
OPINION
published: 24 February 2021

doi: 10.3389/fmed.2021.636904

Frontiers in Medicine | www.frontiersin.org 1 February 2021 | Volume 8 | Article 636904

Edited by:

Sonja Ständer,

University Hospital Münster, Germany

Reviewed by:

Svetlana Bobko,

Moscow Scientific and Practical

Center for Dermatovenerology and

Cosmetology, Russia

Jesper Elberling,

Gentofte Hospital, Denmark

*Correspondence:

Laurent Misery

laurent.misery@chu-brest.fr

Specialty section:

This article was submitted to

Dermatology,

a section of the journal

Frontiers in Medicine

Received: 02 December 2020

Accepted: 25 January 2021

Published: 24 February 2021

Citation:

Najafi P, Misery L, Carré J-L,

Ben Salem D and Dufor O (2021) Itch

Matrixes. Front. Med. 8:636904.

doi: 10.3389/fmed.2021.636904

Itch Matrixes
Peyman Najafi 1,2, Laurent Misery 1,3*, Jean-Luc Carré 1, Douraied Ben Salem 4,5 and

Olivier Dufor 1,6

1Univ Brest, LIEN, Brest, France, 2 Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique/

Université Paris-Saclay, Gif-sur-Yvette, France, 3University Hospital of Brest, Department of Dermatology, Brest, France,
4Univ Brest, LATIM, INSERM UMR, Brest, France, 5University Hospital of Brest, Department of Radiology, Brest, France,
6 L@bISEN Yncréa Ouest, ISEN, Brest, France

Keywords: itch, matrix, pain, brain, imaging

INTRODUCTION

In a recent meta-analysis from our group based on a systematic review we have identified brain
regions reported to be responsible for central mechanisms of itch processing (1). We also have
discussed the central mechanisms of itch proceeding in the brain more in depth in a review paper
(2). The research papers that have studied central mechanism of itch are presented in Table 1 while
their results are presented in Table 2. Here in this paper, we are exploring a new idea in which we
categorize the itch matrix in the brain into three matrixes that each of them is contributing to a
specific aspect of itch perception. This conceptualizes the processing of itch signals into different
itch matrices could be useful in order to model different aspects of itch. For example, it is possible,
that an overactivity in second matrix cause a higher susceptivity to contagious itch.

Unlike the visual system pain and itch can evoke multitude of regions in the brain, which we
call pain matrix and itch matrix respectively. Recent studies have proposed that the pain matrix
can be categorized into three different pain matrixes (40, 41): one contributing to perception and
the location of pain; another matrix responsible for the affective aspect of the pain; and a third
involving decoding the cognitive aspect of pain. In the same manner, we guardedly propose that
the itch processing network can be broken down into three main matrixes although many data are
still lacking. These three matrixes have been presented in Figure 1.

FIRST ITCH MATRIX

The first itch matrix includes but is not restricted to the primary sensorimotor cortex, the
parietal/central operculum, and the posterior insular cortex (Figure 2A).

Among these three regions the primary sensorimotor cortex is involved in the encoding of the
recognition, localization, and intensity of painful stimuli (42). In pain studies, activation in this
region bears a linear relationship with pain intensity (43–47). In a positron emission tomography
(PET) study by Drzezga et al. (5) the authors reported that SI activity, is positively correlated with
itch intensity. Six years after Drzezga, in 2007, Mochizuki et al. added the secondary somatosensory
cortex (SII) demonstrating an increase of activity in this region after itch induction with histamine
(10). The increase was statistically not different than the proven one observed in the painful
condition (pain vs. itch) but did not reach a statistically corrected threshold when comparing itch
against no itch.

