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A Metabolomics Approach to Screening for Autism Risk in the
Children’s Autism Metabolome Project
Alan M. Smith , Marvin R. Natowicz , Daniel Braas, Michael A. Ludwig, Denise M. Ney,
Elizabeth L. R. Donley, Robert E. Burrier, and David G. Amaral

Autism spectrum disorder (ASD) is biologically and behaviorally heterogeneous. Delayed diagnosis of ASD is common
and problematic. The complexity of ASD and the low sensitivity of available screening tools are key factors in delayed
diagnosis. Identification of biomarkers that reduce complexity through stratification into reliable subpopulations can
assist in earlier diagnosis, provide insight into the biology of ASD, and potentially suggest targeted interventions. Quanti-
tative metabolomic analysis was performed on plasma samples from 708 fasting children, aged 18 to 48 months, enrolled
in the Children’s Autism Metabolome Project (CAMP). The primary goal was to identify alterations in metabolism helpful
in stratifying ASD subjects into subpopulations with shared metabolic phenotypes (i.e., metabotypes). Metabotypes asso-
ciated with ASD were identified in a discovery set of 357 subjects. The reproducibility of the metabotypes was validated
in an independent replication set of 351 CAMP subjects. Thirty-four candidate metabotypes that differentiated subsets of
ASD from typically developing participants were identified with sensitivity of at least 5% and specificity greater than
95%. The 34 metabotypes formed six metabolic clusters based on ratios of either lactate or pyruvate, succinate, glycine,
ornithine, 4-hydroxyproline, or α-ketoglutarate with other metabolites. Optimization of a subset of new and previously
defined metabotypes into a screening battery resulted in 53% sensitivity (95% confidence interval [CI], 48%–57%) and
91% specificity (95% CI, 86%–94%). Thus, our metabolomic screening tool detects more than 50% of the autistic partici-
pants in the CAMP study. Further development of this metabolomic screening approach may facilitate earlier referral and
diagnosis of ASD and, ultimately, more targeted treatments. Autism Res 2020, 13: 1270–1285. © 2020 The Authors.
Autism Research published by International Society for Autism Research published by Wiley Periodicals LLC.

Lay Summary: Analysis of a selected set of metabolites in blood samples from children with autism and typically develop-
ing children identified reproducible differences in the metabolism of about half of the children with autism. Testing for
these differences in blood samples can be used to help screen children as young as 18 months for risk of autism that, in
turn, can facilitate earlier diagnoses. In addition, differences may lead to biological insights that produce more precise
treatment options. We are exploring other blood-based molecules to determine if still a higher percentage of children
with autism can be detected using this strategy.
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Introduction

Autism spectrum disorder (ASD) is a clinically and etiologi-
cally heterogeneous neurodevelopmental condition
[Jeste & Geschwind, 2014; Lord, Elsabbagh, Baird, &
Veenstra-Vanderweele, 2018]. The average age of ASD
diagnosis in the United States is over 4 years [Baio
et al., 2018; Hall-Lande, Esler, Hewitt, & Gunty, 2018] and
is based on behaviorally assessed alterations in social inter-
action and persistent repetitive behaviors or circumscribed

interests [American Psychiatric Association, 2013]. There is
substantial evidence that earlier diagnosis of ASD improves
outcomes by expediting behavioral therapy that leads to
higher cognitive and social function [Dawson et al., 2010;
Estes et al., 2015]. This has the added benefit of reducing
the financial and emotional burden on families and soci-
ety [Lavelle et al., 2014].

As a result of the high global population prevalence
(1%–2%) of ASD [Elsabbagh et al., 2012; Lyall
et al., 2017], its substantial impact on affected individuals
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and their families [Buescher, Cidav, Knapp, &
Mandell, 2014; Muskens, Velders, & Staal, 2017], and the
potential benefit of early intervention, screening for ASD
is recommend for children at 18 and 24 months during
routine pediatric visits. Additional assessment is carried
out if a child is deemed to be at high risk for ASD [Hyman
et al., 2020; Monteiro, Dempsey, Berry, Voigt, & Goin-
Kochel, 2019]. The American Academy of Pediatrics rec-
ommends that children who fail a screening test should
be referred to specialists who are trained to make a diag-
nosis of ASD [Hyman et al., 2020].

While parental questioning is widely used as a screen
for ASD, a number of studies have indicated that this
strategy is not optimal [Monteiro et al., 2019;
Zwaigenbaum & Maguire, 2019]. The Modified Checklist
for Autism in Toddlers with Follow-Up (M-CHAT/F), for
example, is reported to have a sensitivity of only 38.8%
and a positive predictive value of 14.6% [Guthrie
et al., 2019]. Thus, this widely used screening tool detects
less than 40% of children who will go on to attain a diag-
nosis of ASD, and less than 15% of the children who are
positive on the test actually end up with a diagnosis of
ASD. Failure to identify a child with risk for ASD during
screening will lead to delayed diagnosis [Monteiro
et al., 2019].

