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Abstract: Transplantation of differentiated and fully functional neurons may be a better therapeutic
option for the cure of neurodegenerative disorders and brain injuries than direct grafting of neural
stem cells (NSCs) that are potentially tumorigenic. However, the differentiation of NSCs into a large
population of neurons has been a challenge. Nanomaterials have been widely used as substrates
to manipulate cell behavior due to their nano-size, excellent physicochemical properties, ease of
synthesis, and versatility in surface functionalization. Nanomaterial-based scaffolds and synthetic
polymers have been fabricated with topology resembling the micro-environment of the extracellular
matrix. Nanocellulose materials are gaining attention because of their availability, biocompatibility,
biodegradability and bioactivity, and affordable cost. We evaluated the role of nanocellulose with
different linkage and surface features in promoting neuronal differentiation. Nanocellulose coupled
with lysine molecules (CNC–Lys) provided positive charges that helped the cells to attach. Embryonic
rat NSCs were differentiated on the CNC–Lys surface for up to three weeks. By the end of the three
weeks of in vitro culture, 87% of the cells had attached to the CNC–Lys surface and more than half of
the NSCs had differentiated into functional neurons, expressing endogenous glutamate, generating
electrical activity and action potentials recorded by the multi-electrode array.

Keywords: nanocellulose; rat fetal stem cells; neuronal differentiation; extracellular matrix

1. Introduction

In neurodegenerative diseases or trauma to the central nervous system (CNS), loss
of neurons leads to irreversible damage that can significantly affect sensory and motor
functions [1–4]. Neuronal death leads to a permanent loss of function, as fully differentiated
neurons do not divide to produce new neurons. Researchers have been exploring several
strategies for treating neurodegenerative diseases and injuries to the brain. An obvious
solution to this would be to replace the damaged and dead neurons with healthy, new
neurons to promote the recovery of lost functions. Neural stem cells (NSCs) have been used
to provide cell-based therapies to address neurodegenerative diseases and trauma-induced
function loss [5–7]. The biggest hurdle for this strategy so far is the tumorigenicity from
the transplanted NSCs [8], because stem cells retain their ability to proliferate [9], and
also because of the uncertainty regarding whether cells differentiate into glial cells or
neurons [10]. Therefore, the transplantation of already differentiated neurons exhibiting
neuronal electrical activity may be a better therapeutic option. However, this requires a
large pool of differentiated neurons readily available in tissue banks (in vitro) for trans-
plantation. Under in vitro conditions, the differentiation of sufficient neurons from NSCs
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has been challenging. The extracellular matrix (ECM) and secreted molecules are the
main players that affect cell behavior, including differentiation of stem cells into mature
cells [11–14]. Therefore, research is currently in progress to determine if fabricated culture
surfaces could help promote the differentiation of NSCs mostly into neurons.

Nanomaterials have been widely used to manipulate cell behavior due to their nano-
size, excellent physicochemical properties, ease of synthesis, and versatility in surface
functionalization [15–17]. In designing and fabricating ECM networks, nanomaterial-based
scaffolds and synthetic polymers have been widely used to simulate the micro-environment
of the ECM in vivo [18–20]. Among them, cellulose is being used due to its wide availabil-
ity, excellent biocompatibility, biodegradability, bioactivity, and regeneration-promoting
features [21–25]. As a natural carbohydrate, cellulose is biocompatible and does not cause
any allergic reactions in vivo [26]. It is broken down into shorter polysaccharides or sugar
molecules and generally does not cause any toxicity unless inhaled into the lungs [26,27].
The cellulose found in bacteria and plants can be restructured into nanofibers, i.e., nanocellu-
lose, which is a widely used natural polymeric material for various applications, including
biomedical applications [27–29]. Moreover, networks of cellulose nanofibers have been
synthesized for various biomaterial applications by crosslinking 2,2,6,6-tetramethyl−1-
piperidinyloxy (TEMPO) oxidized cellulose nanofibers with other polymers, including
poly(acrylic acid) [30,31]. Among the various forms of nanocellulose, biocompatible cellu-
lose nanocrystal or crystalline nanocellulose (CNC) has been used as a novel and advanced
nanomaterial in biomedical sciences [32–35].

It is well established that the properties of a culture surface can affect cells’ migration,
adhesion, and morphology [36]. Cellulose of nanoscale size (1–100 nm) exhibits altered
properties of the material, such as morphology, size, and composition, which could impact
the adhesion, biocompatibility, growth, and development of cells [37,38]. Moreover, it is
known that other properties of a substrate, such as stiffness, roughness [39], and surface
charge [40–42], can influence the differentiation of stem cells. The robustness of CNC
toward chemical or thermal treatment during sterilization processes is one of its advantages
for serving as a cell culture substrate, because surfaces need to be sterilized before cell
culture. The nanofibrillar structure of CNC, which can have a high water content, can
maintain mechanical stability, and can mimic the microenvironment of the ECM, has been
used for the differentiation of different cell types such as human hepatic cells [43] and
fibroblasts [44].

The molecules that comprise the ECM in mammals have been reported to be of a
nanometer scale (e.g., the 66 nm repeat banding of collagen fibers). Therefore, by mimicking
the nanoscale topographic features of the ECM during biomaterial fabrication, CNC could
plausibly be adapted to induce the same effects as the ECM [36,45]. Mammalian cells do
not readily attach to cellulose due to its lack of integrin binding sites [43,44,46] and natural
hydrophilic property with low non-specific protein adsorption [46,47]. Therefore, it is
important to modify the surface properties of cellulose before it can be used as a substrate
for NSC differentiation. The surface of CNC contains plenty of hydroxyl groups that allow
for the incorporation of functional molecules to enhance cell adhesion and control the cell
fate by modulating the interaction between CNC materials and cells/tissues [48]. Unlike
normal cellulose, CNC has a fibrillar structure mimicking the ECM environment, which
exhibits robustness toward chemical and thermal treatment and has hydroxyl groups
aiding in surface modifications. Hence, it was selected as the basic material for surface
modification in this study. We covalently linked CNC with lysine molecule (CNC–Lys) to
confer positive charges that would enhance the attachment of the cells, and we tested them
in vitro for rat NSC (rNSC) attachment, growth, and differentiation into neurons.

In addition to the differentiation phenotype, we further characterized the functional-
ity of the differentiated neurons regarding the neurotransmitters and spontaneous firing
activities they expressed. The generation of spontaneous electrical activity or firing of
cells in vitro and in vivo is a characteristic feature exhibited by neurons during develop-
ment. Multi-electrode arrays (MEA) have been an indispensable tool for non-invasive
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extracellular electrical recordings or stimulation of cells in vitro [49,50], both temporally
and spatially [51]. On MEAs, cells can be cultured for several weeks or even months
(long-term cultures) [52–57], and electrical activity can be assessed repeatedly throughout
the culture period, as well as among multiple sites simultaneously, to characterize the
interaction among cells. Local field potentials (LFPs) and extracellular action potentials
(EAPs) from a population of neurons on a millisecond time scale are recorded using MEA.
The recording of neuronal activity using dissociated neuronal cultures on MEAs has been
reported by Pine et al. [58], and has since been employed in investigations of toxins, phar-
macological compounds, and neuronal network connectivity using brain slices and stem
cell cultures [59]. Herein, we used the same method to assess the functional activities
of the neurons differentiated from rNSCs. In this research work, we used a renewable,
biocompatible, and bioactive material, i.e., CNC, and chemically modified it with lysine
for the first time to imitate the environment of the ECM. Our data indicate that CNC–Lys
indeed promoted the differentiation of rNSCs into neurons during the three-week experi-
mental period, and the differentiated neurons were electrically active, as indicated by the
electrophysiological data recorded via MEA and reported here.

