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Crowding results fromoptimal integrationof
visual targets with contextual information

Guido Marco Cicchini 1, Giovanni D’Errico 1 & David Charles Burr 1,2

Crowding is the inability to recognize an object in clutter, usually considered a
fundamental low-level bottleneck to object recognition. Here we advance and
test an alternative idea, that crowding, like predictive phenomena such as
serial dependence, results from optimizing strategies that exploit redundan-
cies in natural scenes. This notion leads to several testable predictions:
crowding should be greatest for unreliable targets and reliable flankers;
crowding-induced biases should be maximal when target and flankers have
similar orientations, falling off for differences around 20°; flanker interference
should be associated with higher precision in orientation judgements, leading
to lower overall error rate; effects should be maximal when the orientation of
the target is near that of the average of the flankers, rather than to that of
individual flankers. Each of these predictions were supported, and could be
simulated with ideal-observermodels that maximize performance. The results
suggest that while crowding can affect object recognition, it may be better
understood not as a processing bottleneck, but as a consequence of efficient
exploitation of the spatial redundancies of the natural world.

Crowding is the inability to recognize and identify objects in clutter,
despite their being clearly visible, and recognizable when presented in
isolation1 (see examples in Fig. 1a). It is particularly elevated in the
periphery, impacts on many important daily tasks, such as face
recognition and reading (for reviews see2–4), to the extent it has been
considered a major bottleneck to object recognition.

There are several diagnostic criteria for crowding, the most
important being that it scales linearly with eccentricity, such that the
minimal spacing between centres of targets and flanking elements
supporting uncrowded vision is equal to roughly half the target
eccentricity (Bouma’s law5). Another is that flankers similar (in colour,
shape or orientation) to the target crowd more effectively than dis-
similar ones6–9. Crowding is stronger in the upper than the lower visual
field10, and for radial than for tangential flankers11.

Most popular current models of crowding involve some form of
compulsory pooling (or substitution) of targets with flankers. For
example, Parkes and colleagues12 showed that while the orientation of
a Gabor patch cannot be determined when embedded in flankers, it
does influence the perceived orientation of the ensemble: hence it is

mergedwith the flankers, rather than suppressed. This is reinforced by
several studies showing that the targets can take on characteristics
of the flanker stimuli13–15. The compulsory integration could occur in
higher cortical areas, such as V42,16,17 or V218,19, which have large
receptive fields, appropriately sized to account for Bouma’s law.

However, compulsory integration is vague and does not explain
all the known facts about crowding. For example, flankers that are
similar in size, colour or orientation cause more crowding than dis-
similar ones9,20,21. More difficult to explain are the recent demonstra-
tions of Herzog and colleagues22 of “uncrowding”, where the addition
of extra flanking stimuli around the flankers can reduce drastically
their crowding effect, particularly if the extra flankers group with the
original flankers to form coherent objects. These data do not fit easily
with compulsory integration, even with appropriate linear filtering,
which could in principle account for other effects, such as orientation
or size selectivity.

Crowdinghasbeen studied for decades, andusually considered to
be a defect in the system, “an essential bottleneck to object
perception”23. Certainly, it impacts heavily on object recognition in
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tasks like letter or face recognition: but is it possible that it may reflect
processes that are in principle advantageous to perception? Percep-
tion is strongly affected by contextual information, particularly tem-
poral context, where recent and longer term perceptual history has
been shown to exert a major influence on current perception24–27.
While the role of context and experience has been appreciated for
some time28,29, it has become particularly topical in recent years within
the framework of Bayesian analysis. This approach has revealed an
interesting phenomenon termed “serial dependence”, where the
appearance of many important attributes of a stimulus (including
orientation, numerosity, facial identity, beauty etc) are biased towards
previously viewed stimuli25,26,30,31. Counterintuitively, these consistent
biases in perception have been shown to reflect an efficient perceptual
strategy, exploiting temporal redundancies in natural viewing to
reduce overall reproduction errors, despite the biases26,32,33.