There has been intense interest in discovering easily
implementable biomarkers that support screening, diagno-
sis, and targeted intervention of ASD [McPartland, 2017;
Riedl, Gieger, Hauner, Daniel, & Linseisen, 2017]. Diverse
modalities of biomarkers have been investigated including
neuroimaging, EEG, eye tracking, pupillary reflex, and
transcriptomic, proteomic, and metabolomics markers
[Bridgemohan et al., 2019; Broek et al., 2014; Ruggeri,
Sarkans, Schumann, & Persico, 2014; Shen et al., 2019].
Potential metabolic biomarkers of ASD have been identi-
fied, mainly in blood or urine, using a variety of analytical
approaches that have suggested that a range of metabolic
processes are altered in ASD [De Angelis et al., 2013;
Glinton & Elsea, 2019; Lanz et al., 2013; Ming, Stein, Barnes,
Rhodes, & Guo, 2012; Ming et al., 2005; Orozco, Hertz-
Picciotto, Abbeduto, & Slupsky, 2019; Yap et al., 2010].

Metabotyping is subtyping based on shared metabolic
phenotypes identified using metabolic biomarkers. Meta-
botyping using metabolic biomarkers associated with
ASD can enable stratification of the disorder into distinct
subpopulations based on a common metabolic dys-
regulation identified by the biomarker. Stratification of
ASD using metabotype-based tests can lead to underlying
biological differences among those with ASD and, in
turn, potentially to targeted therapeutic intervention
for individuals with a specific metabotype [Wolfers
et al., 2019; Yap et al., 2010].

We conducted the Children’s Autism Metabolome Pro-
ject (CAMP) to identify metabolic dysregulations associ-
ated with ASD. CAMP, the largest metabolomics study of

children with ASD to date, was designed to reproducibly
identify metabotypes associated with ASD. We rec-
ruited 1,102 children between the ages of 18 months
and 4 years from eight clinical sites spread across the
United States. Of these, 708 had a diagnosis of ASD or
were typically developing (TYP) and were able to con-
tribute blood samples that met quality control stan-
dards for metabolic analyses. Previous analysis of
CAMP metabolomics data identified a group of plasma
metabolites in autistic children that were negatively
correlated with plasma branched chain amino acids
(BCAAs). Imbalances in the concentrations of the
amino acids glycine, glutamine, and ornithine relative
to the BCAAs identified ASD-associated amino acid
metabotypes (AADMs) that were present in 17% of the
ASD subjects [Smith et al., 2019].

In the current study, we quantitatively assessed 39metab-
olites associated with amino acid and energy metabolism
in an attempt to expand the identification of metabolic
subpopulations of children with ASD. This set of metabo-
lites was chosen based on our pilot studies [Smith
et al., 2019; West et al., 2014] and published research
related to abnormalities of biochemical processes noted
in ASD related to purine metabolism and mitochondrial
bioenergetics [Broek et al., 2014; De Rubeis et al., 2014;
László, Horváth, Eck, & Fekete, 1994; Shen et al., 2019;
Yehia et al., 2019]. The current work presents the results
of this metabolomic analysis and explores the potential
of these metabotype tests as another step toward creating
a metabolomic screening platform to determine risk for
ASD in young children.

Methods
CAMP Participants

The case–control CAMP study consented 1,102 children,
ages 18 to 48 months, from eight centers across the
United States from August, 2015 to January, 2018
(ClinicalTrials.gov Identifier: NCT02548442). The eight
centers included Children’s Hospital of Philadelphia, Cin-
cinnati Children’s Hospital, The Lurie Center at Massa-
chusetts General Hospital, The Melmed Center, The
MIND Institute, University of California—Davis, Nation-
wide Children’s Hospital, The University of Arkansas for
Medical Sciences, and Vanderbilt University Medical Cen-
ter. Children were excluded from the study if they were
previously diagnosed with a genetic condition. Children
who had recognized serious neurological, metabolic, psy-
chiatric, cardiovascular, or endocrine system disorders
were also excluded. Children exhibiting signs of illness
within 2 weeks of enrollment were rescheduled for blood
collection. All participants underwent medical and
behavioral examinations. Metadata were obtained about
the child’s gestational history, birth, developmental,

INSAR Smith et al./Metabolic subgroups of ASD 1271

http://ClinicalTrials.gov


medical and immunization histories, dietary supple-
ments, and medications. Brief parental medical histories
were also obtained. The Autism Diagnostic Observation
Schedule-Second Version (ADOS-2) assessment was per-
formed by research reliable clinicians to confirm ASD
diagnoses. A developmental quotient (DQ) was derived
from The Mullen Scales of Early Learning which was
administered to all children. A child was diagnosed as
ASD if the ADOS-2 comparison severity score was 4 or
higher. A child was designated as typical if the DQ was
greater than 70 and was not diagnosed by a clinician as
having a developmental disorder. Specimens of plasma
were collected and processed as previously described
[Smith et al., 2019]. The study protocol was approved
and monitored by institutional review boards at each of
the clinical centers. Written informed consent from a par-
ent or legal guardian was obtained, and a small monetary
stipend was provided for each participant. Of the 1,102
consented children, 645 had a diagnosis of ASD and
255 were TYP. Of the 900 subjects receiving these diagno-
ses, 708 provided plasma samples meeting study and
quality control criteria for inclusion in this analysis
(Table 1).

Assignment of Subjects to Discovery and Replication Sets

The discovery set was established to measure metabotype-
positive populations with a sensitivity of 8% with a lower
confidence limit of 3% and specificity of 95% with a lower
confidence limit of 85% under an alpha of 5% and a
power of at least 0.90 [Flahault & Thomas, 2005]. The rep-
lication set of subjects was established and analyzed once
enough subjects were recruited to match the demographic
composition of the discovery set (Table 1). Randomization
of available CAMP participants was performed within
study sets to maintain a prevalence of ASD of approxi-
mately 70%. Randomization was restricted by age, DQ,

and sex to maintain discovery set demographic values in
the replication set.