2. Results
2.1. Characterization of the CNC–Lys Material

A scanning electron microscopy (SEM) image of CNC–Lys is shown in Figure 1A. It
was observed that the surface of CNC–Lys was rough with agglomerated cauliflower–like
morphology. The fiber-like structure of CNC Can also clearly be seen in the SEM images.
Additionally, the surface morphology of CNC–Lys was also observed by the atomic force
microscope (AFM) technique (Figure 1B,D). The imaging was performed in tapping mode
using a cantilever tip radius of ~10 nm. The AFM images revealed a highly rough surface
with some protrusions coming from the surface. The arithmetic average roughness (Ra)
and root mean square average roughness (Rq) of the CNC–Lys were measured to be 6.16
and 8.96 nm, respectively, for a scan area of 10 × 10 µm2.

Information about the different chemical functionalities present in CNC–Lys and CNC
was obtained using Fourier transform infrared (FT–IR) spectroscopy (Figure 1C). Some
common peaks, such as a broad peak at around 3400 cm−1, a small peak at 2870 cm−1,
bands of peaks at 1300–1420 cm−1, peaks at 900–1110 cm−1, and a small absorption peak at
890 cm−1, were observed in the spectra of both CNC and CNC–Lys material. However,
some differences in the spectra of CNC and CNC–Lys were also observed. For example, a
peak at 1620 cm−1 in CNC (Figure 1C–b) was shifted to 1600 cm−1 in CNC–Lys (Figure 1C–
a). Similarly, two extra small peaks at 1240 and 795 cm−1 were observed only in CNC–Lys.

Additionally, proton nuclear magnetic resonance (1H–NMR) analysis was performed
for CNC–Lys material to observe the attachment of lysine on CNC. The 1H–NMR spectrum
is shown in Figure 2E, with a plot of relative intensity versus chemical shift. A bunch
of proton peaks ranging from 1.0 to 5.0 was observed in the spectrum. One of the peaks
at 4.6 ppm was found to be overlapped with the peak of the solvent. Furthermore, the
covalent modification of CNC with lysine was also studied by performing TGA of a CNC–
Lys sample. The thermal gravimetric analysis (TGA) curve, which was plotted as weight
loss (%) versus temperature, and the overlapped differential thermal analysis (DTA) data
are presented in Figure 1F. It can be seen from the curves that the mass loss for the CNC–Lys
sample occurred in four different steps. An initial mass loss of 3% was observed at 50 ◦C,
but a major mass loss of around 75% was observed in the second step at 250 ◦C. In the
third step, a 10% weight loss of CNC–Lys was seen with a medium peak in the DTA plot.
Finally, another 10% weight loss was detected at 810 ◦C. Moreover, the crystallinity of the
CNC–Lys and CNC samples were observed using the X–ray diffraction (XRD) technique,
as shown in Figure S1. The five different crystalline peaks (101, 10ı̄, 021, 002, and 040) were
separated with the prominent 002 crystalline peak, in agreement with the literature [60–62].
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Figure 1. Surface morphology and structure analysis of the CNC–Lys substrate. SEM im-
age with (A) ×10,000 magnification, showing the roughness and fibrous structure. AFM images,
(B) height image, and (D) 3D image of the CNC–Lys material, showing the roughness of the sub-
strates. (C) FT–IR spectra of the CNC–Lys (a) and CNC (b) material, confirming the structural
modification of CNC with lysine. (E) 1H–NMR study of CNC–Lys using D2O solvent, showing the
attachment of lysine on CNC. (F) TGA analysis of the CNC–Lys material, along with its DTA plot,
showing the effect of high temperature on the destruction of lysine.

2.2. Proliferation and Differentiation of NSCs/NPCs

Culturing E14 rNSCs in Dulbecco’s Modified Eagle’s Medium/nutrient mixture F–12
(DMEM/F–12) serum-free growth medium with fibroblast growth factor (FGF), epidermal
growth factor (EGF), and StemPro neural supplement for two weeks resulted in a robust
yield of undifferentiated dividing cells (Figure S2). Later, the cells were collected and
sub-cultured, which yielded a high number of undifferentiated cells considered as passage
2 rNPCs. The cells in the maintenance medium, where only FGF and other supplements
were added while EGF was withdrawn, were plated on the poly–D–lysine (PDL) and
CNC–Lys surfaces and differentiated for one, two, and three weeks.

Our results revealed that the rNPCs attached well to both the PDL and CNC–Lys
(Figure 2B,C) surfaces, but very minimally to the CNC surface, possibly due to the lack
of a positive charge (Figure 3A). Determination of the total cell count by counting DAPI
(4′,6–and diamidino–2–phenylindole, dihydrochloride)–positive cells using Cytation-5
Bioimager showed the presence of 94.23% of total plated cells on the CNC–Lys substratum
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at seven days in the culture, indicating good adhesion. Meanwhile, 85.31% of DAPI-
positive cells were present on the PDL substratum, and only 34.5% of the total plated cells
were present on the CNC substratum, indicating that CNC by itself provided very poor
attachment to cells, while CNC–Lys provided the maximum attachment. Although the cell
numbers declined on the CNC substratum, they remained without significant reduction
under the other two conditions in weeks two and three (Table 1). The differentiating rNPCs
showed neuronal and astrocytic (Figure S3) markers on the CNC–Lys substratum. The
SEM images revealed the detailed morphology of the differentiated neurons from NPCs on
the CNC–Lys surface (Figure 2E). The neurons that differentiated on the CNC–Lys surface
showed long and branched neuritic processes (Figure 2F).

Table 1. Cell counts (based on counting DAPI–stained cells) on each condition as the experiment
progressed from one to three weeks (values expressed as mean ± SD).

Culture
Substratum

Total Cells
Plated/Dish

Cell Counts

Week 1 Week 2 Week 3

CNC 10,000 3450 ± 160.33 3374 ± 137.72 2561 ± 99.79

PDL 10,000 8531 ± 149.81 8188 ± 118.15 8150 ± 120.56

CNC–Lys 10,000 9423 ± 109.4 8329 ± 251.1 8199 ± 177.06
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Figure 2. Attachment of rNSC cells to the CNC–, PDL–, and CNC–Lys–coated surfaces and SEM images of differentiated
rat NPCs on the CNC–Lys surface. The plated NSCs attached well to the (A) CNC, (B) PDL, and (C) CNC–Lys surfaces,
Scale bar: 200 µm. Nuclei were counterstained with DAPI. (D) Fully differentiated neurons on the CNC–Lys surface. Scale
bar: 40 µm. (E) Cell body of neurons with neurites, shown in more detail. Scale bar: 10 µm. (F) High magnification of the
boxed region, showing details of the surface of the cell body and its interaction with the substratum. Scale bar: 1 µm.

2.3. The Majority of the rNPCs Differentiated into Neurons on the CNC–Lys Surface

Immunostaining was performed with cultures of rNPCs each week. Our results
showed that at seven days, not many cells attached to the CNC-coated surface had dif-
ferentiated, with 15% of the cells present at one week differentiated into neurons (βIII
tubulin-positive) and 3% into astrocytes (glial fibrillary acidic protein (GFAP)-positive,
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Figure 3A,J) while 72% of the cells remained undifferentiated. On the CNC–Lys surface,
35.13% of the cells present at one week differentiated into neurons, being βIII tubulin-
positive (Figure 3C,J) compared to 28% on PDL present at one week (Figure 3B,J), indicating
that CNC–Lys surface was more conducive for neuronal differentiation. Furthermore, cells
were immunostained for identifying mature neuronal marker protein MAPII. MAPII-
positive neurons represented 20% of the total neurons differentiated on CNC–Lys at week
1, comparable to PDL showing 21% MAPII-positive cells (Figures 3M and S3. The un-
modified CNC surface had only 11% MAPII-positive cells (Figures 3M and S3) during
the same duration of culture. Astrocytic differentiation was found to be similar on the
CNC–Lys surface (23.75%) compared to PDL (19.30%) (Figure 3B,C,J). The CNC surface
had the least astrocytes in week 1 (3%, Figure 3A). However, 9%, 22%, and 28% of the cells
present on CNC, PDL, and CNC–Lys, respectively, co-expressed βIII tubulin and GFAP,
suggesting they were not fully differentiated either into neurons or astrocytes (Figure 4J) at
this stage. At the end of 14 days in vitro (Figure 3D–F,K), neuronal differentiation on CNC–
Lys (60.57%; Figure 3F,K) was significantly higher than that of PDL (39%, Figure 3E,K,
p < 0.001) and CNC (18.4%, Figure 3D,K, p < 0.001), with a much higher mature neuronal
count (MAPII-positive, 34%, Figures 3M and S3) as well. The cells maintained in culture
for 21 days resulted in 66%, 41%, and 21% of the cells differentiating into neurons on the
CNC–Lys, PDL, and CNC surfaces (Figure 3G–I,L), respectively, with 42% of the cells being
mature neurons on the CNC–Lys surface (Figures 3M and S3).

