes were dead in the permethrin, deltamethrin, and chlorpyrifos groups, respectively.

After 6 months, and to maintain genetic diversity and resistance mechanisms, the laboratory

strain was mixed with a batch of 1,000 recently emerged larvae from field-collected eggs.

Emerging adults from the mixed colony experienced mortalities at the diagnostic time of 62%

for permethrin, 92% for deltamethrin and 100% for chlorpyrifos. A subsample of 141 female

Ae. aegypti from the mixed colony was genotyped for the presence of the two most common

kdr mutations. For the 1,016 mutation, 27.7% mosquitoes were homozygous susceptible,

whereas 26.2% were homozygous resistant and 46% were heterozygous. For the 1,534 muta-

tion, only 10.6% were homozygous susceptible, whereas 66.0% were homozygous resistant and

23.4% heterozygous. This information is indicative of pyrethroid resistance in the population.

Acute mortality of female Ae. aegypti released into the houses was significantly higher and

sustained in houses sprayed with chlorfenapyr compared to control houses up to 11 months
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post spraying (Fig 3, Table 2). Abbott-corrected average mortalities (including their standard

error) were equal on higher than the 80% mortality threshold up to 5 months post-TIRS. A

remarkable reduction on the mortality (15–16%) was observed at 8 to 11 months, whereas no

mortality was observed at 12 months (Fig 3, Table 2).

Delayed mortality was recorded during 7 days post-exposure for most collection periods

(Fig 4). Total delayed mortality (100%) was observed after 48 hr of exposure at 1 and 2 months

post-TIRS application. At 5 and 7 months post TIRS application, delayed mortality was 96.6%

and 99.3% after 2–7 days of observation, respectively. At 8 and 9 months the delayed mortality

reached 75% and 64% after 7 days of observation respectively. At 10 & 11 months the maxi-

mum mortality reached after 7 days of observation was 41% and 36% respectively. At 12

months no delayed mortality was observed (0% after 7 days of observation). Similar levels of

statistical significance as described for acute mortality when comparing chlorfenapyr and con-

trol data were observed for delayed mortality (S1 Table).

Fig 5 shows the plot of f(Days), obtained after fitting a GAMM to the mortality data of the

control and chlorfenapyr houses. The y-axis can be interpreted as the effect of time since TIRS

on mosquito mortality. When the predicted value and its 95% credible interval are negative, it

means that there is a significant reduction in mortality. Chlorfenapyr led to a significant reduc-

tion in mortality up to 225 days (ca. 7.5 months, vertical line on right panel of Fig 5A and 5B)

post-TIRS application.

Fig 3. Mortality of pyrethroid-resistant Ae. aegypti (Juan Pablo Strain) by TIRS application method using chlorfenapyr

(Sylando 240SC) over time. Mean (± the standard error of the mean, SEM) of acute (24-h) corrected mortality (Abbott, 1925)

of pyrethroid resistant Ae. aegypti (Juan Pablo strain) by TIRS using Sylando 240SC formulation 250 mg a.i./m2 (white squares)

compared to a control treated with water (black squares).

https://doi.org/10.1371/journal.pntd.0009822.g003
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Discussion

This study provides information about a new insecticide chemistry for the urban control of

pyrethroid-resistant Ae. aegypti using a novel experimental house system that incorporates

typical living conditions in urban areas of an endemic area for ABVs. Results from this study

show that a single TIRS application of chlorfenapyr (Sylando, 240SC Target dose 250 mg/m2)

led to mosquito mortalities above 80% for up to 5 months and to delayed mortalities above the

80% threshold for up to 7 months. Operationally, results suggest that a single application of

chlorfenapyr can provide a new highly-effective and sustainable alternative for TIRS applica-

tion for ministry of health institutional programs to control Ae. aegypti in urban areas.