Could crowding also be a consequence of efficient integration
processes that exploit spatial (rather than temporal) redundancies to
improve performance? We investigate this possibility by studying
crowding with a paradigm similar to one used in serial dependence
studies. If, like serial dependence, crowding is a by-product of efficient
redundancy-reducing mechanisms, it should display several specific
signature characteristics. One is that crowding-induced biases should
be stronger for targets that are unreliably perceived, and for flankers
that are reliably perceived. In addition, crowding should follow the
signature pattern seen in serial dependence, highest when the orien-
tations of target and flankers are similar, then steadily falling off. We
provide evidence for these characteristics qualitatively and quantita-
tively, and show that crowding, while leading to biases, also improves
overall performance. The results fit well with models simulating
intelligent combination of signals from a small receptive field centred
on the target with signals from a much larger integration region, fol-
lowing the same rules that govern serial dependence. On this view
crowding is not merely a defect, or bottleneck, in the system, but the
unavoidable consequence of efficient exploitation of spatial redun-
dancies of the natural world.

Results
To test if visual crowding follows the rules of optimal integration,
whichwell describe serial dependence25,33, wemeasured crowdingwith
an orientation reproduction task. Participants reproduced the orien-
tation of oval stimuli, which were either elongated (aspect ratio 1: 2.8)
or rounded (1: 1.4). Targets were presented 26° to the right of fixation,
and vertically flanked by similar oval stimuli, elongated if the target
was rounded, and vice versa (see Fig. 1b). The orientation of the target

was either 35° or 55° (at random). The orientations of the two flankers
were yoked together, and varied randomly over a range of ± 45° from
target orientation. The clear prediction from models of efficient
integration32,34 (see Eq. 10 & 15) is that the effects of crowding will be
stronger for the unreliable targets and reliable flankers than vice versa,
which we test with rounded targets and elongated flankers. The rea-
sons are explained formally in the modelling section, but the intuition
is that the rounded stimuli have less reliable orientation signals and
therefore benefit more from integration with contextual information,
especially if it is reliable.

Figure 2a shows the bias in target reproduction as a function
of difference in flanker orientation. Both sets of stimuli show posi-
tive, assimilative effects of the flankers, with positive flanker orien-
tation causing positive biases and negative flankers negative bias.
The rounded targets show the strongest contextual effects of
crowding, with peak biases varying by up to ± 5.1°, compared
with ± 1.9° for the elongated targets. Furthermore, the pattern of bias
follows closely that predicted and observed in serial dependence
studies33, varying non-linearly with the difference between target and
flanker orientation, increasing to a maximum around ± 20°, then
decreasing. These data are well fit by derivative of gaussian functions
(Eq. 15, light-coloured lines), commonly used in serial dependence
studies25, and expected froma causal inferencemodel (seemodelling
section35). The dark lines show the predictions of another Bayesian
model (Eq. 10), which has also proven successful with serial
dependence data26,33. While the models are detailed later, it is worth
noting that they are almost entirely anchored by data, down to a
simple scaling factor, suggesting that the data are consistent with
ideal behaviour.

Another important prediction is that the contextual effects
should improve performance. On a reproduction task of this sort,
errors can be broadly divided into two orthogonal categories, aver-
age accuracy (inverse bias) and precision (inverse scatter about the
mean value). Figure 2a reports average bias (inaccuracy), while
Fig. 2b plots reproduction scatter (imprecision, given by root-
variance of reproduction trials), as a function of orientation differ-
ence. As expected, at all orientation differences, scatter is lower for
the elongated than the rounded targets. However, for both targets,
particularly the rounded targets, the scatter decreased as the dif-
ference between target and flanker orientation decreased to be
minimal when the test and flankers had matched orientation (the
condition that produces maximal crowding).

