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Abstract: Background: An important component of asthma care is understanding potential causes of
high asthma admissions (HAADs) or readmissions (HARDs) with potential of risk mitigation. Crucial
to this research is accurately distinguishing these events from background seasonal changes and time
trends. To date, classification methods have been based on ad hoc and untested definitions which
may hamper understanding causes of HAADs and HARDs due to misclassification. The aim of this
article is to introduce an easily applied robust statistical approach, with high classification accuracy
in other settings—the Seasonal Hybrid Extreme Studentized Deviate (S-H-ESD) method. Methods:
We demonstrate S-H-ESD on a time series between 1996 and 2009 of all daily paediatric asthma
hospital admissions in Victoria, Australia. Results: S-H-ESD clearly identified HAADs and HARDs
without applying ad hoc classification definitions, while appropriately accounting for seasonality and
time trend. Importantly, it was done with statistical testing, providing evidence in support of their
identification. Conclusion: S-H-ESD is useful and statistically appropriate for accurate classification
of HAADs and HARDS. It obviates ad hoc approaches and presents as a means of systemizing their
accurate classification and detection. This will strengthen synthesis and efficacy of research toward
understanding causes of HAADs and HARDs for their risk mitigation.
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1. Introduction

The prevalence of asthma exacerbation emergency department (ED) visits and then
subsequent admission is still high among children and adolescents [1] and they create
a substantial burden for children, their families and the hospital system. Particularly,
the increase in early readmission within 28 days [2] is dependent on factors that we are
yet to identify fully. Environmental factors have been implicated with paediatric asthma
admissions. Seasonality is an important marker of total environmental load or triggers,
such as high pollen exposure and respiratory virus infections, which are associated with
asthma hospital admissions [2-5].

Methodologically, in identifying high asthma admissions days (HAADs), we are
undertaking the non-trivial task of detecting anomalous points in time series which are
subject to seasonality, time trends and random variation. Accurate detection is important
otherwise misclassification will distort any data signals regarding possible environmental
or prognostic factors. With accuracy, methodological consistency is also required so as to
be able to evaluate and synthesize evidence from different studies regarding HAADs and
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high asthma readmissions days (HARDs) in order to provide a stronger evidence base.
Accuracy and consistency in identifying HAADs and HARDs increase the potential of
detecting associated risk factors whose modification may lead to an attenuation of spikes
in child asthma hospital admissions and the subsequent burden on the health system.

Anomalousness is based on the notion of occurrences that are unusual, unexpected,
or, in statistical terms, extremal or outliers. That is, an unusually high spike in daily
admissions time series. These terms capture anomalies on a global scale and inherent in
them are ideas of distributional location and dispersion which informs the methods that
have been employed to identify HAADs to date. Two studies applied a smoothing method
to calculate a moving average, then used the magnitude of the residual (the difference
between the average and the actual observed daily count) to determine if that day met the
criterion of an HAAD. The criterion was relative to the residual standard deviation (SD)
and if the residual was greater than a certain number of SDs, then that day was classified
as an HAAD. One study applied a Fourier transform filter, as a way of determining the
seasonally changing average and used an a priori chosen threshold of 1.96 SD [6], an a
priori global (one size fits all) criterion. The second calculated a rolling average and SD
based on a 25% trimmed mean, that is, only the middle 50% of the data were used, and
applied a threshold of 4.5 SD that was chosen by inspecting residual quantile-quantile (qq)
plots to detect a critical departure point of the large residuals from the preceding ones [7].
The second method that has been employed in past studies was model based, where a
time series statistical model was applied to the data and, similarly to the previous method,
the magnitude of the residual from the model predicted mean was assessed against the
priori chosen threshold of 4 SDs from the mean [8]. As far as we can tell, these are the only
methods that have been used for asthma admissions.