The expression of vesicular glutamate transporters 1 and/or 2 (VGLUT1/2), gamma-
aminobutyric acid (GABA) (glutamic acid decarboxylase–65 (GAD–65)), and neurogenin2
(NGN2) (spinal motor neuron marker) in differentiated neurons was examined to ascer-
tain the degree of differentiation of cells into a particular neuronal lineage (Figures 4–6).
The expression of a glutamatergic marker protein in differentiated neurons increased
over time, reaching 51.6% on the CNC–Lys surface by the end of the week 3 culture
(Figure 4I,J), significantly higher than that observed in the cells on the PDL (Figure 4H,J) and
CNC (Figure 4G,J) surfaces. The GAD expression was low but significant in neurons dif-
ferentiated on the CNC (0.9%, Figure 5A,D,G,J) and PDL (1.1%, Figure 5B,E,H,J) surfaces,
whereas it was almost undetectable on the CNC–Lys surface (0.6%, Figure 5C,F,I,J). Neu-
rons expressing the marker for the potential motor neuron phenotype were observed on
both the CNC and PDL surfaces at 4.8% (Figure 6C,J) and 3.9% (Figure 6F,J) by week 3,
respectively. The neurons on CNC–Lys did not express any significant level of NGN2
across all time durations (Figure 6G–J).
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Figure 3. Representative fluorescent images illustrating the promotion of neuronal differentiation by the CNC, PDL, and
CNC–Lys surfaces. Neurons and astrocytes are labeled with specific markers for 1 (A–C), 2 (D–F), and 3 (G–I) weeks in
culture. Neurons expressing βIII tubulin are green, astrocytes expressing GFAP are red, and the nuclei are counterstained
blue by DAPI in all panels. The total population of cells was quantified for each experimental condition with CNC (A,D,G);
PDL (B,E,H), and CNC–Lys (C,F,I). The percentage of neurons and astrocytes, as well as undifferentiated or incompletely
differentiated (double-positive for both βIII tubulin and GFAP), were quantified at 1 (J), 2 (K), and 3 (L) weeks on the CNC,
PDL, and CNC–Lys surfaces. (M) We further identified the mature neuronal marker MAPII (see images in Supplemental
Figure S2) for 1, 2, and 3 weeks on the CNC, PDL, and CNC–Lys surfaces. (J) In week 1, there were significantly more
cells differentiated into neurons compared to astrocytes. *** p < 0.001 compared to the CNC substratum of the same cell
type. ### p < 0.001 compared to the PDL substratum of the same cell type. Both the CNC–Lys and PDL surfaces promoted
differentiation to a higher degree than the CNC surface. (K) By week 2, there was a significantly higher percentage of rNSCs
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differentiated into neurons on the PDL and CNC surfaces compared to the CNC surface. *** p < 0.001 compared to the
CNC substratum of the same cell type. ### p < 0.001 compared to the PDL substratum of the same cell type. The CNC–Lys
surface was excellent for differentiation of cells into neurons. ### p < 0.001 compared to the same cell type of the CNC
surface in week 2. (L) By week 3, there was a further reduction of astrocytes and an increase in neuron cell type on the
CNC–Lys (U) surface. *** p < 0.001 compared to the CNC substratum of the same cell type. ### p < 0.001 compared to the
PDL substratum of the same cell type. (M) The percentage of mature neurons on the CNC–Lys surface increased from
weeks 1 to 3. *** p < 0.001 compared to the results of week 1 (WK1) of the same substratum. # p < 0.05 and ### p < 0.001
compared to the results of week 2 (WK2) of the same substratum. $$$ p < 0.001 compared to the CNC substratum at the
same time point. & p < 0.05 and &&& p < 0.001 compared to the PDL substratum at the same time point. Data represented
as mean ± SD for n = 6. The difference between different conditions and times was tested by a two-way analysis of variance
(ANOVA), followed by post-hoc analysis (Tukey’s test) for double-positive cells. Scale bars represent 200 µm.
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Figure 4. Representative fluorescent images for glutamatergic neurons differentiated on the CNC, PDL, and CNC–Lys
surfaces. Neurons were labeled with specific markers for 1 (A–C), 2 (D–F), and 3 (G–I) weeks in culture. Neurons expressing
βIII tubulin are green, cells expressing VGlut are red, and all of the nuclei are counterstained blue by DAPI in all panels. The
total population of cells was quantified for each experimental condition with CNC (A,D,G), PDL (B,E,H), and CNC–Lys
(C,F,I). The percentage of neurons was quantified (J) across 3 weeks of duration out of the equal number of total rNSCs
plated at the beginning. The glutamatergic neurons increased over time with the most expression on the CNC–Lys surface
in week 3. *** p < 0.001 compared to the results of week 1 (WK1) of the same substratum. ### p < 0.001 compared to the
results of week 2 (WK2) of the same substratum. $$$ p < 0.001 compared to the CNC substratum at the same time point.
&&& p < 0.001 compared to the PDL substratum at the same time point. The difference between different conditions and
times was tested by a two-way analysis of variance (ANOVA), followed by post-hoc analysis (Tukey’s test). The data
represent the mean percentage ± SD for n = 4. Scale bars represent 200 µm.
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βIII tubulin are green, cells expressing GAD are red, and all of the nuclei are counterstained blue by DAPI in all panels. 
The total population of cells was quantified for each experimental condition with CNC (A,D,G), PDL (B,E,H), and CNC–
Lys (C,F,I). The percentage of neurons was quantified across 3 weeks on the CNC, PDL, and CNC–Lys surfaces (J). GAD 
was expressed very minimally in neurons on the CNC (A–C) and PDL surfaces (D–F), and almost none on the CNC–Lys 
surface (G–I). Data represent the mean percentage ± SD for n = 4. Scale bars represent 200 µm. 
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Figure 5. Representative fluorescent images for GABAergic neurons differentiated on the CNC, PDL, and CNC–Lys surfaces.
Neurons were labeled with specific markers for 1 (A–C), 2 (D–F), and 3 (G–I) weeks in culture. Neurons expressing βIII
tubulin are green, cells expressing GAD are red, and all of the nuclei are counterstained blue by DAPI in all panels. The
total population of cells was quantified for each experimental condition with CNC (A,D,G), PDL (B,E,H), and CNC–Lys
(C,F,I). The percentage of neurons was quantified across 3 weeks on the CNC, PDL, and CNC–Lys surfaces (J). GAD was
expressed very minimally in neurons on the CNC (A–C) and PDL surfaces (D–F), and almost none on the CNC–Lys surface
(G–I). Data represent the mean percentage ± SD for n = 4. Scale bars represent 200 µm.
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Neurons were labeled with specific markers for 1 (A–C), 2 (D–F), and 3 (G–I) weeks in culture. Neurons expressing βIII 
tubulin are green, cells expressing NGN2 are red, and all the nuclei are counterstained blue by DAPI in all panels. The 
total population of cells was quantified for each experimental condition with CNC (A,D,G), PDL (B,E,H), and CNC–Lys 
(C,F,I). The percentage of neurons was quantified across 3 weeks on the CNC, PDL, and CNC–Lys surfaces (J). Motor 
neuron marker NGN2 was minimally expressed on the CNC (A–C) and PDL surfaces (D–F), and almost none on the CNC–
Lys surface (G–I). * p < 0.05, ** p < 0.01, *** p < 0.001 compared to the results of week 1 (WK1) of the same substratum. # p 
< 0.05 and ### p < 0.001 compared to the results of week 2 (WK2) of the same substratum. $$$ p < 0.001 compared to the 
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Figure 6. Representative fluorescent images for motor neurons differentiated on the CNC, PDL, and CNC–Lys surfaces.
Neurons were labeled with specific markers for 1 (A–C), 2 (D–F), and 3 (G–I) weeks in culture. Neurons expressing βIII
tubulin are green, cells expressing NGN2 are red, and all the nuclei are counterstained blue by DAPI in all panels. The total
population of cells was quantified for each experimental condition with CNC (A,D,G), PDL (B,E,H), and CNC–Lys (C,F,I).
The percentage of neurons was quantified across 3 weeks on the CNC, PDL, and CNC–Lys surfaces (J). Motor neuron
marker NGN2 was minimally expressed on the CNC (A–C) and PDL surfaces (D–F), and almost none on the CNC–Lys
surface (G–I). * p < 0.05, ** p < 0.01, *** p < 0.001 compared to the results of week 1 (WK1) of the same substratum. # p < 0.05
and ### p < 0.001 compared to the results of week 2 (WK2) of the same substratum. $$$ p < 0.001 compared to the CNC
substratum at the same time point. &&& p < 0.001 compared to the PDL substratum at the same time point. The difference
between different conditions and times was tested by a two-way analysis of variance (ANOVA), followed by post-hoc
analysis (Tukey’s test). Data represent the mean percentage ± SD for n = 4. Scale bars represent 200 µm.
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2.4. Electrophysiological Activities of Neurons Differentiated on CNC–Lys