To reinforce the idea that performance is at its best when flanker
and target are identical, we ran a separate experiment to test twonew

a)                                                       b)

Fig. 1 | Demonstrationof visual crowding and examples of stimuli of this study.
a Crowding is a visual phenomenon where items that can be easily identified in
isolation are not identifiable if surrounded by similar items. The P and hand symbol
on the right are difficult to recognize while fixating the central red dots. b Stimuli
employed in this experiment. Observers judged the orientation of a peripheral
target (the central oval), which was flanked above and below by oval stimuli. Two

conditions were tested: a rounded target with elongated flankers (Low reliability
target, high reliability flankers, blue at left) or an elongated target with rounded
ovals (red at right). In the main condition the centre-to-centre distance of flankers
and targets was 5.5 deg, and eccentricity 26 degrees, leading to a Bouma
ratio of 0.21.
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crucial conditions in the elongated target condition: orthogonal
flankers and an unflanked baseline (open diamonds and squares in
Fig. 2b). Scatter for these two conditions was very similar, and more
than when the flankers were present. This shows that the flankers
actually improved precision, even compared with the isolated target
condition.

Figure 2c plots standard deviation and bias on a two-dimensional
plot, with points connected to follow the change inorientation. On this
plot, total root-mean squared error is given by the Pythagorean sumof
scatter and bias, the radial distance from the origin. For the points with
flanker orientation most distant from the target (near ± 45°), the total
error is around 15°. Between these extremes, total error falls off,
despite the constant bias. When the flankers and targets have similar
orientations, the error falls to around 11°, evidence that “crowding”
improves overall performance, by this measure.

If the effects shown in Fig. 2 represent visual crowding, they
should depend on critical spacing between target and flankers, and
follow Bouma’s law1. We therefore measured the effects as a function
of target-flanker spacing, for 5 participants. Figure 3 shows the data for
the rounded targets with elongated flankers (which show the strongest
effects). For the two smallest spacings (5.5 and 7.5 deg), bias showed
the characteristic S-shaped dependency on the orientation of the
flankers. For the larger spacings (11.0 and 16.6 deg), however, the effect
was much reduced and even inverted at 11 deg. As before, the curves
arefit by a derivative of gaussian function (Eq. 18), which is the product
of a linear regression (illustrated by dashed line in Fig. 3a) and a
gaussian. The best fitting slope of this regression is an estimate of the
weight given to the flankers when judging orientation. Figure 3b plots
the fitted weight as a function of target-flanker spacing (lower
abscissa), with the upper abscissa showing the normalized target-
flanker distance, the distance between target and flanker centres
dividedby the eccentricity (26 deg). Theweight drops from0.5 to0 for
normalized target-flanker distances between 0.3 and 0.4, broadly in
linewith the literature, suggesting that the effects observed here relate
to crowding.

The results so far show that integration is not obligatory, but
depends on the reliability of both target and flankers. They are also in
line with previous studies showing that effects are maximal when

targets are most similar to flankers. A remaining question is how the
flankers integrate with the target: each separately, or after combina-
tion with each other. Figure 4 illustrates two possibilities (see also
modelling section). One is a feedforward model where the target
integrates independently with low-level, high-resolution neural repre-
sentations of each of the flankers. The other depicts integration with
a broader representation including both flankers, potentially imple-
mented through recurrent feedback.

To distinguish between these two plausible possibilities, we
measured target bias with the orientation of the two flankers varying
independently. Specifically, one flanker (randomly top or bottom) was
always oriented + 15° from the target, while the other varied randomly
over the range. The logic is that the gaussian function windowing the
contextual effect should be centred where the orientations of target
and context coincide. If the integration occurs directly between the
target and individual flankers, then themaximum effects should occur
when the variable flanker coincides with the target; on the other hand,
if the integration is with a broader representation including both
flankers, maximum integration should occur when the flanker mean is
zero, which occurs when the variable flanker is −15°. These predictions
are illustrated in Fig. 4b: note that the individual flanker effect also
predicts the curve to be higher at all flanker orientations, as the fixed
flanker will exert a constant effect at all orientations of the variable
flanker.

The results for the rounded targets with elongated flankers are
shown Fig. 5a. The biases clearly follow the signature pattern, well fit
by a derivative of gaussian function. The centre of the function is
−10.8°, closer to the −15° predicted by integration with the average
orientation of the flankers, than to 0° predicted by the individual
flanker model. The mean height of the function is 0.5°, close to that
observed in the previous experiment (−0.9°), while the individual-
flanker integration model predicts a constant average bias 4.7°. Fig-
ure 5b shows the scatter for this experiment, which was reduced over
the region of bias, well described by an inverted Gaussian with center
at −14.26°, again close to the −15° predicted by the average orienta-
tion of the flankers.