In another study which includes both AD patients and healthy controls, itch was found to
activate the post-central gyrus in the right hemisphere (12). This study together with Drzezga study
in 2001 are reported in the meta-analysis on Itch from Lee et al. (48). Out of 56 regions listed in the
parietal cortex (31 Left and 25 Right) from 18 studies (Table 1). Brain activity upon itch stimulation,
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in (48), left SI appears to be activated eight times against two only
in the right hemisphere. On the contrary, right SII is reported five
times against two only in the left hemisphere. The other regions
mentioned (n = 39) are in both left and right parietal cortices
sometime very near to the SI/SII regions (i.e., SMG, SPL, IPL,
anterior parietal cortex).

In the meta-analysis from Roberts et al. (49), the authors
suggest the possibility of a specificity of these regions for the
itching process as they appear to be better activated by itching
than by pain. Interestingly, they also group these regions with
the central operculum. In a recent meta-analysis of our group
(1), SI/SII region was not clearly identified but we discussed
this point regarding the diversity of studies we included. Our
results on correlations with itch intensity also showed two
important clusters in bilateral insular cortices (5068 voxels right
4589 voxels left) that spread to a great extent on the post-
central gyri.

The co-activation of the central operculum together with
SI/SII cortex is widely reported in itch literature both in
healthy subjects and patients. Indeed, central operculum
corresponding to the junction of pre- and post-central gyri
accompanied with the region located laterally to the posterior
convolution of the insula is often confounded with insula
itself or even SI. In the regions abbreviated OPC, also named
rolandic operculum elsewhere, itch intensity was also correlated
with PET signal both in healthy subjects and AD patients
(4, 33).

Finally, we propose that the insular cortex, and especially
its posterior portion, takes part into this first matrix. As a
common point between these regions, their gradual response
with itch intensity seems important to highlight. In Leknes
et al. bilateral insular and left posterior insular activity
(BOLD) is correlated with histamine-induced itch intensity
(9). Following Craig (50, 51), Mochizuki et al. postulate
that the posterior part of insula plays a different role
than its anterior part (52, 53). A distinction that can
also find its basis on cytoarchitectural composition of these
structures and their connectives with other brain areas
(50, 54).

Despite weak evidences in itch literature, other evidences
can help to understand the insula role in processing the
sensations which are common to itch and pain. Mazzola et
al. explain that the two thirds of posterior insula submitted
to low electrical stimulation (SEEG) directly translate these
stimulations as pain sensations (55). Another study from Frot et
al. showed that once pain feeling is reached, the posterior insular

Abbreviations: ACC, Anterior Cingulate Cortex; AD, Atopic Dermatitis; aIC,

Anterior part of the Insular Cortex; aMCC, Anterior part of the Middle Cingulate

Cortex; BOLD, Blood Oxygenation Level Dependent; dACC, Dorsal part of

the Anterior Cingulate Cortex; DLPFC, Dorso-Lateral Pre-Frontal Cortex; IPL,

Inferior Parietal Lobule; OPC, Operculum Central; PAG, Peri-Aqueductal Gray

matter; PCC, Posterior Cingulate Cortex; PET, Positron Emission Tomography;

pIC, Posterior Insular Cortex; pMCC, Posterior part of the Middle Cingulate

Cortex; SI, Primary Somatosensory cortex; SII, Secondary Somatosensory cortex;

SEEG, Stereo-Electro-Encephalo-Graphy; SMG, Supra-Marginal Gyrus; SPL,

Superior Parietal Lobule.

cortex activity still correlates with noxious thermal stimulation
intensity (47).

In summary, all these regions encode the feeling of itchy
sensation and are somewhat translating its intensity level as well
as their location following a somatotopic representation. When
compared to Xiang et al. study (41), this first matrix includes
all already reported regions for pain. However, studies reporting
activities in those regions only for itch are rare and some
studies need to be carefully interpreted given approximations
inherent to main peak reporting. Effectively, secondary peaks
of wide clusters or percentage of anatomical regions covered
by these clusters are most often not indicated. As an example,
the absence of parietal operculum in Roberts et al. study (49)
needs to be put in perspective. Indeed, the point that the contrast
pain—itch shows an increased activity in the parietal operculum
does not mean that this region is silent in itch. Moreover, in
the same study, the opposite contrast itch—pain, which reveals
an implication of both right supramarginal gyrus and central
operculum, could have led us to add more parietal areas to this
first matrix.