Phlebotomy Procedures

Blood was collected by venipuncture into 6 ml sodium
heparin tubes placed on wet ice from subjects who had
not eaten for at least 12 hr. Plasma was obtained by cen-
trifugation (1200g for 10 min) and frozen to −70�C
within 1 hr. Hemolysis of blood samples was measured
spectrophotometrically in plasma [Noe, Weedn, &
Bell, 1984]. Plasma samples with hemoglobin levels
>600 mg/dl were excluded from analyses. Values for
the analytes xanthine, uric acid, or hypoxanthine
(which are more sensitive to hemoglobin interference)
were omitted when hemoglobin levels exceeded
200 mg/dl.

Quantitative Analysis of Candidate Metabolites Using Liquid
Chromatography–Tandem Mass Spectrometry

Three quantitative liquid chromatography–tandem mass
spectrometry (LC–MS/MS) methods measuring a total of
39 unique endogenous metabolites and 37 stable isotope-
labeled internal standards (Table S1) were analytically val-
idated in compliance with FDA and CLSI guidance for
bioanalytical method validation (Lynch, 2016; U.S.
Department of Health and Human Services, Food and
Drug Administration, Center for Drug Evaluation and
Research [CDER], 2018). Following analytical validation,
the quantitative assays were used to measure biological
amines [Smith et al., 2019], purines, and carboxylic acid-
containing analytes in participant samples. Detailed
information about the sample preparation, detection,
and quantification of metabolites are described in the
Appendix S1. Analyte quantification was performed using
an Agilent Technologies G6490 Triple Quadrupole Mass
Spectrometer and a Waters Xevo TQ-S micro, IVD mass

Table 1. CAMP Study Population Demographics by Study Set

Demographic CAMP study sets

Study set Discovery Replication Total

No. of ASD children 253 246 499
No. of TYP children 104 105 209
Total 357 351 708
ASD vs TYP prevalence, % 70.9 70.1 70.5
ASD malea, % 77.9 80.1 79
TYP malea, % 60.6 58.1 59.3
ASD Ageb, mean (SD), months 35.7 (7.6) 34.5 (8) 35.1 (7.8)
TYP Ageb, mean (SD), months 33.2 (8.5) 31.9 (9) 32.6 (8.7)
Age range, months 18–48 18–48 18–48
ASD DQc, mean (SD) 61.7 (16.9) 63.6 (18) 62.6 (17.5)
TYP DQc, mean (SD) 100.1 (15.1) 103.3 (17.4) 101.7 (16.3)
ASD ADOS-2 comparison score, mean (SD) 7.1 (1.9) 7.2 (1.7) 7.1 (1.8)

Note. Superscript letters a,b, and c indicate a comparison with statistically significant difference between ASD and TYP populations (P-value <0.05).
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spectrometer with appropriate internal standards, calibra-
tion ranges, and quality control samples (Appendix S1).

Bioinformatic Analyses

The values of each metabolite or ratio of metabolites were
log base 2 transformed and Z-score normalized prior to
analyses. Imputation was not performed and missing data
were omitted from analysis, reducing the number of sam-
ples analyzed for a test statistic. Analysis of covariance,
analysis of variance (ANOVA), Welch T-tests, and
pairwise Pearson correlation analyses were performed on
each metabolite or ratio of metabolites. Effect sizes were
reported using Cohen’s d for T-tests or generalized eta
squared for ANOVA. Dissimilarity measurements (1 − the
absolute value of the pairwise Pearson correlation coeffi-
cient (ρ) of metabolite ratios) were used to calculate dis-
tances for clustering. Hierarchical clustering was
performed using the unweighted pair group method with
arithmetic mean (UPGMA). Bootstrap analysis of the clus-
tering result was performed using the pvclust package
[Suzuki & Shimodaira, 2006]. Clusters were considered
significant, and therefore stably identified within
repeated sampling, when the unbiased P-value was ≥0.95.
The independence of subject metadata relative to the
metabotypes was tested using the Fisher Exact test statis-
tic, and effect sizes were estimated with Crammer’s
V. Post hoc evaluation of the responses within metadata
variables was performed using an exact binomial test.
False discovery rate corrections of P-values were per-
formed to control for multiple testing [Benjamini &
Hochberg, 1995]. Analyses were conducted using R ver-
sion 3.6.1 [R Core Team, 2019].

Metabotyping Analysis

A metabotype is a subpopulation of individuals with a
shared metabolic characteristic or phenotype that can be
distinguished from the larger population [Riedl
et al., 2017]. We carried out this study in an attempt to
identify metabolic features (i.e., an individual metabolite
or ratio of metabolites) that are able to distinguish sub-
populations (or metabotypes) of ASD subjects. Potential
metabotypes associated with ASD were identified by
using a heuristic algorithm that tested whether a metabo-
lite or ratio of metabolites identified a subpopulation of
primarily ASD subjects above (or below) a particular
quantity of the metabolite or above the threshold in a
ratio of metabolites [Smith et al., 2019]. These thresholds
were then used to create metabotype tests that identified
subjects exceeding the threshold as metabotype-positive
and subjects that did not as metabotype-negative. The
metabotype tests were established in the discovery set.
Diagnostic performance and reproducibility of the
metabotype tests were evaluated in the replication set.