The cells that were maintained in differentiating medium and cultured on CNC–,
PDL–, and CNC–Lys-coated MEA dishes for 300 s by weeks 1, 2, and 3 (Figure 7) were
used for recording the electrical field potential. The cells exhibited extracellular local
field potentials (spontaneous activity) captured by the MEA amplifier and were duly
recorded (Figure S4). After one week of differentiation, the cells cultured on the CNC–
Lys material exhibited spontaneous firing at 0.25 spike/sec/neuron (Figure 7D), and by
the end of the second week, it increased to 1 spike/sec/neuron (Figure 7E) associated
with occasional bursts from the neuronal networks. Additionally, we observed that the
cells differentiated on CNC did not exhibit any activity in weeks 1 or 2 (Figure 7A,B).
It was observed that although cells differentiated to appear morphologically as neurons
were present on the detection field of most of the electrodes, not all cells were found to
be active or to fire during recording. However, by the end of the third week in culture
on CNC–Lys, the network of cells with neuronal morphology that could be visualized
under the microscope while recording showed a high level of spontaneous activity at
200 spike/sec/cell (Figure 7F,G). Even by the end of week 3, cells on CNC did not exhibit
any detectable firing (Figure 7C,G). The level of network activity indicated by an average
number of spikes increased with the duration of culture (Figure 7G), consistent with the
increased percentage of glutamatergic neuronal population in the culture over time, as
demonstrated in the immunocytochemical results (Figure 4I,J). Cells that appeared to be
neurons on the CNC and PDL surfaces showed much less activity compared to CNC–Lys
(Figure 7G). The spontaneous activities of the cells cultured on these surfaces seem to be
consistent with the cell attachment and patterns of the neuronal differentiation revealed
by cell count and immunostaining (Figures 3M and 4J). Since the cells were plated and
cultured on MEA dishes similar to how they were plated and cultured on dishes in other
conditions, we assume that the differentiation of cells into neurons on the MEA would be
very similar to that of the differentiation pattern of cells on the dishes.
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Figure 7. Time-dependent increase in spontaneous electrical signals from cells differentiated on the CNC, PDL, and
CNC–Lys surfaces across 3 weeks. (A–C) Representation of the population spikes (5 min) generated at each second by
neurons differentiated on the CNC–Lys or CNC (control) surfaces in MEA dishes for weeks 1 (A), 2 (B), and 3 (C) in vitro.
(D–F) Representation of the population spikes (5 min) generated at each second by neurons differentiated on the CNC–Lys
or PDL (control) surfaces in MEA dishes for weeks 1 (D), 2 (E), and 3 (F) in vitro. The cumulative spike rates (Hz) from
the neurons in (CNC, PDL, and CNC–Lys) the entire dish across 300 sec is illustrated in (G). The spontaneous activities of
the neurons on the CNC surface were much lower than those on the PDL and CNC–Lys surfaces throughout the 3 weeks.
The spontaneous activity increased dramatically over time on the PDL and CNC–Lys surfaces. *** p < 0.001 compared to
the results of week 1 (WK1) of the same substratum. ### p < 0.001 compared to the results of week 2 (WK2) of the same
substratum. $$$ p < 0.001 compared to the CNC substratum at the same time point. &&& p < 0.001 compared to the PDL
substratum at the same time point. The difference between different conditions and time was tested by a two-way analysis
of variance (ANOVA) followed by post-hoc analysis (Tukey’s test). Data represent mean percentage ± SD for n = 3.
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3. Discussion

We newly synthesized CNC–Lys material and fully characterized its morphology
and chemical bonding using the SEM, AFM, FT–IR, TGA, and 1H–NMR spectroscopic
techniques to demonstrate the successful attachment of lysine with CNC. Our cell culture
data indicated that CNC–Lys is an excellent surface for neuronal differentiation from
rNSCs in respect to its surface property, cell adhesion, cytotoxicity, and promotion of rNSC
differentiation toward neuronal lineage.

SEM imaging (Figure 1A) revealed a cauliflower-shaped structure observed on the
surface of the material due to the attachment of lysine to the CNC, indicating the successful
attachment of lysine molecules to the CNC. The fibrous structure of CNC–Lys observed in
the SEM images confirmed that our material is suitable for mimicking the ECM environ-
ment for cell differentiation. The roughness of the material is crucial, as it determines the
adhesive behavior of the material on the substrate during the cell culture experiment [63].
As shown in the AFM images (Figure 1B,D), some fibrous protrusions were observed on
the surface of CNC–Lys, which were responsible for the increased roughness of the sample.
The roughness of CNC–Lys successfully facilitated the adhesion of cells on the substrate
during the cell culture experiment.

The FT–IR study further verified the attachment of lysine on the CNC surface. A
broad peak at around 3400 cm−1 and a small peak at 2860 cm−1, seen in both the CNC
and CNC–Lys spectra (Figure 1C), were due to O-H and C-H bond stretching, respectively.
However, in the CNC spectrum (Figure 1C–a,b), the peak due to N-H stretching coming
from the lysine structure was not distinguishable because of the overlapping of the peak
with the O-H stretching peak. The O-H bending mode observed in CNC at 1620 cm−1

was shifted to 1600 cm−1 in CNC–Lys, which was broad and of high intensity due to the
overlapping of N-H bending, especially from the primary amine present in lysine. Bands
at 1300–1420 cm−1, present in both spectra, were due to the deformation vibration of
the C-H group present in CNC and lysine. Sim ilarly, the peaks at 900–1110 cm−1 were
assigned to the –C–O– group of the secondary alcohol and ether functions present in the
CNC backbone. A small absorption peak found at 890 cm−1 was the characteristic of
β-glycosidic linkage between glucose units of CNC [64]. The two extra small peaks at 1240
and 795 cm−1, belonging to C-N stretching and –NH2 wagging, respectively, as shown in
the CNC–Lys spectrum (Figure 1C–a), further support the attachment of lysine on the CNC
surface [65].