So far, we have dealt with the membership of each of these
brain regions in the matrix separately. However, interesting
arguments reside in the fact that new pathological conditions can
appear when these regions grouped and malfunction together.
Hence, some studies reported that SI/SII together with the
insular cortex participate in creating the allodynia phenomenon
(56–59). Consecutively, these regions once activated lead to an
ignition of the pain network inducing activity in the PAG, the
prefrontal cortex, the thalamus, the amygdala, the ACC and
many other regions within the pain network. Allodynia has
repercussions on the way normal brain areas react to tactile
stimuli and authors do not only consider the condition through
the scope of pain matrix. Many brain areas are those involved
in tactile or thermal sensitivity and this allows more faithful
comparison with itch perception. The difficulty with allodynia
is that even when it is spontaneous, painful sensation is quickly
reached and its intensity then depends on other brain region
listed above.

To illustrate this phenomenon, we adduce together both
Ducreux et al. study (60) and an article from Geuter et al. (61)
about predictive coding. In Ducreux et al. authors demonstrated
with noxious and non-noxious cold stimulation (4◦ and 22◦C)
that while non-noxious cold in control subjects activates SII
and the insular cortex (mostly its anterior part), the same non-
noxious stimulation did activates SII and mid-posterior insula
in allodynic patients together with other regions of the pain
network (60). In Geuter et al. work, the authors used the
predictive coding theory of brain functioning to demonstrate
a difference within the anterior and the posterior part of the
insula.While the anterior part would be dedicated to pain feelings
as a prediction error on perceived sensations, the posterior
part only responds to pain intensity with no comparisons to
any predicted sensation (61). We propose that in Ducreux et
al. even if the feeling is non-noxious in control subjects, it
remains unpredictable and then activates the anterior part of the
insula. However, allodynic patients are prepared to feel painful
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TABLE 1 | Papers and methods which have been used in order to study central mechanism of itch.