Diagnostic performance metrics of sensitivity (detec-
tion of ASD) and specificity (detection of TYP) were calcu-
lated based on the percentage of ASD or TYP subjects
who were positive or negative for a metabotype test. The
criteria utilized to accept a metabotype test as being asso-
ciated with ASD was based on both diagnostic perfor-
mance and a permutation test to determine if the
diagnostic performance values were due to chance. The
minimum diagnostic criteria required for a metabotype
in the discovery set to be further evaluated in the replica-
tion set were at least 5% sensitivity (indicating that at
least 5% of the ASD participants were metabotype-posi-
tive), at least 95% specificity (indicating that 95% of the
TYP participants were metabotype-negative), and the
metabotype-positive population was at least 90% ASD. A
permutation test was used to determine whether or not
each metabotype was due to chance. A total of 1,000 ran-
dom permutations of CAMP subjects were performed to
test how frequently the diagnostic performance of a
metabotype was observed in the random permutations. A
metabotype test was considered valid (i.e., not considered
to be a result found only by chance), if the combined
diagnostic performance of at least 5% sensitivity, at least
95% specificity, and percent of ASD positive subjects in
the metabotype-population at least 90% were met or
exceeded with a frequency of 5% or less in the permuta-
tion test [Smith et al., 2019]. A metabotype test was con-
sidered to be reproducible if it also met the diagnostic
performance and permutation test criteria required for
the discovery set in the replication set. We made a strate-
gic choice to maximize specificity in order to reduce
the number of false positives associated with the com-
bination of metabotype tests. Fewer false positives per
metabotype test allow multiple tests to be combined
into a test battery without significant loss of overall
specificity.

As described below, we discovered a number of
metabotypes associated with ASD in this study. Test
batteries were generated by combining multiple
metabotypes into a single test. If an individual was
positive for any one of the metabotype tests within the
test battery, it indicated that the individual is at higher
risk for a diagnosis of ASD. In the current study, this
test battery approach was used to determine the diag-
nostic performance of closely related tests within a
metabotype cluster and for the development of an
optimized screening test battery.

Results
Study Population

The CAMP study population was divided into two inde-
pendent subject sets of children: (1) a discovery set of
357 subjects to establish metabotypes and (2) a
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replication set of 351 subjects to establish the reproduc-
ibility of metabotypes and diagnostic performance
(Table 1). The primary demographic values of age, sex,
and DQ were balanced between discovery and replica-
tion sets. However, the percentage of male subjects, as
well as age, and subject DQ differed between the ASD
and TYP populations within the sets. The ASD popula-
tion contained 17.3% and 22% more male subjects in
the discovery and replication sets, respectively, which
were 2.5 and 3 months older than the TYP populations.
Due to the prevalence of co-occurring cognitive and
developmental delays in the ASD population, the DQ
was lower in the ASD group compared to the TYP
population.

Differential Analysis of Metabolite Levels in ASD and TYP
Subjects

Individual metabolites, and all unique combinations of
the ratios of metabolites, were evaluated as potential
screens for ASD. The ratios of metabolites were evaluated
since this type of analysis can uncover biologically rele-
vant changes not evident when evaluating each metabo-
lite independently [Petersen et al., 2012; Smith
et al., 2019]. When the metabolite and ratio values were
adjusted for age, no differences in mean values were iden-
tified for the age, sex, or diagnosis of the subjects or their
interactions (Table S2). Thus, the mean levels of the
metabolites and their ratios are similar between ASD and
TYP subjects regardless of age or sex. This indicates that
demographic differences in age and sex between ASD and
TYP populations are not likely to impact the conclusions
of this study.

Metabotype-Based Test Development

Metabotype analysis of the discovery set identified
250 potential metabotype tests (Table S3) that met
established diagnostic performance criteria. These tests
were then evaluated in the replication set and 34 metabo-
lite ratios reproducibly identified ASD metabotypes
(Table S4). Among these 34, there were two that were pre-
viously reported [Smith et al., 2019], while the remaining
32 ratios were novel (Fig. 1, Table S4). Taken together,
the 34 metabotypes identified 57% (95% confidence
interval [CI], 52%–61%) of the CAMP ASD population
with a total specificity of 83% (95% CI, 77%–88%).

Clusters of Metabotypes Identify Metabolically Distinct ASD
Subpopulations

Correlation analysis and hierarchical clustering of the
34 reproducible amino acid and energy metabolism
metabotypes were used to understand the relationships
between the metabotype tests. We wanted to

determine, for example, whether different metabotype
tests identified the same groups of participants. We
used hierarchical clustering (Fig. 2A) for the metabotype-
positive subject population (Fig. 2B) to test for clusters of
related metabotypes. Following bootstrap resampling anal-
ysis, the metabolite ratios formed six reproducible clusters
of metabotype tests. Five of these clusters contain ratios
that include one of the following metabolites: succinate,
glycine, ornithine, 4-hydoxyproline, or α-ketoglutarate. A
sixth cluster contains ratios that included either lactate or
pyruvate (Fig. 2A).

Each of the clusters consists of several metabotype
tests. Metabotype-positive subjects are generally identi-
fied by multiple metabotypes within the cluster (Fig. 2B).
For example, numerous subjects within the lactate and
pyruvate cluster (purple text) are positive for multiple
metabotypes. The closer relationship of metabotypes
within a cluster is also evident in the increased probabil-
ity of being positive in more than one metabotype test
within a cluster (Fig. 3). The newly identified metabotype
clusters identify between 10% and 28% of the CAMP
ASD population, with specificity greater than or equal to
95% (Table 2). The sensitivity of the clusters is greater
than any of the individual metabotype tests within a
cluster.