The modification of CNC with lysine was also studied by the chemical shift observed
in the 1H–NMR spectrum (Figure 1E). The chemical shift, ranging from 2.9 to 4.4 ppm,
was due to the presence of proton on the CNC backbone. Additionally, some proton peaks
originating from lysine overlapped with the peaks from the CNC backbone. The proton
peaks ranging from 1.0 to 1.8 ppm were also from lysine. The amine peak present in the
tail of lysine was observed at 1.7 ppm, overlapped with the methylene proton peak of
lysine, as shown in Figure 1E. After analyzing the peaks in the NMR spectrum, it was
confirmed that CNC–Lys was perfectly constructed during synthesis. By analyzing the
weight loss of the sample with respect to temperature, the constituents of the materials
could be predicted. In the TGA plot (Figure 1F), a small drop of weight observed at the
beginning was ascribed to be the evaporation of adsorbed water molecules present in
the sample. The pronounced weight loss that occurred in the second step at 250 ◦C was
mainly due to the degradation of CNC [38,66,67]. The lysine was thermally stable up to
250 ◦C, but started to degrade beyond this temperature. The lysine moiety of the CNC–Lys
sample was completely degraded in the third step (at 430 ◦C) with a weight loss of 10%.
In the last step, complete evaporation of char formed by the decomposition of CNC–Lys
was accompanied by a 10% weight loss at 810 ◦C. The crystallinity of nanocellulose is one
of the important properties for its accessibility; however, it can be affected by chemical
modifications [60]. As shown in Figure S1, a decrease in the intensity of each crystalline
peak of nanocellulose was observed after the chemical modification. For example, the
intensity of the 002 crystalline peak at 23.4◦ was less for modified nanocellulose (CNC–Lys)
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(Figure S1, purple spectrum) compared to that of pure CNC (Figure S1, red spectrum).
However, the above results of the NSC differentiation show that the retained crystallinity
of the modified nanocellulose (CNC–Lys), even after the chemical modification, was good
enough to mimic the microenvironment of EMC and enhance the differentiation of NSCs
into neurons.

Cell adhesion is a major aspect in an in vitro cell culture that determines the final fate of
cells. The attachment of cells to surface materials involves the presence of a positive charge,
roughness, and stiffness of the material constituting the substratum. Courtenay et al. sug-
gested that cellulose material requires the addition of positive molecules or modification
using chemicals to enhance the attachment of cells [68]. Our work showed that CNC
coupled with lysine molecules provides better attachment of cells by the scheme illus-
trated in Figures 2C and 8, probably due to both the roughness and presence of positive
charges. The roughness of the material plays a crucial role in the attachment of cells to the
surface [63]. The AFM analysis results (Figure 1C,D) revealed that the CNC–Lys surface
was rough enough to allow attachment of cells for its proliferation and differentiation.
Furthermore, material stiffness has also been a factor in the attachment of cells to biological
materials. The usual stiffness of CNC is between 110 and 220 Pa [69]. Earlier studies have
confirmed that the minimum stiffness of cellulose needs to be higher than 100 Pa for NSCs
to grow and differentiate [70]. In our work, the cells attached and differentiated well on
the CNC–Lys surface, confirming that the roughness and stiffness of the cellulose orient
stem cells toward differentiation.

Cell affinity for a biomaterial is governed by cell–matrix interactions, usually resulting
from specific recognition of cell surface adhesion receptors such as integrin by the extracel-
lular matrix. Naturally occurring cellulose does not have integrin-binding sites to facilitate
cell attachment [46,71,72]. Therefore, modification of the surface is necessary to enhance
surface attachment and cell–scaffold interactions for cells to attach and proceed to differ-
entiate [73,74]. The fibrous structure of CNC observed during SEM imaging (Figure 1A),
along with coupled lysine molecules adding the positive charges to the CNC material,
revealed by the FT–IR and NMR analysis indeed promoted cell–ECM interactions.

The immunofluorescence data revealed that 35% and 23.75% of total plated rN-
SCs expressed βIII tubulin and GFAP, respectively, after one week in culture on CNC–
Lys (Figure 3C,J), and MAP2–positive cells with mature neuronal lineage reached 20%
(Figures 3M and S3). This is in agreement with the earlier reports by Stabenfeldt et al.,
who showed that primary murine neurospheres cultured on methylcellulose scaffolds
coupled with laminin enhance rNSC survival and maturation and promote neuronal dif-
ferentiation [75]. In contrast, cells cultured on CNC revealed a different pattern with
regard to the differentiated cell counts. The week 1 results revealed only 15% of neuronal
differentiation and 3% of the astrocytic lineage of the total cells plated. The first week’s
results suggest that stem cells differentiated well on the CNC–Lys surface and showed
more mature neurons compared to the CNC surface, which could be a result of more
cells being attached to the CNC–Lys substratum than the CNC substratum (Table 1). In
the week 2 cultures, we did not observe any cells co–expressing both βIII tubulin and
GFAP, but 60.58% of the differentiated cells were βIII tubulin–positive on the CNC–Lys
surface (Figure 3F,K). Additionally, 34% of the differentiated cells expressed mature neuron
marker MAP2 (Figures 3M and S3). The rate of neuronal differentiation was higher in
week 2 compared to week 1. Then, the enhancement of differentiation slowed down during
week 3, suggested by only a 6% increase in the number of neurons on CNC–Lys over week
2 differentiation (Figure 3I,L). On the CNC surface, the neuronal cell count could only reach
a maximum of 21% by the end of week 3, much lower than that on the PDL and CNC–Lys
surfaces (Figure 3G,L), further proving that lysine molecules attaching to CNC does aid
in the differentiation of rNSCs and that the several lysines with positive charges present
in the PDL might have contributed to the successful neuron differentiation observed on
the PDL surface as well. Neurons differentiated from stem cells exhibited dense neurite
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processes on the CNC–Lys surface (Figure 2E and Figure S3), consistent with the report
that cellulose favored neurite outgrowth of neuroblastoma cells [76].

Glial fibrillary acidic protein (GFAP) is an astrocytic marker protein expressed by
astrocytes. Surface stiffness likely plays a role in the expression of GFAP. The cells, once
attached to the surface, may increase the synthesis of the GFAP protein in response to
increased surface stiffness. Fuchs and Weber in 1994 reported that the upregulation of
intermediate filament GFAP is due to the adhered cells sensing the strength of the sur-
face. Later work by Min et al. in 2015 suggested that GFAP expression increased due to
astrocytes sensing the stiffness of the cellulose acetate nanofiber [77]. The most interesting
finding in our current work is that NSC differentiation toward astrocytic lineage decreased
considerably by the end of week 3 (Figure 3I,L)—the astrocyte count was 28% in week 1,
and by week 3, it dropped to 7.4% on the CNC–Lys surface. In contrast, the percentage of
astrocytes on the PDL surface remained unchanged (Figure 3B,E,H,L). These results reveal
that the nanocellulose material promotes neuronal rather than astrocytic differentiation
(Figure 3L). Moon et al. in 2011 determined that CNC (BGB ultra cellulose nanocrystals No.
3912.90) exhibits a tensile strength of 7.5–7.7 GPa, elastic modulus in the axial direction
of 110–220 GPa, and elastic modulus in the transverse direction of 10–50 GPa [69]. The
same material was used in this current study, with less stiffness than that of cellulose
acetate nanofiber used by Min et al. [77]. It is possible that the CNC material we used here
lacked the required stiffness or elasticity to promote GFAP expression, or the poor attach-
ment of cells onto the CNC surface could have also contributed to fewer cells exhibiting
GFAP staining.