# References Scanner Neuroimaging

analysis

Itch

induction

Itch stimulus Number

of

subjects

Pathology Comments

1 Hsieh et al. (3) PET Subtraction Intracutaneous

injection

Histamine 10 Healthy

2 Darsow et al. (4) PET Subtraction Skin prick Histamine 6 Healthy

3 Darsow et al. (4) PET Correlation Skin prick Histamine 6 Healthy

4 Drzezga et al. (5) PET Correlation Skin prick Histamine 6 Healthy

5 Mochizuki et al. (6) PET Subtraction Iontophoresis Histamine 15 Healthy

6 Walter et al. (7) fMRI Correlation Skin prick Histamine 6 Healthy

7 Herde et al. (8) fMRI Subtraction Intracutaneous

microdialysis

Histamine 10 Healthy

8 Leknes et al. (9) fMRI Correlation Skin prick Histamine 8 Healthy

9 Leknes et al. (9) fMRI Correlation Allergan 8 Atopic cohort

10 Mochizuki et al. (10) fMRI Correlation Iontophoresis Histamine 14 Healthy

11 Mochizuki et al. (10) fMRI Subtraction Iontophoresis Histamine 14 Healthy

12 Valet et al. (11) fMRI Subtraction Skin prick Histamine 12 Healthy

13 Valet et al. (11) fMRI Subtraction Skin prick Histamine 12 Healthy Temperature

modeling

14 Schneider et al. (12) PET Subtraction Iontophoresis Histamine 6 Healthy

15 Schneider et al. (12) PET Subtraction Iontophoresis Histamine 8 Atopic

dermatitis

16 Schneider et al. (12) PET Subtraction Iontophoresis Histamine 8 Healthy <>

AD

17 Yosipovitch et al. (13) fMRI Subtraction Scratching 13 Healthy

18 Ishiuji et al. (14) fMRI ASL Iontophoresis Histamine 8 Atopic

dermatitis

19 Ishiuji et al. (14) fMRI ASL Iontophoresis Histamine 7 Healthy

20 Ishiuji et al. (14) fMRI ASL Iontophoresis Histamine 7 Healthy <>

AD

21 Mochizuki et al. (15) fMRI Subtraction Electrically

induced itch

10 Healthy

22 Mochizuki et al. (15) MEG Subtraction Electrically

induced itch

10 Healthy

23 Vierow et al. (16) fMRI Subtraction Scratching 15 Healthy

24 Vierow et al. (16) fMRI Subtraction Scratching in

presence of

itch

15 Healthy

25 Pfab et al. (17) fMRI Subtraction Skin prick non

lesion skin

Histamine 13 Atopic

dermatitis

Thermal

modulation

26 Pfab et al. (17) fMRI Subtraction Skin prick

lesion skin

Histamine 13 Atopic

dermatitis

Thermal

modulation

27 Bergeret et al. (18) PET Subtraction Iontophoresis Histamine 28 Healthy

28 Bergeret et al. (18) PET Correlation Iontophoresis Histamine 29 Healthy Itch sensation

29 Holle et al. (19) fMRI Subtraction Audiovisual

itch

18 Healthy

30 Holle et al. (19) fMRI Correlation Audiovisual

itch

19 Healthy

31 Kleyn et al. (20) fMRI Subtraction Skin prick Histamine 16 Healthy

32 Kleyn et al. (20) fMRI Correlation Skin prick Histamine 16 Healthy

33 Papoiu et al. (21) fMRI ASL Iontophoresis Histamine 15 Healthy

34 Papoiu et al. (21) fMRI ASL Spicules

rubbing

Cowhage 15 Healthy

(Continued)
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TABLE 1 | Continued

# References Scanner Neuroimaging

analysis

Itch

induction

Itch stimulus Number

of

subjects

Pathology Comments

35 Papoiu et al. (21) fMRI ASL 15 Healthy Cowhage

<>Histamine

36 Papoiu et al. (21) fMRI Subtraction Audiovisual

pain

18 Healthy

37 Papoiu et al. (21) fMRI Subtraction Itch & Pain 18 Healthy Itch & Pain

38 Papoiu et al. (22) fMRI ASL-

correlation

Scratching 14 Healthy Correlated with

the

pleasurability

39 Papoiu et al. (22) fMRI ASL-

correlation

Scratching 14 Healthy Correlated with

itch relief

40 Stumpf et al. (23) fMRI Subtraction Microdialysis Histamine 33 Healthy Female>Males

41 Stumpf et al. (23) fMRI Subtraction Microdialysis Histamine 33 Healthy Female>Males

(with stroop

task)