The succinate, 4-hydoxyproline, α-ketoglutarate, and
lactate/pyruvate clusters identify novel metabotypes asso-
ciated with ASD that have not been previously reported.
The BCAA dysregulation metabotype (AADM) that we
had previously described [Smith et al., 2019] identifies
subpopulations of autistic individuals with elevated levels
of the metabolites glycine, ornithine, or glutamine and
lower levels of the BCAAs. The glycine and ornithine
clusters reported here contain the AADM-associated
metabolite ratios glycine/isoleucine and ornithine/
leucine, respectively. These two clusters identify 70% of
the subjects in the previously reported AADM metabotype-
positive population (Fig. 2B) indicating that the metabotype
tests in the glycine and ornithine clusters identify AADM
metabotypes related to ornithine and leucine.

Association Analysis of ASD Subjects by Metabolic Cluster

The metabotype clusters were analyzed for associations
with phenotypic information gathered on the ASD sub-
jects related to medical history, behavioral testing, diet,
supplements, and medications. Interestingly, the orni-
thine cluster identified a higher proportion of females
(Fisher’s exact test odds ratio 3.3 (95% CI, 1.83–6.00),
FDR = 0.00068). The α-ketoglutarate cluster metabotype-
positive subjects were more likely to be delivered by
Cesarean section (Fisher’s exact test odds ratio 2.23
(95% CI, 1.27–3.86), FDR = 0.044). The metabotype-
positive population identified by the succinate cluster
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had 14% lower receptive language scores than the
metabotype-negative population (−0.1432%; 95% CI,
−0.229 to −0.057), T-test FDR = 0.024). Additional
research will be needed to confirm and extend pheno-
typic characteristics of these metabotype clusters.

Optimized Metabotype Screening Test Battery

The fundamental goal of this research is to develop a
metabolomics-based test battery that can be used as a
screen for autism risk. As indicated above, the

Figure 1. Scatter plots with distribution contours of the ratios measured in blood plasma for the 34 metabotype tests, meeting mini-
mum diagnostic performance criteria. Metabotype-positive populations are generally composed of ASD subjects in both the discovery
and replication sets. The positive subjects (red dots) are identified by the metabotype diagnostic threshold established in the discovery
subject set (red horizontal line). The vertical gray line separates the discovery (on the left) from the replication (on the right) sets of
subjects. The black dots are metabotype-negative subjects. The y-axis is log2 and then Z-transformed so that each ratio has a population
mean of one and a standard deviation of zero. Distributions for the ASD and TYP populations are shown separately for each ratio and
study set. Plots are ordered to be consistent with the dendrogram in Figure 2A. Dis, discovery set; Rep, replication set.
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metabotype tests within each cluster redundantly identi-
fied a similar group of ASD subjects Figure 3, Tables S5
and S6), We sought to create an optimized test battery
based on selecting a subset of the 32 novel metabotype
tests that (1) maximized sensitivity while maintaining a
specificity of at least 90% to provide more diagnostic
value to a positive test result, (2) contained at least one
metabotype test from each of the six clusters to represent
biological information from each cluster in the final test
battery, and (3) eliminated redundant tests. To reduce the
number of redundant tests, a subset of tests from each
cluster was selected that identified the ASD participants
detected by all of the tests within a cluster. This process
led to the selection of 19 metabotype tests that captured
the total sensitivity identified by each of the clusters. We
then created test batteries containing 7–18 metabotype
tests using combinations of the 19 tests. The test combi-
nations were filtered by diagnostic performance in the
combined discovery and replication sets. The maximum

observed sensitivity of test combinations was 50% at
specificities of at least 90%. The optimal combination
selected for the final test battery contained 14 metabotype
tests that represented each cluster and yielded the highest
sensitivity in the discovery and replication sets with a
specificity greater than 90% (Fig. 3). This optimized test
battery identified CAMP subjects with a sensitivity of
50% (95% CI, 45%–54%) and specificity of 92% (95% CI,
88%–96%). Addition of the AADMs test predictions to
the optimized test battery increased the overall sensitivity
to 53% (95% CI, 48%–57%) with a specificity of 91%
(95% CI 86%–94%). When compared to the diagnostic
performance of the combination of the 34 metabotype
tests, the optimization process led to a reduction in the
number of tests, and importantly, to the reduction of
false positives, thereby increasing the specificity by 8%.
Total sensitivity was reduced from 57% to 53% due to the
elimination of tests that contributed an unacceptable
number of false-positive results to the overall test battery.

Figure 2. (A) Hierarchical clustering based on the pairwise Pearson correlation coefficients of the ratios of the 34 reproducible
metabotypes. Bootstrap analysis identified six robust clusters of metabotype tests that are indicated by colored text associated with
the dendrogram leaves (Table 2). The black text indicates the succinate cluster, purple text the lactate and pyruvate cluster, red text the
ornithine cluster, green text the glycine cluster, blue text the 4-hydroxyproline cluster, and orange text the α-ketoglutarate cluster. The
gray text indicates metabotypes not in one of the six clusters. The y-axis represents dissimilarity as a distance. (B) Heatmap of
the metabotype-positive population. Individual subjects make up the columns of the figure. The 34 metabotypes are shown on the verti-
cal axis as well as the BCAA dysregulation metabotype (AADM)-positive population [Smith et al., 2019]. The heatmap indicates that sub-
jects are often positive for more than one metabotype and are often positive for more than one test in the same cluster. The AADM
metabotype was included to highlight the similarity of the glycine and ornithine ratios to the previous findings. The rows of the
heatmap and colored blocks are to highlight the metabotype groups in (A). Red represents metabotype-positive and gray represents
metabotype-negative subjects.
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Discussion