Immunostaining with specific marker proteins is an established method for identifying
different cell types, such as glutamate for excitatory neurons and GABA for inhibitory
neurons and NGN2 for motor neurons. Therefore, we chose to evaluate the endogenous
expression of proteins related to glutamate, GABA, and motor neurons using specific
antibodies. The major excitatory neurotransmitter glutamate acts both as an amino acid and
a neurotransmitter. Glutamate receptors are found throughout the brain and spinal cord in
neurons and glia. Glutamate has a large array of normal physiological functions, including
glutamate synapse control or the modulation of neuronal excitability [78]. VGLUT1 and
VGLUT2 are the most abundant isoforms expressed in glutamatergic neurons in the cortex,
hippocampus, thalamus, and cerebellar cortex [79]. Motor neurons and GABA neurons
are also widely present in the CNS. GABAergic neurons are the major inhibitory neurons
in the CNS [80]. L–Glutamic acid decarboxylase (GAD) is the major enzyme converting
glutamate into GABA. NGN2 plays a unique and critical role in determining motor neuron
cell–type identity [81]. Our work revealed that most of the neurons matured and they
were mostly glutamatergic by the end of week 3 (Figure 4I,J), indicated by a marker for
endogenous expression of VGLUT. Notably, the rNSCs differentiated into neurons on
CNC–Lys did not express any significant levels of GAD (Figure 5C,F,I,J), suggesting that
CNC–Lys promoted the differentiation of glutamatergic neurons rather than GABAergic
neurons. Similarly, the neurons differentiated on the CNC (Figure 5A,D,G,J) and PDL
(Figure 5B,E,H,J) surfaces showed much lower expression of GAD compared to VGLUT.
Only a few cells expressed NGN2 on CNC–Lys (Figure 6C,F,I,J), and slightly more cells did
so on the CNC (Figure 6A,D,G,J) and PDL (Figure 6B,E,H,J) surfaces in all time points in
the culture. This result indicates that rNSCs differentiated more toward the glutamatergic
lineage rather than the GABAergic or motor neuron cell types, which is probably due to
the surface characteristics that helped neurons to orient toward the glutamatergic type.
The percentage of neurons that were glutamatergic on CNC–Lys was significantly higher
compared to on CNC. Interestingly, those neurons on CNC produced the most motor
neuron phenotype, reaching a maximum of 4.8% by the end of week 3 (Figure 6G). It
remains to be seen whether the change in surface properties/characteristics would lead to
the shifting of rNSC differentiation into specific type(s) of neurons. Apart from neurons
differentiating across different time periods, we also observed that the surface played
a role in promoting rNSCs to differentiate into neurons. Among all three surfaces we
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used, CNC–Lys promoted higher neuronal differentiation and maturation of neurons, and
differentiated into the glutamatergic neuronal phenotype.

To characterize the electrophysiological activity of the neural stem cells undergoing
differentiation in vitro longitudinally, non-invasive studies play a crucial role in the study
of neuronal dynamics. This is a highly complex process that depends upon a large num-
ber of interrelated dynamic factors regulating neuronal excitability [82]. Van Pelt et al.
suggested that the study of neuronal networks in vitro is conceivable, because the func-
tional characteristics of ex vivo neuronal networks are similar to those observed in vivo in
terms of connectivity, the inhibition/excitation ratio, and electrophysiological and electrical
stimuli [83].

In the current study, we evaluated the spontaneous activity of NSC-derived NPCs
undergoing differentiation on CNC–, PDL–, and CNC–Lys–coated MEA recording dishes.
This is the first report of spontaneous electrical activity recorded from neural stem cells
differentiating on a CNC–Lys surface for three weeks. Spontaneous activity is a common
characteristic of developing neuronal networks both in vivo and in vitro, which is believed
to play an important role in network development [83–87]. The recurrent synchronous
electrophysiological activity in the developing neurons in the nervous system is similar
to that exhibited by neuronal cultures in vitro [88,89]. Our immunocytochemical results
revealed differentiated neuronal populations (Figure 4C,F,I,L) that coincide with the spon-
taneous electrical activities from the electrophysiological recordings (population spikes,
Figure 7A–C). Earlier work by Czarnecki et al. in 2012 reported spontaneous burst activity
in a primary cortical network in vitro [90]. Most of the neural cultures lead toward the
formation or differentiation of a heterogeneous mixture of neurons unless generations of
pure neuronal cultures such as GABAergic and glutamatergic neurons are produced [91].
Here, only recorded data from electrodes with distinct long-term stable electrophysiolog-
ical activity were analyzed and included in the statistical analysis. Interestingly, it was
observed that not all of the cells exhibited a regular or synchronous pattern of activity.
The electrical activity recorded increased (Figure 7G) across the three weeks, concurrent
with increased percentages of cells expressing neuronal markers from weeks one to three.
Earlier studies have reported that MEAs also help in the identification of neuronal subtypes
such as glutamatergic and GABAergic derived from mouse embryonic stem cells [92,93] by
identifying their excitatory or inhibitory influence. The increased number of glutamatergic
neurons or enhanced expression of vesicular glutamate transporters 1 and 2 in the cultured
neurons over time may contribute to the increase in the electrical activity exhibited by
the differentiated neurons on the MEA dishes, more so on the CNC–Lys surface, since
relatively more cells differentiated into neurons on this surface. Earlier work by Ito et al.
using MEAs observed an increase in electrical activity in cultured rat cortical neurons
forming a network over three weeks in a culture similar to our study [52].

The lower number of astrocytes on the CNC–Lys surface also supports that with a
longer duration of culture in vitro on the CNC–Lys surface, stem cells differentiate more
into neurons that may facilitate network formation (Figures S3 and 3I). The average of all
the spikes (5 min/dish, three dishes per condition) recorded from the neurons on the CNC–
Lys surface was approximately 13,500 spikes compared to 4653 spikes on PDL and a mere
seven spikes on the CNC-coated surface when recorded at the end of week 3 (Figure 7G),
consistent with the differentiation pattern of cell types on different surfaces. The lysine-
bound CNC–Lys did indeed play a crucial role in cell attachment and differentiation with
profuse network formation (Figure 4I), leading to increased electrical activity from the
electrophysiology data (Figures 3I, 7C, and S4). Since PDL also provides lysine to the
substratum, it appears that the combination of cellulose roughness and the positive charges
from lysine together could have contributed to the increased neuronal differentiation we
observed on the CNC–Lys culture surface. Earlier work by Muramoto et al. established that
an increased number of synapses could increase the frequency of spontaneous activity [94].
Therefore, the neuronal network formed on the CNC–Lys surface (Figure S4) might have
led to enhanced synchronous activity.
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4. Materials and Methods
4.1. Reagents and Chemicals

All of the chemicals were analytical grade reagents and used as received, unless oth-
erwise specified. BGB Ultra cellulose nanocrystal (CNC) (HS no. 3912.90) was obtained
from Blue Goose Biorefineries Inc. (Saskatoon, SK, Canada). L-lysine and PDL (Cat no.
P6407) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Epichlorohydrin (EPH)
was obtained from Acros Organics (Pittsburgh, PA, USA). Sodium hydroxide (NaOH) and
isopropanol (IPA) were obtained from Fisher Scientific (Pittsburgh, PA, USA). Deionized
(DI) water was used to prepare all solutions. Ultra-high purity nitrogen (N2) was obtained
from NLR Welding Company, (North Little Rock, AR, USA). Dulbecco’s DPBS with and
without Ca2+ and Mg2+, 4% paraformaldehyde, primary antibody to GFAP, and DAPI
were purchased from Sigma-Aldrich. Cell Start, DMEM/F-12 medium, StemPro neural
supplement, neurobasal medium, TrypLE, B−27, glutamine, glutamax, and Knockout
serum replacement (KSR®) were purchased from Gibco (Carlsbad, CA, USA). EGF and
FGF−2 were purchased from Alomone (Jerusalem, Israel) and noggin from Peprotech
(PeproTech, NJ, USA). Mouse anti-β-tubulin-III was purchased from Developmental Stud-
ies Hybridoma Bank (DSHB) (Hybridoma product E7 was deposited to the DSHB by
Klymkowsky, M.). Primary antibodies to MAP2, VGLUT1/2, and NGN2 were from Cell
Signaling (Danvers, MA, USA). The primary antibody to GAD65 Hybridoma Product was
deposited to the DSHB by Gottlieb, D.I.