42 Napadow et al. (24) fMRI Subtraction Skin prick Allergen-

induced

14 Atopic

dermatitis

Temperature

modeling

43 Napadow et al. (24) fMRI Subtraction Skin prick Allergen-

induced

14 Atopic

dermatitis

Temperature

modeling and

acupuncture

intervention

44 Desbordes et al. (25) fMRI Connectivity Skin prick Allergen-

induced

14 Atopic

dermatitis

Right premotor

as seed

45 Desbordes et al. (25) fMRI Connectivity Skin prick Allergen-

induced

14 Atopic

dermatitis

Right insula as

seed

46 Desbordes et al. (25) fMRI Connectivity Skin prick Allergen-

induced

14 Atopic

dermatitis

Right putamen

as seed

47 Desbordes et al. (25) fMRI Connectivity Skin prick Allergen-

induced

14 Atopic

dermatitis

Left superior

parietal lobule

as seed

48 Desbordes et al. (25) fMRI Connectivity Skin prick Allergen-

induced

14 Atopic

dermatitis

Right anterior

mid-cingulate

cortex as seed

49 Desbordes et al. (25) fMRI Connectivity Skin prick Allergen-

induced

14 Atopic

dermatitis

Right caudate

as seed

50 Desbordes et al. (25) fMRI Connectivity Skin prick Allergen-

induced

14 Atopic

dermatitis

Right globus

pallidus

51 Mochizuki et al. (26) fMRI Subtraction Electrically

induced itch

16 Healthy

52 Mochizuki et al. (26) fMRI Subtraction Electrically

induced itch

Passive

scratching

16 Healthy Scratching itch

53 Mochizuki et al. (26) fMRI Subtraction Electrically

induced itch

Passive

scratching

16 Healthy Scratching

itch>

scratching

another region

54 Mochizuki et al. (26) fMRI Subtraction Electrically

induced itch

Passive

scratching

16 Healthy Deactivation

scratching itch

region

55 Mochizuki et al. (26) fMRI Subtraction Electrically

induced itch

Passive

scratching

16 Healthy Scratching

another region

56 Papoiu et al. (27) fMRI ASL Iontophoresis Histamine 13 End-stage

renal disease

(Continued)
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TABLE 1 | Continued

# References Scanner Neuroimaging

analysis

Itch

induction

Itch stimulus Number

of

subjects

Pathology Comments

57 Papoiu et al. (27) fMRI ASL Spicules

rubbing

Cowhage 13 End-stage

renal disease

58 Kim et al. (28) fMRI Subtraction Audiovisual

itch

14 Neurodermatosis Stress-induced

pruritus

59 Kim et al. (28) fMRI Subtraction Audiovisual

itch

14 Neurodermatosis Stress-induced

pruritus (after

sedating

antihistamine

treatment)

60 Kim et al. (28) fMRI Subtraction Audiovisual

itch

14 Neurodermatosis Stress-induced

pruritus (after

non-sedating

antihistamine

treatment)

61 Mochizuki et al. (29) fMRI ASL Spicules

rubbing

Cowhage 10 Healthy Scratching

62 Mochizuki et al. (29) fMRI ASL Spicules

rubbing

Cowhage 10 Chronic itch

patients

Scratching

63 Mochizuki et al. (29) fMRI ASL Spicules

rubbing

Cowhage 20 Patients>Healthy Scratching

64 Mochizuki et al. (29) fMRI ASL Spicules

rubbing

Cowhage 10 Healthy Scratching

65 Mochizuki et al. (29) fMRI ASL Spicules

rubbing

Cowhage 10 Chronic itch

patients

Scratching

66 Mochizuki et al. (29) fMRI ASL Spicules

rubbing

Cowhage 20 Patients>Healthy Scratching

67 Napadow et al. (30) fMRI Skin prick Allergan 14 Atopic

dermatitis

Nocebo >

open saline

68 Papoiu et al. (31) fMRI ASL Iontophoresis Histamine 24 Healthy Areas

significantly

activated during

the suppression

of histamine

itch by

butorphanol

69 Papoiu et al. (31) fMRI ASL Spicules

rubbing

Cowhage 25 Healthy Deactivation

areas

significantly

correlated with

the reduction in

cowhage itch

70 Vierow et al. (32) fMRI Subtraction Spicules

rubbing

Capsaicin 16 Healthy Placebo

71 Vierow et al. (32) fMRI Subtraction Spicules

rubbing

Capsaicin 16 Healthy Naltrexone

72 Vierow et al. (32) fMRI Subtraction Spicules

rubbing

Histamine 16 Healthy Placebo

73 Vierow et al. (32) fMRI Subtraction Spicules

rubbing

Histamine 16 Healthy Naltrexone

74 Schut et al. (33) fMRI ASL-

Subtraction

Audiovisual 11 Atopic

dermatitis

75 Schut et al. (33) fMRI ASL-

correlation

Audiovisual 11 Atopic

dermatitis

(Continued)
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TABLE 1 | Continued