To test significance, we bootstrapped the data 1000 times (sam-
pling with replacement) and measured the centre of the gaussian

Fig. 2 | Crowding depends on stimulus reliability and follows optimality rules.
a Average response bias (response minus target orientation) as a function of the
orientation of two identical flankers. Low reliability (rounded) targets in blue, high
reliability (elongated) in red. Positive biases refer to clockwise response errors, and
positive orientation differences indicate that flankers are clockwise with respect to
the target (so the biases are assimilative). Error bars show ± 1 SEM.N = 10 observers.
Dark lines show predictions from an ideal-observer Bayesian model which scales
the action offlankers according to their reliability andorientationdifference (Eq. 10
of model section). Light blue and red curves show predictions for the causal
inference model that doses flanker and target information according to their

reliability and the probability of originating from a common cause (Eq. 15 of model
section). b Response standard deviation as a function of the orientation of two
identical flankers, together with model predictions. Error bars show ± 1 SEM. N = 10
observers. Colour coding as in A. Isolated squares and diamonds show results of a
control experiment measuring orthogonal flankers (ort—diamonds) and an
unflanked baseline (B—squares). N = 8 observers. c Total response error parsed as
response standard deviation plotted against bias errors for the two conditions.
Dashed circles indicate regions with identical RMS Error, given by the Pythagorean
sum of the two types of error. RMSE varies with orientation, and is least around 0°,
when target and flankers coincide. Source data are provided as a Source Data file.
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derivative on each iteration. The results plotted in the histogram of
Fig. 5c show that on only 16 out of 1000 iterations (1.6%) was the
centre closer to 0° (individual flanker prediction) than to −15° (joint-
flanker prediction). This leads to a likelihood ratio (Bayes factor)
of 984/16 = 61.5, strong evidence in favour of the joint-flanker-
integration model.

Ideal observer model
Wepropose twoplausiblemodels to explain the pattern of data. Both
are motivated by principles of “optimal cue integration” commonly
used in multi-sensory perception34,36, which predict optimal combi-
nation of information from multiple sources after appropriate
weighting to minimize overall root-mean-square error. The first is
based on an ideal-observer model successfully used to model serial

dependence26, the second on a “causal-inference” model of multi-
sensory integration35. Both models predict the data well.

The ideal observermodel selects the appropriate weight to assign
to the flankers in order to minimize the total error in the reproduction
task26.

TotalRMSerror (E) can bedecomposed intobias (B) andprecision
(scatter standard deviation: S), whose squares sum to give total
squared error:

E =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 + S2

p
ð1Þ

The ideal responses (R) in a pooling model can be expressed as a
linear weighted combination of internal representation of target (T)
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Fig. 4 | Two possible sites of integration and their experimental predictions.
a Rationale for investigating the site of action of the flankers. They could either act
independently on the target (illustrated by purple arrows in top left panel), or first
pooled within a larger RF, which in turn biases the target (illustrated by the large
yellow circle and arrow in bottom left panel). b Predictions for the two hypotheses.
If the flankers act independently, when one is locked at + 15° and the other free to

vary, the pattern should be similar to that of the main experiment (centre close to
0°), but raised because of the action of the locked flanker (purple curve). If flankers
are first integrated at a more global stage, maximal effect is expected when all the
elements in the larger operator average 0°. Since one of the flankers is locked at
+ 15°, this occurs when the other flanker is −15°, leading to a leftward shift of the
curve of the main experiment (yellow curve).

Fig. 3 | Flanker integration decreases with distance, a signature of crowding.
a Response bias as function of flanker orientation for various target-flanker dis-
tances leading to four different normalized target-flanker distances (distance
betweenflanker and target centres divided by eccentricity). Data are obtained from
N = 5 observers and are fit with a derivative of gaussian function with free

parameters (Eq. 18). bWeight of the flankers (maximal slope of the curves in panel
a) as a function of the normalized target-flanker distance (colour-code as before).
Negative weights imply a repulsive, rather than attractive effect of flankers on
target. Error bars show ± 1 SEM. Source data are provided as a Source Data file.
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and flankers (F1 and F2), each weighted by w1and w2.