Studies both in the laboratory and field environments have shown the ability of many insect

species to rest on surfaces treated with chlorfenapyr for extended periods of time [31–33]. The

non-repellent nature of chlorfenapyr, described in other studies on mosquitoes [21,34–36],

may have led to greater resting times and insecticide uptake compared to pyrethroids, contrib-

uting to observed mortalities in experimental houses. The physiological effect of chlorfenapyr

on free-flying mosquitoes may have also contributed to the extended and significant direct

and delayed mortality effects observed. The enzymatic transformation of parent chlorfenapyr

(CL303630) to its pro-insecticidal metabolite (CL303268) can be slow and quite variable, but

generally unidirectional once conversion has started [29]. The uncoupling of oxidative phos-

phorylation can be influenced by many exogenous and endogenous factors: temperature,

cuticular penetrations, physical movement of challenged insects, host-seeking behaviors,

Table 2. Average (min-max) raw acute (24-h) mortality data and Abbott- corrected mortality throughout the 11 sample periods (24 hours, 2 weeks, 1, 2, 5, 7, 8, 9,

10, 11 and 12 months) and results from a Generalized Linear Mixed Model (GLMM) quantifying the significance in mortality between control and treatment mea-

sures (control used as baseline).

Percent (range between replicates) GLMM

Days post TIRS Treatments Recapture after 24-h Mortality Corrected Mortality Coefficient (std. error) P-value

1 Chlorfenapyr 87.3 (82–94) 93.4 (87–100) 92.7 (86–100) 0.792 (0.05) 0.0001

Control 92 (88–94) 13.5 (6.7–19.1) —

14 Chlorfenapyr 92 (86–96) 93.9 (87.8–98) 93.6 (87.2–97.8) 0.868 (0.04) <0.0001

Control 96.7 (94–98) 6.8 (4–10.2) —

30 Chlorfenapyr 100 97.6 (95.2–100) 97.5 (95.2–100) 0.949 (0.02) <0.0001

Control 100 2.7 (0–4) —

60 Chlorfenapyr 96.7 (94–100) 93.1 (87.2–97.3) 82 (77.3–88.7) 0.677 (0.07) 0.0007

Control 92.7 (78–100) 14.4 (2–23.1) —

150 Chlorfenapyr 93.3 (90–96) 90.4 (88.2–93.1) 88.6 (86–91.8) 0.734 (0.02) <0.0001

Control 100 15.3 (14–16) —

210 Chlorfenapyr 100 72.9 (56.5–83.3) 72.9 (56.5–83.3) 0.730 (0.008) 0.0009

Control 100 0 —

240 Chlorfenapyr 100 17.3 (12–28) 16.3 (12–24.9) 0.149 (0.05) 0.0298

Control 98.7 (96–100) 1.4 (0–4.2) —

270 Chlorfenapyr 100 15.3 (8–22) 15.3 (8–22) 0.153 (0.05) 0.0194

Control 100 0 (0–0) —

300 Chlorfenapyr 100 25.3 (18–38) 25.3 (18–38) 0.253 (0.06) 0.0164

Control 100 0 (0–0) —

330 Chlorfenapyr 100 16.7 (14–18) 16.7 (14–18) 0.166 (0.01) 0.0002

Control 100 0 (0–0) —

360 Chlorfenapyr 100 0 0 N/A 1

Control 100 0 (0–0) —

https://doi.org/10.1371/journal.pntd.0009822.t002
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blood-feeding status of mosquitoes, concentrations of chlorfenapyr challenged to insects from

different substrates, degree of metabolic activity already within target pests and antagonisms

by known metabolic inhibitors or competing resistant mechanisms (e.g., Glutathione S-Trans-

ferases or GSTs are not known to favor similar intoxication routes as cytochrome P450s)

[21,29,37,38]. Ultimately, as chlorfenapyr is a physiological toxin, normal mosquito behaviors

during their circadian rhythms will favor intoxication [19,20] and its evaluation in small cages

may yield different (poorer) results compared to experimental houses.

Novel chemistries are challenging the original ‘neurotoxic thinking’ of the mode of action

of insecticides and are pushing testing procedures to move beyond quantification of acute

mortality to account for delayed mortality and other physiological and behavioral effects.