# References Scanner Neuroimaging

analysis

Itch

induction

Itch stimulus Number

of

subjects

Pathology Comments

76 Stumpf et al. (34) fMRI Subtraction Microdialysis Histamine 33 Healthy Itch modulation

by distraction

(Itch>stroop)

77 van de Sand et al. (35) fMRI Subtraction Skin patch Histamine 30 Healthy Nocebo

modulation

Itch-nocebo >

itch only

(temperature

modulating)

78 van de Sand et al. (35) fMRI Connectivity

with insula

Skin patch Histamine 30 Healthy Nocebo

modulation

Itch-nocebo >

itch only

(temperature

modulating)

79 Wang et al. (36) fMRI Resting

state

40+40 Chronic

urticaria

+Healthy

CSU > HC

(amplitude of

low frequency

fluctuations)

80 Wang et al. (36) fMRI Resting

state

40+40 Chronic

urticaria

+Healthy

CSU > HC

(functional

connectivity

with right

ventral striatum)

81 Wang et al. (36) fMRI Resting

state

40+40 Chronic

urticaria

+Healthy

CSU > HC

(functional

connectivity

with right

putamen)

82 Wang et al. (37) fMRI Resting

state

40+40 Chronic

urticaria

+Healthy

CSU > HC

(regional

homogeneity)

83 Wang et al. (37) fMRI Resting

state

40 Chronic

urticaria

After

intervention >

Before

intervention

(regional

homogeneity)

84 Wang et al. (37) fMRI Resting

state

40+40 Chronic

urticaria

+Healthy

CSU > HC

(functional

connectivity

with

Cerebellum)

85 Wang et al. (37) fMRI Resting

state

40 Chronic

urticaria

After

intervention >

Before

intervention

(functional

connectivity

with

Cerebellum)

(Continued)
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TABLE 1 | Continued

# References Scanner Neuroimaging

analysis

Itch

induction

Itch stimulus Number

of

subjects

Pathology Comments

86 Wang et al. (37) fMRI Resting

state

40 Chronic

urticaria

After

intervention >

Before

intervention

(functional

connectivity

with

SI/MI/SMA)

87 Min et al. (38) fMRI Resting

state

Skin prick Histamine 20 Healthy Acupuncture

(itch-baseline)>

Non-responder

(itch-baseline)

(functional

connectivity

with left

Putamen)

88 Min et al. (38) fMRI Resting

state

Skin prick Histamine 20 Healthy Acupuncture

(itch-baseline)>

Non-responder

(itch-baseline)

(functional

connectivity

with right

Putamen)

89 Min et al. (38) fMRI Resting

state

Skin prick Histamine 20 Healthy Acupuncture

(itch-baseline)>

Non-responder

(itch-baseline)

(functional

connectivity

with Pallidum)

90 Mochizuki et al. (39) fMRI Subtraction Electrically

induced itch

25 Healthy

91 Mochizuki et al. (39) fMRI Connectivity Electrically

induced itch

25 Healthy

stimulation and then, the anterior part shut down as painful
sensation are correctly predicted. Meanwhile, the posterior part
of the insula starts to encode its intensity like it was demonstrated
by Frot et al. (47) in implanted subjects when stimulation
becomes noxious.

SECOND ITCH MATRIX

The second itch matrix could consist of the ACC, aMCC, aIC,
amygdala, striatum and hippocampus (Figure 2B). This network
could encode the affective and motivational aspects of itch.
Significant activation in the ACC, especially dorsal, extending
to the anterior part of the middle cingulate cortex (aMCC), has
been linked to the reward network and the positive or negative
emotional response (40). Noteworthy, Vogt has reported that
the aMCC reflects emotional awareness and fear leading to the