The CAMP study was designed to reproducibly identify
subpopulations of autistic children as small at 5% who
share common metabolic differences from TYP children
(i.e., metabotypes). The study involved 499 children that

had a diagnosis of ASD and 208 children that were TYP
and were able to contribute blood samples that met qual-
ity control standards for metabolic analyses. We quantita-
tively measured 39 metabolites associated with amino
acid and energy metabolism. This set of metabolites was
initially chosen for analysis based on pilot studies [Smith

Figure 3. Heatmap of the similarity of metabotype test subject predictions based on the conditional probability of a subject testing
positive for the metabotype in the row given testing positive for the metabotype in the column. The analysis provides visualization for
how frequently subjects test positive for one test given that they are positive for another and further supports that clusters of the
plasma values are largely mirrored in the metabotype predictions. The conditional probabilities are also helpful in reducing the overall
number of tests required to identify metabotype-positive subjects within a cluster. The color scale indicates the conditional probability
that a subject will test positive for the metabotype in the row given a positive result in column test. Tests are ordered using hierarchical
clustering to simplify the visualization. Colored text associated with the column and row labels indicate the six clusters identified in
Figure 2A. The black text indicates the succinate cluster, purple text the lactate and pyruvate cluster, red text the ornithine cluster,
green text the glycine cluster, blue text the 4-hydroxyproline cluster, and orange text the α-ketoglutarate cluster. The gray text indi-
cates metabotypes not in one of the six clusters. BCAA dysregulation metabotype (AADM)-positive population is included. Bold and itali-
cized leaves denote ratios used in the optimized test battery.
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et al., 2019; West et al., 2014] and published research
related to abnormalities of purine metabolism and mito-
chondrial bioenergetics [Broek et al., 2014; De Rubeis
et al., 2014; László et al., 1994; Shen et al., 2019; Yehia
et al., 2019]. We observed that (1) analysis of ratios of
plasmametabolite concentrations revealed 34metabotype
tests that reproducibly identified metabolic differences
associated with ASD and (2) these metabotypes formed
six distinct clusters related to the underlying metabolic
dysregulation. A battery of 14 metabotype tests, when
integrated with previously identified metabotypes [Smith
et al., 2019], identified ASD subjects within CAMP with a
sensitivity of 53% (95% CI, 48%–57%) and a specificity
of 91% (95% CI 86–94%).

Our Strategy for Metabotype Analysis

There has been intense interest in discovering effective
and practical metabolite assays for the identification of
children at risk for ASD. Disappointingly, most previ-
ously described “diagnostic tests” have generally not
been reproduced in subsequent studies. Lack of repro-
ducibility is likely due to several issues including the eti-
ological and phenotypic heterogeneity of ASD, and the
small number of cases vs controls in most previous stud-
ies [Loth et al., 2017]. Our metabotyping approach starts
from the premise that different subgroups of individuals
with autism will have different metabolic signatures.
Our analytic approach quantitatively explores domains
of metabolites to find those that identify homogenous
subpopulations of individuals with ASD. We explicitly
do not attempt to create a single, broad-based predictive
signature of ASD, i.e., we acknowledge the heterogeneity
of ASD. Moreover, the size of the CAMP study popula-
tion provides sufficient power to enable both a discovery
and an independent replication set of subjects each
larger than the total number of subjects in most previ-
ously published metabolism studies of autism.

The autism literature provides clues to which metabolic
anomalies should be investigated. However, the design
attributes of this study (e.g., large cohort size with replica-
tion set, validated analytical methods, and subtyping
approaches) allow for a significant extension of prior
work. For example, altered metabolism among individ-
uals with ASD has been observed related to biochemical
pathways including oxidative phosphorylation and
BCAA metabolism [Glinton & Elsea, 2019; Hollis,
Kanellopoulos, & Bagni, 2017]. The current work draws
from the earlier studies to reproducibly identify and strat-
ify metabolic alterations common in specific groups of
subjects such that they can be used to begin further work
toward therapies that are specific to defined metabotypes.

Ratios of metabolites can increase diagnostic efficacy
by detecting metabolic associations and biochemical
pathways not apparent in the analysis of singleTa
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metabolites [Petersen et al., 2012]. For example, metabo-
lite ratios of bloodspot-derived amino acids and
acylcarnitines have been successfully used in newborn
screening for metabolic disorders such as phenylketon-
uria, maple syrup urine disease, and certain disorders of
mitochondrial fatty acid beta-oxidation [Arneth &
Hintz, 2017; McHugh et al., 2011]. Prenatal serum metab-
olite ratios can predict fetal growth restriction [Sovio
et al., 2020]. In view of the value of metabolite ratio analy-
sis, we analyzed all possible combinations of the 39 plasma
metabolite pairs related to amino acid, purine catabolism,
and energy metabolism in a supervised approach to iden-
tify potential metabolic subpopulations associated with
ASD. Whereas none of the levels of individual metabolites
met the diagnostic criteria required in the discovery set,
ratios of these metabolites led to 34 metabotype tests that
reproducibly identified metabotypes.