4.2. Preparation of the Nanocellulose Surface (CNC–Lys)

The procedure for the synthesis of the CNC–Lys substrate was adopted from previous
literature with minor modifications [95,96]. First, 1 g (6.17 mmol) of CNC (12.5 mL of 8%
w/w) was taken in a 100 mL round bottom flask. Then, 30 mL of IPA was added and
stirred under N2 gas. After 30 min, 0.247 g (6.17 mmol) of NaOH was added and stirred
at 40 ◦C for another 30 min. Then, 1.45 mL (18.49 mmol) of EPH was added and stirred for
4 h. After 4 h, 0.82 mL (6.17 mmol) of L–lysine was added and stirred overnight at 40 ◦C
under N2 gas. Since EPH also acts as a cross–linking agent, some of the added EPH might
have cross-linked cellulose units [97]. The use of excess EPH molecules ensured that EPH
was reacted to cellulose primarily via the –C6–OH group to produce epoxy cellulose ether.
Then, an amination reaction occurred between the amine group of L–lysine and epoxy
cellulose ether to produce CNC–Lys [95,96]. Finally, the resultant product obtained was
washed with excess IPA and DI water to remove unreacted reagents and dried in a vacuum
oven. A schematic representation of the synthesis of CNC–Lys is shown in Figure 8.

4.3. Characterization of CNC–Lys

The surface morphology of CNC–Lys was studied using JEOL (JSM 7000F Joel,
Peabody, MA, USA) SEM. The imaging was performed at a 5 kV applied potential and a
64 µA applied current. The roughness of CNC–Lys was measured using the Bruker dimen-
sion icon AFM technique (Billerica, MA, USA). The thin film of CNC–Lys was deposited
on a 1 × 1 cm2 glass substrate by a spin coating method. AFM imaging of the thin film
was performed using the following scan parameters: Scan size (10.0 µm), aspect ratio
(1.00), scan rate (0.250 Hz), and samples/line (256). FT–IR analysis was completed using a
Nicolet 6700 Thermo Scientific FT–IR spectrometer (Waltham, MA, USA) equipped with a
DLaTGS detector and a XT–KBr beam splitter. KBr pellets were made for the FT–IR analysis
and the spectra were recorded in the range of 400–4000 cm−1. The 1H-NMR spectrum
of CNC–Lys was obtained using a Jeol 400 MHz NMR instrument (Peabody, MA, USA).
The spectrum was collected at 25 ◦C, and the chemical shifts are in ppm (δ) relative to
tetramethylsilane (TMS) as an external standard, unless otherwise stated. A pinch of the
sample was taken in an NMR tube and D2O solvent was used to analyze the 1H-NMR.
TGA was performed with a Shimadzu DTG-50 thermal analyzer (Columbia, MD, USA)
under an N2 atmosphere. CNC–Lys sample weighing 3–4 mg was heated from 25 to 850 ◦C
at a heating rate of 5 ◦C/min. The samples were tested in triplicates to check the accuracy
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of the data. The crystallinity of the CNC–Lys and pure CNC samples were studied using
the XRD technique, performed in the Bruker D8 Discover instrument (Billerica, MA, USA).
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4.4. Culture of Rat Neural Stem Cells (rNSCs) and Their Propagation and Passage

Rat embryonic (E14) brains were purchased from BrainBits, LLC (Cat#SKU: SDCCX,
Springfield, IL, USA), and the tissue was dissociated according to the vendor’s proto-
col. The cells were then plated in a T-75 cm2 flask pre-coated with CELLStart working
solution, as per the manufacturer’s instructions, and placed at 37 ◦C in a humidified at-
mosphere of 5% CO2 for 1 h. The cells were plated at a density of 1 million per T-75 cm2

flask. The cells were maintained undifferentiated in StemPro NSC serum-free medium
(Grand Island, NY, USA) with DMEM/F12 medium supplemented with 2% StemPro neu-
ral supplement, glutamine (100 mM), glutamax (100 mM), basic FGF, and EGF at 20 ng/mL
each. The culture medium was changed every three days and observation was made
every day until the cells attained 70–90% confluency. The cells were released from the
surface using pre-warmed TrypLE treatment for 30 s at 37 ◦C and were mechanically
dissociated to achieve a single cell suspension. The number of viable cells was counted by
a trypan blue exclusion assay in a hemocytometer (Corning, Steuben County, NY, USA).
The cells were re-plated in new culture flasks at a density of 1 × 106 cells/mL with fresh
culture medium added to with 50 ng/mL of noggin (Peprotech), BMP (bone morphogenetic
protein) receptor inhibitors, to aid the expansion of stem cells and inhibit astrocytic differen-
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tiation [98]. The cells were collected when they were 75–90% confluent, as described above,
and considered as “Passage 2”, which were used for all of our experiments to minimize
experimental variation.

4.5. Preparation of Culture Surfaces

For plating the cells, 24–well glass-bottomed plates were used. The CNC–Lys suspen-
sion was prepared at a concentration of 8% w/v in 100% ethanol. Prior to coating the glass
surface with the CNC–Lys dispersion, the CNC–Lys suspension was subjected to sonication
for 3 min to disperse the cellulose clumps. Then, 100 µL of the CNC–Lys suspension was
added to each well and allowed to air dry, after which they were exposed to ultraviolet light
overnight to kill any bacteria harbored on the surfaces. Using the same procedure, a plain
CNC–coated substrate was prepared and used as a comparator. Similarly, a PDL-coated
surface was prepared and used as another comparator. PDL is a polymer of lysine, which
has been routinely used in cell cultures [99]. The PDL-coated surface was prepared by
incubating the plates with 80 µg/mL of the PDL solution in borate buffer overnight at room
temperature. The next day, PDL-coated wells were washed with sterile filtered nanopure
water to remove unbound PDL and allowed to air dry in the hood.

4.6. Differentiation of Neural Progenitor Cells (NPCs)

To determine the phenotypes of differentiated cells and the rate of differentiation of
rNSCs on the CNC, PDL, and CNC–Lys surfaces, the proportion of each cell type was
measured. Briefly, ~10,000 cells/well of NPCs were plated onto individual CNC-, PDL-,
and CNC–Lys-coated 24–well plates. The cells were maintained in maintenance medium
(complete StemPro® medium, Grand Island, NY, USA) for one day before being switched
to differentiation medium. The differentiation medium consisted of neurobasal medium,
2% B-27, 100 mM glutamine, 100 mM glutamax, and 1% KSR®. Cultures were maintained
at 37 ◦C with 5% CO2 for one, two, and three weeks for most of the cells to complete
neuronal differentiation. At the end of the culture, the cells were fixed and processed for
immunocytochemical identification of neurons and astrocytes using appropriate antibodies.

4.7. Scanning Electron Microscopy (SEM) for Morphological Examination of Differentiated rNSCs
on the CNC–Lys Surface

Rat NSCs differentiated on the CNC–Lys surface were fixed overnight in 2.5% glu-
taraldehyde prepared in 1.5% paraformaldehyde in phosphate-buffered saline (PBS) (pH 7.2).
The cells were washed with PBS thrice each time for 3 min, and then post-fixed in 2% osmium
tetroxide in DI water for 15 min. The cells were rinsed three times with DI water for 5 min
each, then dehydrated in a graded series of ethanol solutions, followed by complete de-
hydration to critical point dry (CPD). The following day, the samples were sputter-coated
(EMS 150T ES) with a thin layer (7 nm) of gold to allow surface conductivity. Then, SEM
imaging was performed using a HITACHI SU3500 (Santa Clara, CA, USA) equipped with
a cold-field emission gun at an acceleration voltage of 5 kV.