These approaches have some important limitations. The mean and SD are strongly
affected by outliers. This is especially so for the SD due to its definition based on the
squared distance from the mean. Hence, any definitions based on a mean and SD will tend
to mask outliers when outliers are used in their calculation. Using a trimmed mean is a
well-known method for reducing the effect of outliers in the calculation of the mean [9],
however, excluding 50% of the data runs the risk of over smoothing, drastically restricting
access to information in the data and therefore limiting sensitivity to account for seasonality
and time trend in a time series. Furthermore, the use of 1.96, 4 or 4.5 SDs is not based
on any validation testing to understand the impact of these definitions on sensitivity or
positive predictive value in classifying HAADs. In addition, these methods do not include
any formal statistical testing in regard to their classification of HAADs. They are based
on the untested assertions that there are an unknown number of outliers, and they exist
beyond a certain number of SDs from a sample or model predicted mean.

Anomalousness can also carry the idea of unusual or unexpected on a local scale. A
high number of daily admissions for a particular time of the year may not be considered
high in another, that is, it is important to account appropriately for seasonality. Similarly, a
high day in one year may not be considered high in another and therefore it is also important
to account for time trend. It has been shown that moving average techniques tend to filter
out seasonal anomalies [10]. A time series statistical model with appropriate specification
can adjust for seasonality and time trend. The time trend can be modelled in both the
long term and short term, for example day of the week effects on hospital usage [11]. The
limitation with model-based methods is that we are faced with model assumptions, choice,
specification, and importantly, model capacity for capturing data trends. For example, in
the model-based method discussed above, a log linear auto regressive statistical model was
employed that accounted for seasonality and long-term time trend [8] but choices had to
be made regarding log transformation and linear or non-linear specification for example.
More importantly, this study made a choice of using 4 SDs as a threshold to classify HAADs.
It may be asked: why not use 4.5 or 3.5? These values have not been tested regarding their
sensitivity or specificity to detect HAADs.
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There is a new method, published in 2017, that overcomes the critical limitations
of current methods. It is termed the Seasonal Hybrid Extreme Studentized Deviate (S-
H-ESD) method [10]. Validation testing of this method has shown it to be sensitive in
detecting anomalous data observations both on a global and local scale, is model free and
it incorporates statistical testing. Validation has shown it to have a sensitivity of about
96% and a positive predictive value (PPV) of 100% when it was applied with a statistically
significant level of 0.05 in the setting of detecting anomalies in cloud infrastructure data [10].
Machine learning (ML) is in demand and has been widely used in respiratory studies, for
example, COVID-19 [12,13] and COPD [14]. However, the method we put forward is
straight forward to apply, does not require intensive resources and is easily understood and
can be interpreted. Furthermore, our demonstrated method comes with robust statistical
testing [15].

In this study, we demonstrate the use of the S-H-ESD method, a novel approach, in
the important task of detecting HAADs and HARDs. We also compare it to the methods
mentioned above [7,8].

2. Materials and Methods
2.1. Design/Setting

We used all Victorian private and public hospitals data obtained from the Victorian
Admitted Episodes Data set (VAED) and extracted daily counts of all hospital admissions
for asthma from July 1st, 1996, to June 30th, 2009, 13 years or 4748 days in total. Victoria
is a state in south-eastern Australia. Only primary admissions for children (2-18 years)
with a principal diagnosis of asthma of asthma (ICD-9 codes (493) up to 1998 and ICD-10
codes (J45 or J46)) were included in the study. Readmissions were defined as a subsequent
admission within 28 days of the index admission discharge [11]. The time series contained
53,156 admissions including 2401 readmissions [2].

The study was commenced after obtaining ethics approval from approval from La
Trobe University Human Research Ethics Committee (HEC18307).

2.2. Statistical Method

We define robust in the usual statistical sense as being resistant to outliers in the
calculation of location and spread.