questioning of the enrolment of the aMCC to the ACC gross
function (62, 63). Considering the anterior insula, it is reported
to be involved in the awareness of emotions and subjective
feelings (50) as well as errors of predictions like mentioned above.
Another literature about lesions in the aIC would cause deficits in
emotional awareness (e.g., alexithymia) (64). Several studies have
reported that activity in the aIC is significantly correlated with
the unpleasantness of itch (8–10, 18, 21). For the hippocampus,
it has been also shown that this structure is fully integrated in
the itch network (13, 21, 22). For example, only active scratching
can relief activity in ipsi-hippocampal structure (53). The role
of hippocampus together with amygdala, dACC and insular
cortex are well-documented in Sanders and Akiyama (65). The
authors noticed and argued that “amygdala and hippocampus
activation appears to go hand-in-hand in most studies of itch,
suggesting that the memory of previous itch experiences may
be a significant factor in itch-related anxiety.” Stratum possibly
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FIGURE 1 | The itch matrix categorized into three itch matrixes. First itch matrix consisted of primary and secondary sensorimotor cortex (SI and SII, respectively), the

parietal/central operculum, and the posterior insular cortex (pIC) (here presented in brown, this matrix is also presented in Figure 2A). The second itch matrix

consisting of anterior singular cortex (ACC), anterior part of the middle cingulate cortex (aMCC), anterior part of the insular cortex (aIC), amygdala, striatum and

hippocampus (here presented in blue, this matrix is also presented in Figure 2B). The third matrix contains prefrontal cortex, posterior part of the middle cingulate

cortex (pMCC), and posterior cingulate cortex (PCC) (here presented in red, this matrix is also presented in Figure 2C).

involved with motivation aspects of itch and/or the carving
for scratching.

According to original paradigms, two other studies have
reported diminished activation of these regions in tasks that
change the nature of pain perception with context variations (66)
or with analgesia induced by meditation (67). While the first of
these shows a diminished activation in dorsal ACC and insula as
the subjects switch their perception from unpleasant to pleasant
(or less unpleasant) revealing the link between emotional and
motivational function. The second demonstrate that experienced
Zen meditators can reduce activity of their prefrontal medial
cortex, amygdala and hippocampus regions at the expense of
an increased activity in dorsal ACC or insula which still belong
to this second matrix but are more related to mindfulness.
These articles suggest that making things more conscious by
bringing activities closer to the awareness matrix (with insula as
a common region) putatively lead to less harmful psychological
consequences. This second matrix is more robust than the first
one. Many arguments in the itch literature exist and converge
about its functional role.

THIRD ITCH MATRIX

The third itch matrix would include parts of the prefrontal
cortex, pMCC, and PCC (Figure 2C). This network should be
involved in the subjective perception of itch. The cognitive
state of the mind can affect the itch sensation e.g., emotions,
obsessions, religious beliefs, disgusts, expectations, and past
experiences. This pattern of activation is also present in
the distraction from itch caused by the Stroop task (e.g.,
in the DLPFC) (14, 30, 34). The third matrix receives and
integrates information from the foregoing two and triggers
behavioral response.

CONCLUSION

Knowledge of itch processing in the brain is growing thanks to
brain imaging (2, 68). A better understanding of interactions
between itch matrixes would allow a better understanding
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FIGURE 2 | Proposals for itch matrixes (X,Y,Z denotes the location of the corresponding slice in Montreal Neurological Institute (MNI) coordinate system). (A) Elements

of the first matrix contributing to encoding of the recognition, localization, and intensity of itch. Primary sensorimotor cortex is presented in Blue, parietal operculum in

Green, and posterior insular cortex in Red (Regions have been extracted from Automated Anatomical Labeling and Harvard-Oxford atlases). (B) The second matrix

itch processing matrix consenting of anterior cingulate cortex (Blue), anterior insular cortex (Red), amygdala (Green) and hippocampus (Violet). This matrix is in charge

of affective and motivational aspects of itch. (C) The third matrix consists of frontal cortex (Blue), middle cingulate cortex (Red), and posterior cingulate cortex (Green),

and it is involved in the interpretation of the cognitive meaning of itch.

of pruritus in different cutaneous or extra-cutaneous
etiologies (69).
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