4.8. Immunostaining and Imaging

Routine immunocytochemistry was performed as follows: Cultures were fixed in
4% paraformaldehyde for 12 min. After washing three times (3 min each) with PBS, the
non-specific binding of the antibodies was blocked using tween-20 PBS (PBST) block-
ing buffer (with Glycine and Bovine Serum Albumin). The cells were then incubated
overnight at 4 ◦C with a primary antibody solution prepared in PBS with 3% goat serum
and 0.5% Triton X-100 for permeabilization. The primary antibodies used were mouse
anti-β-tubulin-III for neurons and mouse anti-GAD65 for GABAergic neurons (both from
DSHB), as well as rabbit anti-GFAP antibody (Sigma) for astrocytes, rabbit anti-MAPII
antibody for mature neurons, rabbit anti-VGLUT1/2 for glutamatergic neurons, and rabbit
anti- NGN2 for motor neurons (all from Cell Signaling). The next day, after washing out
the unbound primary antibodies with PBS three times, appropriate secondary antibodies
were added—AlexaFluor488 goat-anti-mouse and AlexaFluor594 goat-anti-rabbit (Invit-
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rogen). Finally, the cells were stained with DAPI. The appropriately stained cells were
visualized by fluorescence microscopy using BioTekCytation-5 Bioimager/Plate Reader
(Winooski, VT, USA). Gen−5 analysis software (3.08 BioTek, Winooski, VT, USA) was used
to count and quantify the different cell populations, unbiased, based on fluorescence.

4.9. Plating of Cells in CNC-, PDL-, and CNC–Lys-Coated MEA Dishes

A commercially available MEA system (Multi-Channel Systems GmbH, Reutlingen,
Germany) was used to detect the electrical activity of the differentiated cells weekly across
three weeks. The MEAs were sterilized according to the manufacturer’s recommendation.
Each dish used was coated with 100 µL of CNC, CNC–Lys, or PDL as mentioned before.
The rNSCs (passage 2) were plated on CNC–, CNC–Lys–, and PDL–coated MEA dishes
containing complete StemPro medium and maintained in an incubator at 37 ◦C with 5%
CO2. On the following day, the medium was changed to a neuronal differentiation medium
with KSR®. Two-thirds of the medium was changed every third day to allow cells to
differentiate into neurons and develop electrophysiological activity, and the cultures were
maintained for three weeks.

4.10. Recording from the MEA Dishes

MEAs for in vitro applications were used. The MEA1060 head stage is composed
of 60 titanium nitride microelectrodes arranged in an 8 × 8 layout grid embedded in a
transparent glass substrate (59 recording electrodes, one internal reference electrode). The
diameter of each electrode is 30 µm with an inter-electrode distance of 200 µm holding
an impedance of <100 kΩ. The extracellular voltage transients induced by current flow
through membranes of neurons were measured as local field potentials from spontaneous
neuronal activity via the 60 microelectrodes. During the measurement, the MEA dish was
taken out of the incubator and placed on the head stage of the recording system preheated
to 37 ◦C and equilibrated for 2–5 min. To eliminate evaporation and contamination during
the experiment, the MEA culture dishes were sealed with a removable semi-permeable
membrane cover (ALA MEA–MEM–SHEET) secured with a glass ring (ALA Scientific
Instruments Inc, Farmingdale, NY, USA) based on the method used in earlier work by
Potter et al. [100]. The temperature of the head stage was controlled with an external
heater unit (TC02, Multi-Channel Systems GmbH, Reutlingen, Germany) set to a constant
temperature of 37 ◦C. Field potential streams were acquired through the amplification
system from electrodes with a sampling rate of 100 kHz using MC Rack v3.7 software
(Multi-Channel Systems GmbH, Reutlingen, Germany) digitized with a 60-channel A/D
converter at a rate of 20 kHz. The number of spikes per minute and the spike rate was
determined at 5 min intervals. The recordings were carried out without changing the
medium in the MEA dishes. After the completion of the recordings, the medium was
changed and the MEA dish with differentiated cells was returned to the incubator to be
measured again at later time points to maintain consistency and reliability of the data and
allow for self-comparison. The data from the recording exhibiting noise with asynchronous
spike activity were identified and removed from the analysis.

4.11. Statistical Analysis

Six samples were set up for each condition in every experiment, and each experiment
was repeated thrice. The data represent the mean ± SD for n = 6, analyzed using Microsoft
Excel software (10, Microsoft, Redmond, WA, USA). The statistical significance of the
differences between the different conditions and times were tested by two-way analysis of
variance (ANOVA), followed by post–hoc analysis (Tukey’s test) using SPSS 24 software
(24, IBM, Armonk, NY, USA), and p ≤ 0.05 was considered statistically significant.

5. Conclusions

Our findings showed that compared to the three surfaces that we studied as substrata
for the differentiation of NSCs, the CNC–Lys surface maximally supported the attachment
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and survival of rNSCs, allowing their differentiation into predominantly neurons. Im-
portantly, CNC–Lys not only enhanced the maturity of neurons across the three weeks of
culture, but also helped in driving the stem cells toward the formation of glutamatergic
neurons that did not express much GABA or motor neuron markers. The differentiated
cells formed connections and elicited electrical signals, confirmed by electrophysiolog-
ical activity. In follow-up work, in vivo implantation of the differentiated neurons (on
CNC–Lys) to explore their survivability is warranted, along with the profile of the genes
expressed by the neurons differentiated on the CNC–Lys surface, to elucidate the cellular
mechanism(s) involved in the enhanced neuronal differentiation observed on the CNC–Lys
surface in the present study. In the future, we will study the modification efficiency of CNC
with lysine by using varying amounts of EPH and the nanoparticle size of the modified
materials. Then, we will use those surfaces to observe how the extent of CNC modification
will affect NSC differentiation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jfb12040064/s1, Figure S1: XRD spectra of samples CNC (red spectrum) and CNC–Lys
(purple spectrum), Figure S2: NSCs propagated well in cell culture showing the healthy, actively
proliferating NSCs in our culture condition at 3 weeks, Figure S3: Representative images of mature
neurons differentiated from rNSCs on CNC, and PDL and CNC–Lys surfaces. Neurons were labeled
with MAPII neuronal marker for 1 (A, B, C), 2 (D, E, F) and 3 (G, H, I) weeks in culture. G1 and
H1, I1 are images at higher magnification of cells cultured on CNC, PDL and CNC–Lys respectively.
Neurons expressing βIII tubulin are green; cells expressing MAPII are red; and all the nuclei are
counterstained blue by DAPI in all panels. The total population of cells were quantified for each
experimental condition with CNC (A, D, G); PDL (B, E, H) and CNC–Lys (C, F, I) surfaces. The
percentage of mature neurons was quantified (M) across 3 weeks on CNC, PDL and CNC–Lys
surfaces. Scale bars represent 200 µm, Figure S4: Representative images of Local filed potentials
of differentiated neurons from rNSCs on CNC, PDL and PDL and CNC–Lys surfaces show high
frequency oscillations between (10–100 Hz) in vitro. Images acquired from 59 electrodes (including
the reference electrode) from an MEA dish with recorded data. Representative phase contrast images
(A, B, E, I: ×100 magnification) show NSCs differentiating post plating. The cells attached well
and were nearby or in direct contact with the electrodes in the MEA chamber. (A,B,I) Filtered
signals show extracellular local field potentials (spontaneous activity) on CNC (B), PDL (F) and
CNC–Lys (J) coated surfaces with low pass filter cutoff frequency set at 100 Hz. Each square
comprises the entire 300 s registration with a 50 ± 5 µV interval. (C, G, K) Representative trace on
an expanded time scale showing characteristic extracellular local field potentials from the neurons
differentiated on CNC (C), PDL (G) and CNC–Lys (K) coated surface. (D, H, L) Analysis of the data
using Multi Channel Analyzer of the entire trace (300 s) reveals several peaks with varied frequencies
and amplitudes.
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