We briefly describe the new method but supply more details in the supplement (See
File S1 Statistical Method—Details). The S-H-ESD method relies on robust measures of
location and dispersion via the median and scaled median absolute deviation (MAD).
Firstly, the time series is decomposed into its trend and seasonal components using locally
estimated scatterplot smoothing (STL) with an added weighting scheme to make it more
robust and the residuals (the remainder) are extracted [16]. The residuals are passed to the
Rosner Extreme Studentized Test (ESD) [17]. The ESD uses a statistical test based on the null
hypothesis that there are no outliers against the alternative that there are up to k outliers,
where k is chosen by the user. The level of statistical significance can be chosen as required
and is subject to Bonferroni correction based on the number of detected outliers. The test
iterates through the data, removing the found anomaly for the next iteration. Choice of
k can be adjusted until beyond which, no further outliers are detected and hence it is an
exhaustive method. The ESD was initially formulated using the sample mean and SD and
requires approximate normality as it refers to a t-distribution. Within S-H-ESD, the sample
mean and SD are replaced by the median and scaled MAD, robust measures of location
and dispersion, respectively [18,19], and robustness is augmented by the use of a robust
weighting scheme for extracting the residuals from the time series. This decomposition
facilitates S.H.ESD to detect global and local anomalies and ensures that the residuals have
a unimodal distribution which makes the choice of the ESD appropriate [10]. For further
details regarding the metrics to evaluate this method, please refer to File S1 Statistical
Method—Details.
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We compare S-H-ESD to two other methods previously used for identifying days of
unusually high asthma admissions.

1.  Similarly, to the model-based approach by Newson et al. [8], we used a semi para-
metric general additive model (GAM) [20] to model mean asthma admission and
readmission daily counts, adjusting for seasonality, time trend and day of week effect
as done previously with these VAED data [11]. In line with Newson et al., we used
the a priori definition of a residual being 4 SD from the model predicted mean as a
threshold to identify HAADs and HARDs. We refer to this method as M.4SD, where
M signifies model based.

2. We follow the example of Silvers et al. [7] and use a rolling 25% trimmed mean and
SD then choose a threshold based on the inspection of residual qq plots. We refer to
this method as TMQQ (trimmed mean qq plot).

We compare if the identified HAADs and HARD:s are reasonable according to what
may be expected from what is known about the seasonality and time trends of asthma
admissions and readmissions in Victoria from our past research [2,11]. For time trend,
we compare the number of HAADs and HARDs to pre and post 2002 as child asthma
hospital readmissions reduced from 1997 to 2002 but showed an increasing trend to 2009
and admissions reduced and then flattened out from about 2002. It would not be expected
that HAADs and HARDs follow seasonality and time trends completely, by definition
they are anomalous, but it would be expected that their likelihood would increase when
more admissions occur, and it is well known that there is a strong seasonal aspect to
child asthma hospital admissions. We present tables for the seasonality and time trend
results. We also make comparisons of the days selected as HAADs and HARD:s by the three
methods in context of the time series themselves, for which we present graphical evidence.
Our comparisons are basically descriptive although we did conduct some simulations,
see File 52 in the Supplement. The S.H.ESD has already been subject to comprehensive
validation testing for its application to cloud computing and we wish to compare methods
used for the study of asthma hospital admissions as a way of alerting the asthma research
community to this method. The methods were implemented with freeware R [21]. S.H.ESD
was implemented via the AnomalyDetection library [22] and a statistical significance level
of p < 0.05 was nominated in classifying HAADs and HARDs. The R libraries mgcv [23],
ggplot2 [24] and stlplus [25] were used for the GAM model, graph plotting and time series
decomposition, respectively. We also supply an R computer script for this method, see
Supplement File S3.

3. Results

Daily admission counts ranged between 0 and 51 (mean 11.3, SD 6.0). Daily readmis-
sion counts ranged between 0 and 5 (mean 0.5, SD 0.7) and only 15 (0.3%) and 2 (0.04%)
days had daily readmissions of 4 and 5, respectively. See Figures S1 and S2 in the Supple-
ment where we demonstrate STL decomposition [16] and which show the admissions and
readmissions time series and their three components of time trend, seasonal fluctuation
and the remainder (residuals). The seasonal and trend components have noticeable effects
on both time series. As expected from our previous research, they show that the long-term
time trend had been a decrease in admissions to about 2002 followed by a largely flat period
but with a little oscillation and that readmissions also decreased to 2002 but was followed
by an increasing trend to study period end [2,11].