Alterations in Metabolite Ratios May Provide Insight into
Pathophysiology

While the primary goal of this research program is to estab-
lish reliable metabolomic screens, a related aim is to provide
insight into metabolic disturbances that may lead to more
targeted treatments. Hierarchical clustering of metabotypes
established six clusters of metabotype tests related to amino
acid and mitochondrial energy metabolism. The metabolic
clusters are comprised of ratios containing (1) lactate or
pyruvate, (2) succinate, (3) α-ketoglutarate, (4) glycine,
(5) ornithine, and (6) 4-hydroxyproline in combination
with other metabolites. These clusters highlight potential
dysregulation in amino acid and energy metabolism in ASD
when compared to TYP. It is important to point out that
the dysregulation that we report occurs at quantitative
metabolite levels that for any of the studied metabolites are
not diagnostic of specific clinical disorders. But, when eval-
uated as ratios, they identify changes that are outside the
normal range of values observed in the vast majority of TYP
children.

Alterations in succinate, lactate, and pyruvate concen-
trations and their ratios are often associated with distur-
bances of mitochondrial bioenergetics [Lombard, 1998;
Shaham et al., 2010; Thompson Legault et al., 2015;
Vergano et al., 2014], and these disturbances occur
with increased frequency in people with ASD [Hollis
et al., 2017; Rose et al., 2018; Rossignol & Frye, 2012;
Weissman et al., 2008]. The overlap of ASD subjects iden-
tified by metabotype tests in the lactate/pyruvate cluster
suggests that they may all experience similar dys-
regulation and underlying pathophysiology. While one
might expect that the succinate and α-ketoglutarate clus-
ters would be closely related to the lactate and pyruvate
cluster as intermediates of the tricarboxylic acid (TCA) or
Krebs cycle, they actually identify largely different subsets

of ASD cases. Subjects identified by the α-ketoglutarate
cluster were only infrequently positive in the succinate
(10%) or pyruvate and lactate (29%) clusters (Table S6).
This raises the possibility that these two groups of autistic
individuals have different underlying pathophysiologies
(Fig. 4). We hypothesize that this may be due to complex
biological roles illustrated in Figure 3 that succinate and
α-ketoglutarate play in signaling outside the TCA cycle
[He et al., 2015; Murphy & O’Neill, 2018].

Metabotype-positive ASD participants in clusters
containing ornithine, glycine, α-ketoglutarate, and
4-hydroxyproline are mostly (67%–94%) metabotype neg-
ative for ratios containing succinate, lactate, or pyruvate
(Table S6), again suggesting differences in the underlying
metabolism of these two groups. The metabotype ratios fall
into two larger clusters, one comprised of ratios containing
α-ketoglutarate, glycine, ornithine, and 4-hydroxyproline
and a second containing ratios with lactate, pyruvate, and
succinate. The metabotype-positive subjects in the first
group of clusters may be related to dysregulation of amino
acid metabolism and the urea cycle (Fig. 4), while
metabotype-positive participants in the second group of
clusters may have dysregulation related to energy metabo-
lism or mitochondrial function. Furthermore, the ASD par-
ticipants who are metabotype-positive for ornithine and
glycine clusters are very similar to the previously described
AADM metabotype population [Smith et al., 2019] with
increased ornithine and glycine and decreased levels of
BCAAs. Individuals who are metabotype-positive for
4-hydroxyproline do not have much overlap with those
who are metabotype-positive for the ornithine, glycine,
or AADM populations, and are more similar to the
α-ketoglutarate cluster. Thus, the six clusters of metabotype
tests that we have discovered highlight a diversity of
underlying metabolic alterations. Although the pathophys-
iological basis of these alterations is not understood at this
time, our approach provides a stratification mechanism to
facilitate research into the underlying biology related to
each of these metabotypes.

Are There Functional Associations of the Metabotypes?

Analysis of phenotypic data of the autistic subjects revealed
some intriguing, albeit very preliminary, associations
between subjects with a certain metabotype and biological
or behavioral features of the ASD cohort. For example, there
was an overrepresentation of female subjects identified by
the ornithine-related metabotypes. Ornithine aminotransfer-
ase, ornithine decarboxylase, and arginase-2 are regulated by
testosterone [Levillain, Diaz, Blanchard, & Déchaud, 2005],
which could explain sex-specific differences observed in ASD
[Ferri, Abel, & Brodkin, 2018]. Interestingly, subjects in the
α-ketoglutarate metabotype-positive cluster were more likely
to have had a Cesarean delivery (CD). Children born by CD
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tend to have an increased body mass index [Bernardi
et al., 2015], altered microbiome, and immune func-
tion [Liu et al., 2018; Wampach et al., 2018], each of
which is associated with increased risk of ASD [Healy,
Aigner, & Haegele, 2019; Vuong & Hsiao, 2017; Zhang
et al., 2019]. Lastly, subjects in the succinate cluster
had decreased receptive language scores compared to
metabotype-negative subjects. These preliminary
observations need to be replicated and extended in
future studies, but they highlight the potential that
subtle, yet reliable, metabolic alterations may be asso-
ciated with functional outcomes.