Delayed mortality has been reported for novel chemistries currently being used or evaluated

for malaria IRS, clothianidin [39,40], broflanilide [17,41] and chlorfenapyr [21,34]. Delayed

intoxication has also been shown for pyriproxyfen, which reduced life-span and female Anoph-
eles sp. fecundity when exposed to new generation nets [42]. Our study shows for the first time

the delayed mortality effect of chlorfenapyr on exposed Ae. aegypti. Not considering delayed

mortalities may lead to considering the molecule’s efficacy to be shorter than it actually is (in

our case, 5 months instead of 7). This aspect was noted in an IRS WHOPES phase III trial

Fig 4. Cumulative delayed mortality at 1 to 12 months post-application (up to seven days after exposure to

Sylando 240SC applied at 250 mg/m2 via TIRS). The mortality at 24 h of collecting is represented as “0”. For 12 mo,

mortality was 0 throughout the evaluation.

https://doi.org/10.1371/journal.pntd.0009822.g004
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Fig 5. Generalized Additive Linear Mixed Model (GAMM) fitted to the association between mortality [s(Mortality)] and days since TIRS application [f

(Days)] for the control and chlorfenapyr houses. The gray vertical line on the right panel shows the threshold of change from positive to negative impact of

chlorfenapyr on mosquito mortality.

https://doi.org/10.1371/journal.pntd.0009822.g005

Fig 6. Comparison of acute mortality after TIRS application of bendiocarb (Dunbar et al. [7], blue line) and

chlorfenapyr (orange, present study) in experimental houses from Merida, Mexico.

https://doi.org/10.1371/journal.pntd.0009822.g006
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conducted in the Gambia where researchers observed that although the threshold for standard

mortality metrics were observed to be declining, there was indeed a broader epidemiological

impact of chlorfenapyr IRS compared to DDT [24]. Our delayed mortalities >80% of up to 7

months were comparable to WHOPES phase II hut trials against Anopheles sp mosquitoes,

which showed 8 months efficacy after accounting for delayed mortality [24].

Some studies have demonstrated that detoxifying enzymes (P450s) in mosquitoes that are

responsible for converting parent chlorfenapyr (CL303630) to its pro-insecticide metabolite

(CL303268) can be inhibited with known inhibitors like PBO in measurable ways both in vivo
and in vitro [29,43,44]. To less experienced researchers with this mode of action, the tendency

to assume resistance rather than poor conversion (from parent to pro-insecticidal metabolite)

requires consideration of laboratory or field-testing conditions which might interfere with

chlorfenapyr’s mode of action [29,38] as influenced by numerous endogenous and exogenous

elements [21]. Other studies point to induction routes which favor pre-exposures to neuro-

toxic chemistries (e.g., alpha-cypermethrin or others) which may actually enhance the conver-

sion rates of the more toxic form of chlorfenapyr to mosquitoes as do more metabolically

resistant mosquito strains (68,74). The lack of cross-resistance [43,45] and general trends for

intoxication to various metabolic resistant dipterans [46] makes chlorfenapyr relevant for

insecticide resistance management.

Having demonstrated utility and regional acceptance [47], the TIRS application method

may provide important public health benefits when applied preventively before the transmission

season [12]. Such benefit relies on the availability of long-lasting residual insecticides. Mathemat-

ical modeling showed that effectiveness of TIRS can be increased up to 90% compared to not

conducting TIRS when residual efficacy of the insecticide lasts 5 months [12]. An ongoing Phase

III two-arm clinical trial is evaluating the epidemiological impact of preventive TIRS on Aedes-
borne viruses [9] using insecticides to which Ae. aegypti is susceptible. In urban tropical environ-

ments, pyrethroids such as deltamethrin have residual efficacies of up to 3–6 months but are

severely challenged by the presence of resistance in the mosquito population [26]. Alternative

chemistries (to which Ae. aegypti is susceptible) exist, and the carbamate bendiocarb has pro-

vided not only to control pyrethroid-resistant Ae. aegypti [26] but also to exert mortalities>80%

for up to 4 months in experimental houses [7]. Our study shows that, in experimental houses,

chlorfenapyr can extend TIRS residual efficacy against Ae. aegypti up to seven months (Fig 6).

Future studies should evaluate the entomological impact of chlorfenapyr TIRS against Ae. aegypti
in field randomized trials, providing evidence of the value of this new chemistry for the manage-

ment of pyrethroid resistance and the prevention of Aedes-borne viruses.
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