In applying TMQQ, we found that the qq plots indicated thresholds of 10.2 and 7.5 SDs
to identify HAADs and HARDs, respectively. The results of applying the three methods
of S.H.ESD, M.4SD and TMQQ to all daily admissions and readmissions are displayed in
Table 1 by month of occurrence to display their seasonality and Table 2 to describe time
trends relative to pre and post 2002.
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Table 1. Number of days classified as high asthma admission (HAADs) and high asthma readmission
(HARDs) daily counts with the three reviewed methods by month of occurrence over the 13 years of

the study period.
HAAD HARD
Month *
S.HESDt TMQQ}#? M.4SD P SH.ESD' TMQQ % M.4SD !
December 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
January 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (4.5%) 1 (5.6%)
February 10 (59%) 20 (87%) 2 (29%) 0 (0%) 5 (22.7%) 0 (0%)
March 1(6%) 0 (0%) 1 (14%) 5020%)  5(22.7%) 5 (27.8%)
April 0 (0%) 1 (4%) 0 (0%) 1 (4%) 1 (4.5%) 1 (5.6%)
May 3 (18%) 1 (4%) 0 (0%) 2 (8%) 1 (4.5%) 1(5.6%)
June 1 (6%) 0 (0%) 0 (0%) 6 (24%) 2(9.1%) 6 (33.3%)
July 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (4.5%) 0 (0%)
August 0 (0%) 0 (0%) 0 (0%) 7 (28%) 1(45%) 2 (11.1%)
September 0 (0%) 0 (0%) 0 (0%) 2 (8%) 0 (0%) 2 (11.1%)
October 0 (0%) 0 (0%) 0 (0%) 1 (4%) 5 (22.7%) 0 (0%)
November 2 (12%) 1 (4%) 4 (57%) 1 (4%) 0 (0%) 0 (0%)
Total 17(101%) 23 (99%)  7(100%)  25(100%) 22 (99.7%) 18 (100.1%)
ngzlsagz;;’f 0.4% 0.5% 0.2% 0.5% 0.5% 0.4%

* December is the start of summer. Pollen season starts October through to December. t Seasonal Hybrid Extreme
Studentized Deviate test (see methods section). } Using the method of a 25% trimmed mean (middle 50% of the
data) and quantile-quantile plots to choose the number of SD a positive residual is from the mean to define an

unusually high count [7]. P 4 standard deviations for a model positive residual to be from the predicted mean as
a priori definition of an unusually high count.

Table 2. Number of days classified as HAAD or HARD comparing study years pre and post 2002.

HAAD HARD
Year SHESD  TMQQ M4SD  SHESD  TMQQ M.4SD

<=2002  10(59%)  6(26%) 5 (71%) 9(36%)  10(45%)  6(33%)
>2002 7@1%)  17(74%)  2(29%)  16(64%)  12(55%) 12 (67%)
Total 17(100%) 23 (100%)  7(100%)  25(100%)  22(100%) 18 (100%)

3.1. High Asthma Admission Days (HAAD:s)
3.1.1. S-H-ESD

Seventeen days (0.4%) were classified as HAADs (p < 0.05) and they had between
33 and 51 daily admissions, see Figure 1. The most frequent month of occurrence was
February (summer end and return to school) with 10 (59%), followed by May (autumn
end) with 3 (18%). November (mid pollen season) had two HAADS. These months are
consistent with seasonal peaks in child asthma admissions as shown from our previous
research [2,11]. Seven of the months did not register any HAADs. This method detected
more HAADs pre 2002 compared to post 2002 which reflects the long-term time trend in
the data.
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Figure 1. Time series of daily child asthma hospital admissions in Victoria with HAADs classified by
the three compared methods.