An Approach to Developing a Metabolomic Screening Platform
for ASD

The results reported in this article are another step toward
developing a platform of metabolic tests that can be used to
determine relative risk for an individual to have a diagnosis
of autism. Such a platform could increase effectiveness of
screening efforts by providing additional decision-making
end points [McPartland, 2017; Zwaigenbaum et al.,
2015]. Developing a metabolomics-based screening

tool is an ongoing process. As we define additional
metabotypes from samples acquired through the CAMP
study, the percentage of ASD subjects that can be identi-
fied will increase. Currently, the optimized metabotype
test battery is capable of identifying 53% of the 18- to
48-month-old CAMP ASD participants with a specificity
of 91%. The implication of these results, which must
be verified in a prospective study, is that this
metabolomics-based test battery is potentially able to
detect more than 50% of individuals at risk for ASD.
While biomarkers of any kind cannot provide a defini-
tive diagnosis, combining a metabolomics-based screen
with a behavioral screening tool such as the M-CHAT/F
increases the likelihood that those at risk for ASD can be
detected as early as possible [Kohane & Eran, 2013;
Miles, 2015].

How Would a Metabolomics-Based Screen Be Deployed?

Metabotype-based tests can support earlier diagnosis by
identifying subsets of children having metabolic differ-
ences associated with ASD. In practice, we envision a
metabolomic-based test as both an additional screening

Figure 4. Representation of identified metabotype clusters and their biological interconnectivity. Boxes are colored according to
reproducible clusters in Figure 2A. The metabolites associated with the clusters participate in many metabolic pathways and signaling
processes. Pyruvate is a “crossroads” metabolite at the juncture of glycolysis, gluconeogenesis, and the TCA cycle. It represents the main
gateway to convert glucose to energy in mitochondria. Lactate, the reduced product of pyruvate, is itself a potential energy substrate.
Some metabolites (e.g., α-ketoglutarate and succinate) form distinct metabotype clusters, likely reflecting different underlying patho-
physiologies, despite being biochemically connected. Succinate and α-ketoglutarate are intermediates in the TCA cycle and donate elec-
trons to the electron transport chain to generate energy through oxidative phosphorylation. Yet, succinate and α-ketoglutarate also
have important additional roles outside of the TCA cycle and oxidative phosphorylation. Thus, clusters may identify distinct metabotype
populations based on their roles in signaling processes rather than the TCA cycle or oxidative phosphorylation. Additionally,
α-ketoglutarate, glycine, the BCAAs, and the urea cycle metabolite ornithine play important roles in amino acid and nitrogen metabo-
lism. The interconnectivity of metabolic and signaling processes can explain why some patients might be positive for metabotypes from
different metabolic pathways while seemingly biochemically related metabolites can form distinct metabotype clusters.
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modality to detect children who are at risk for a diagnosis
of ASD and as a stratification tool (Fig. 5) for individuals
who are already diagnosed. A child for whom there may
be grounds for evaluation based on family history or
because of clinical or parental concerns would be a candi-
date for metabotype-based screening. A positive
metabotype result could lead to a prioritized referral to a
specialist for diagnostic assessment of ASD. A
metabotype-negative result would follow the American
Academy of Pediatrics (AAP) standard of care for further
behavioral and developmental assessment at periodic
intervals in early childhood (Fig. 5A). Individuals already
diagnosed with ASD may benefit in the future from
metabotype screening for insight into metabolic

dysregulation that could potentially lead to a refined, per-
sonalized intervention plan (Fig. 5B).

Additional Considerations and Some Limitations of
This Work

Several issues related to this work require additional
research. These include: (1) individuals with other neu-
rodevelopmental disorders were not included in the
study so it is unclear how selective the metabotypes are
for ASD; (2) only a portion of the plasma metabolome
was evaluated and further metabolomic analyses are
needed to discover additional metabotypes; and (3) the
lack of a broader age range and of longitudinal sampling

Figure 5. Proposed applications for metabotype-based screening and potential outcomes for metabotype-positive and metabotype-
negative children at risk of ASD (A) and children previously diagnosed with ASD (B). See text for description.
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prevents assessment of metabotype utilization and stabil-
ity for ages other than those evaluated in this study. This
study also has several limitations: (1) the study size does
not allow us to detect metabotype populations that occur
in less than 5% of the ASD population, so rare metabolic
dysregulation may not be detected by this approach and
(2) analysis of fasting plasma samples may miss metabolic
dysregulation that can be of clinical relevance but whose
discovery may require other types of samples like those
obtained after physiological challenges such as glucose or
lipid loads.

Conclusions

The CAMP study has produced a unique repository of
samples from children with autism and age-matched
TYP controls that will enable an ongoing exploration of
small molecule signatures of risk for ASD. Our first study,
which focused on BCAA metabolism, enabled the detec-
tion of 17% of the CAMP ASD cohort [Smith et al., 2019].
The current study, which focused on 39 metabolites asso-
ciated with amino acid and energy metabolism, has
enabled the detection of 50% of the autistic subjects.
Taken together, the current test battery can detect 53% of
the children with ASD in CAMP. The future direction of
this program is to uncover additional metabotypes which
will increase even further the detection percentage of
children at risk for a diagnosis of ASD. Many important
areas of research remain. It is not clear, for example, how
stable these metabotypes are in a particular child. If we
brought the CAMP cohort back when they are in middle
childhood, would they demonstrate the same metabotypes?
Would we see the same metabotypes in children younger
than 18 months when the value of a biomarker would be
greatest? Given the virtual absence of effective biomarkers
to detect autism risk in young children, we are optimistic
that this approach has enormous potential for identifying
children as early as possible. Moreover, determining that an
individual child has a particular pattern of metabolic alter-
ations can provide insights into her or his autism and offer
the possibility of new personalized therapies. These oppor-
tunities and questions require further testing in CAMP and
future studies. These steps represent strides in a research
journey toward understanding the role of metabotypes and
their potential as actionable clinical tools in the detection
and treatment of ASD.
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