3.1.2. TMQQ

Twenty-three days (0.5%) were classified as HAADs and they had between 14 and
51 daily admissions, see Figure 1. The most frequent month of occurrence was February
(summer end and return to school) with 20 (87%) followed by April, May and November
with 1 (4%) each. These months are consistent with seasonal peaks in child asthma ad-
missions. The remaining eight months did not have any days classified as HAADs. This
method detected many less HAADs pre 2002 compared to post 2002, 26% compared to
74%, respectively, which is not consistent with the long-term time trend in the data.

3.1.3. M.4SD

Seven days (0.2%) were classified as HAADs and they had between 28 and 51 daily
admissions, see Figure 1. Four (57%) of the HAADs occurred in November (mid pollen
season) followed by February (summer end) and March (autumn start) with 2 (29%) and
1 (14%), respectively. Although they are small numbers, this distributional spread does not
seem consistent with child asthma hospital admission in Victoria as a greater percentage is
expected in autumn compared to spring [2]. Pre and post 2002 comparisons were consistent
with known time trends.

3.2. High Asthma Readmission Days (HARDs)
3.2.1. S-H-ESD

In applying this method, we found that it failed for the detection of HARDs in our
data set. It classified 39.4% of the readmissions as anomalous, many of which were daily
counts of 1 or 2, a spurious result given the meaning of outlier. This was mainly due to
the child asthma hospital readmission time series being a low count series with a range
of 0-5, that is, highly discrete and was dominated by zero (60th percentile). If more than
50% of values are the same, then the MAD will equal zero and the method breaks down.
We overcame this problem by adding smoothness using random noise from a uniform
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total daily readmissions within 28 days

0.

1 Jul, 1986

distribution between, but not including, —0.5 and 0.5. Our simulation testing was based on
the addition of smoothness. See Supplementary File S2 for more details.

After the addition of smoothness, there were 25 days (0.5%) classified as HARDs
(p < 0.05) and they ranged between three and five daily readmissions, see Figure 2. All
of the days with four and five readmissions (highest) and eight of the days with three
readmissions were classified as HARDs. The most frequent month of occurrence was
August (winter end) with seven (28%) followed by June (winter start) six (24%). These
months are consistent with seasonal peaks in child asthma readmissions. All summer
months and July (mid-winter) did not have any HARDs. More HARDS occurred post
compared to pre-2002, which is consistent with the long-term time trend.

Method
| SHESD
() T™™QQ
| F 1” et AT | O M4SD
1Jul, 2000 1Jul, 2004 1Jul 2008
time(days)

Figure 2. Time series of daily child asthma hospital readmissions within 28 days in Victoria with
HARD:s classified by the three compared methods.

3.2.2. TMQQ

Twenty-three days (0.5) were classified as HARDs and they ranged between two and
five daily readmissions, see Figure 2. Only one of the two days with five readmissions and
three of the fifteen days with four readmissions were classified as HARDs. The months of
most frequent occurrence were February (summer end and return to school), March and
October (pollen season start) with five each (23%). February and October are not consistent
with child asthma hospital readmission peaks in these data [11]. One HARD was classified
for January when readmissions are historically very low. More HARDs were classified post
2002, but the difference compared to pre 2002 was close to an even split, 10 compared to 12,
much less than the other two methods. This led us to consider this result as not consistent
with the long-term time trend.

3.2.3. M.4SD

Eighteen days (0.4%) were classified as HARDs, and they ranged between three and
five daily readmissions, see Figure 2. This method classified all the days with four or five
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readmissions and one of the days with three as a HARD. The most frequent month of
occurrence was June (winter start) followed by March (autumn start) with five occurrences.
These months are consistent with seasonal peaks in child asthma readmissions. Pre and
post 2002 comparisons were consistent with time trend.

These comparisons of results are summarized in Table 3.

Table 3. Summary of method consistency with seasonality, time trend and size of HAADs
and HARDs.

HAAD HARD
Year SHESD TMQQ  M4SD SHESD TMQQ  Ma4SD
Seasonality Yes Yes No Yes No Yes
Time trend Yes No Yes Yes No Yes
Size Yes No Yes Yes No Yes

4. Discussion

In this study, we demonstrated the S-H-ESD method, an alternative robust technique
to detect HAADs and HARDs, and compared it to two previously used methods for asthma
admissions. We found less HAADs but more HARDs after 2002, which possibly was due
to instability in the readmissions time series post 2002. That is, despite an overall lower
number of admissions compared to pre-2002, a higher number of anomalous readmission
days were identified post 2002. We showed how to extend S.H.ESD in the situation where
the MAD equals zero. There were clear differences between the results obtained from the
three methods. For HAADs, Figure 1 indicates that S.H.ESD classified the days that would
be expected to be classified as HAADs indicating good sensitivity or low false negatives and
had not classified days that would be expected not to be classified as HAADs (good PPV or
low false positives). Whereas the TMQQ and M.4SD methods both missed some obviously
high days (false negatives) and TMQQ classified many lower days, as low as 14 admissions,
as HAAD:s (false positives). In the context of seasonality and time trend, comparing to
other days close by, these low days classified by TMQQ could not be reasonably defended
as HAADs as the mean admission count was 11.2. M.4SD did not seem to be prone to
false positives as it mainly classified days with higher counts, 30 or above, but did classify
two days with counts of 28 and 29 which are on the edge of credibility considering the
many more days with higher counts. However, in context of the much lower counts in
nearby days, these two days may be defensible. M.4SD had the lowest classification rate for
HAAD:s, about half or less than the other two methods. It did not classify many of the high
days that would be expected to be classified indicating a lower sensitivity (false negatives).
From Figure 1, it is interesting to note that there is little corroboration between the three
methods. Of the 38 distinct days that were classified as HAADs by the three methods, only
3 days were chosen by all three methods and 3 days by two methods. S.H.ESD figured in all
those corroborations indicating it likely had greater sensitivity than the other two methods.

For HARDs, Figure 2 indicates that S.H.ESD and M.4SD performed equally well. They
both chose all the very high days of four or five readmissions and a few of the days with
three readmissions but on which they corroborated on one of them only. In contrast, TMQQ
classified only one of the two days with five readmissions and only 3 of the 15 days with
four readmissions indicating a low sensitivity, or propensity for false negatives. TMQQ also
chose 11 days with only two readmissions, which in context of this very low-count time
series would be difficult to defend and indicated low PPV, a propensity for false positives.

TMQQ’s difficulty with both the admission and readmission time series was likely
due to a combination of its two main features. Its strong filtering mechanism of using only
the middle 50% of the data to calculate a SD (moving) would have the effect of decreasing
its magnitude because of reduced data variation. This increases the likelihood of false
positives because distances from the mean would seem relatively larger in units of a smaller
SD. It has also been shown that use of a moving average tends to hide seasonal anomalies
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and hence may make TMQQ prone to false negatives [10]. TMQQ also has the limitation of
an ad hoc choice of trimming width. It may be asked: why choose 25%, why not 15%? It
is not clear, what affect this might have on model sensitivity or PPV. We also found that
choice of threshold criterion when assessing the residual qq plot could be subjective and
difficult. It was not completely clear where to locate a critical departure point of the large
residuals from the preceding ones [7].

M.4SD seemed to perform well with HARDs. This was likely due to the selection
of 4 SD as the threshold criterion which happened to work well with the model we had
chosen. The GAM we used was chosen because we understood its good performance in
past research with these low count time series data [11]. However, this combination did not
prove as serendipitous in the classification of HAADs as M.4SD seemed to be hampered
by both false positives and false negatives. The limitation of M.4SD hinges on the need
for model development, with all the choices that go with it, to account for data variation
in order to make accurate predictions. After which, a choice of criterion for the number
of SDs needs to be made in the presence of uncertainty about the effect on classification
sensitivity and PPV.

In contrast, S.H.ESD was consistent in identifying HAADs and HARDs. From graphi-
cal evidence, it classified days as HAADs or HARDs that would be expected to be classified
and did not classify days that would be expected not to be classified. The seasonality and
time trends of the classified HAADs and HARDs, as best could be assessed with small
numbers, also corresponded to the seasonality and time trends of the underlying asthma
admissions and readmissions. The S.H.ESD method was able to classify HAADs and
HARDs without imposing an a priori or ad hoc definition of a high day as used by M.4SD
or a data driven definition as done with TMQQ. In contrast to both TMQQ and M.4SD,
S-H-ESD provided statistical evidence for the identification of HAADs and HARDs which
the two other methods do not provide. S.H.ESD was easy to implement, as can be seen
from the provided R computer code, see Supplement File S3. The adding of smoothness, if
required, is also straight forward to implement.

Although it worked well with our data, the developers of S.H.ESD felt its capacity to
capture long-term trend needed to be developed further [10]. This is important to minimize
false positives and is the subject of further research. In saying that, it would be useful to
test and validate our method in data sets from many different countries as S.H.ESD has the
potential to standardize and synthesize similar research globally.

S.H.ESD presents as a suitable method to accurately identify HAADs and HARDs
which would support research on these phenomena by reducing misclassification error due
to false positives and false negatives. This is a crucial consideration for understanding the
causes of HAADs and HARDs. If we seek to understand factors that are associated with
high admission or readmission days, we must be as accurate as possible to identify them
or we risk distorting any signal in the data because of misclassification. The application
of different ad hoc definitions for HAADs by different studies, makes comparison of
study results difficult. Because of this, synthesis of study results in order to promote
understanding of causes of HAADs and HARD:s is hindered. Because the S-H-ESD method
works identically in any data set without any ad hoc or a priori definitions for a HAAD or
HARD, this source of heterogeneity between different studies would be removed which
would also raise the potential of promoting their synthesis.

This study has the strength of using a comprehensive data set of two time series of
13 years in length with which to compare the three methods. The limitation of our study
is that the basis of the comparisons was graphical and descriptive and was not based
on simulated data sets with known outcomes. However, the S.H.ESD method has been
internally validated previously and shown to have a sensitivity and PPV of 96% and 100%,
respectively, at the 0.05 level of statistical evidence [10]. The other two methods have never
been tested in this way. Nevertheless, the aim of this article was to demonstrate the method,
not to validate it.
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5. Conclusions

The Seasonal Hybrid Extreme Studentized Deviate (5.H.ESD) method is easy to use
and seems accurate in the identification of high asthma admission and readmission days.
In contrast to other methods, S.H.ESD supplies appropriate statistical evidence for the iden-
tification of high admission days. Although we demonstrated the method on a paediatric
asthma hospital admission data set, it can also be applied to adult asthma admissions or
other time series in general.

S.H.ESD obviates the need for a priori classification criteria or ad hoc modelling and so
promotes consistency and accuracy of research. It also presents as a means of systemizing
the identification of days of high child asthma hospital admissions and readmissions.
Consequently, this may have the benefit of opening up the potential of synthesizing research
in this area from many groups across the globe. However, further study is required to
corroborate the effectiveness of S.H.ESD for the accurate identification of days of high child
asthma hospital admissions and readmissions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics12102445/s1, File S1: Statistical Method—Details; File S2:
Adapting the method for high asthma readmissions days (HARDs); Figure S1: Decomposition of all
daily asthma hospital admissions using STL with the added robust scheme; Figure S2: Decomposition
of all daily asthma hospital readmissions using STL with the added robust scheme; File S3: R Code
for anomaly identification.
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