R=w1F1 +w2F2 + ð1�w1 �w2ÞT ð2Þ

As the two flankers of this study had the same aspect ratio they
should be weighted equally, (w1 =w2 =w), so Eq. 2 simplifies to:

R=wF1 +wF2 + ð1� 2wÞT ð3Þ

The mean of the responses (μR) is a simple linear combination of
the means of flankers and target (μ1, μ2 and μT ).

μR =wμ1 +wμ2 + 1� 2wð ÞμT = w μ1 +μ2

� �
+ 1� 2wð ÞμT ð4Þ

Bias is the difference between the mean estimated response (μR)
and real orientation, xT ; B=μR � xT . Using Eq. 4 and considering that
the average target representation (μT ) should be unbiased and coin-
cide with target (μT = xT ) it follows that:

B=μR � xT =w μ1 +μ2

� �
+μT � 2wμT � xT =wðμ1 +μ2 � 2μT Þ ð5Þ

The term μ1 +μ2 � 2μTcan be rearranged as 2ððμ1 +μ2Þ=2� μT Þ
which is twice the distance between the average of the flanker repre-
sentations, ðμ1 +μ2Þ=2, and the target representation μT . For con-
venience we define:

d = ðμ1 +μ2Þ=2� μT ð6Þ

so that Eq. 5 becomes:

B=wðμ1 +μ2 � 2μT Þ=2wd ð7Þ

Variance of the linear combination of the flankers and target is itself
a linear combination of the flanker and target variances (σ2

F and σ2
T ) with

the squared coefficients

S2 =w2σ2
F +w

2σ2
F + ð1� 2wÞ2σ2

T ð8Þ

From Eqs. 1, 7 and 8 it follows that RMSE can be written as:

E = 4w2d2 +w2σ2
F +w

2σ2
F + ð1� 2wÞ2σ2

T =4w
2d2 +w2σ2

F

+w2σ2
F + ð1� 4w+4w2Þσ2

T

ð9Þ

Since RMSE is a function of second order of w, it is minimized
when w= �b

2a , so the optimal weight (wopt) is obtained at:

wopt = � 1
2

�4σ2
T

4σ2
T +2σ

2
F +4d

2 =
σ2
T

2σ2
T + σ

2
F +2d

2 ð10Þ

This equation has much in common with all Bayesian-like inte-
grations used in multi-sensory research and serial dependence: the
weight depends directly on target variance σ2

T , so targets of low relia-
bility (inverse variance) benefit more from integration, resulting in
higher weighting to the flankers. Increase in flanker variance (σ2

F ) has
the opposite effect.

The term 2d2 is fundamental for the signature function found in
serial dependence literature, as the weight of the flankerswill decrease
with angular difference between target and average flanker orienta-
tion. This ensures that contextual cues are used only if they are plau-
sibly similar to the target26,32,33. Importantly, the point that will ensure
maximal weight of the flankers is when the target coincides with the
average of the flankers (i.e. d2 =0).

Equations 3 and 10 define the optimal dependence of flankers.
However, theflankers are not theonly contextual information thatmay
influence responses. Two obvious (and related) examples are serial
dependence and “regression to the mean”, both leading to a tendency
to underestimate 55° and overestimate 35°. Given that the average
reproduction of the two angles was 50.5° and 37.2° respectively, we
assume that the regression to the mean (ρ) was a factor of 0.67 (cal-
culated as (50.5−37.2)/20). Thus the final estimate of response R needs
to be multiplied by this factor, and a constant weighted bias summed,
pulling the responses towards the average (45°). We also include an
additional scaling factor (α) comprising any further unspecified influ-
ences or sub-optimal behaviour:

R=αρðwF1 +wF2 + ð1� 2wÞTÞ+ ð1� ρÞ45 ð11Þ

Fig. 5 | Integration depends onorientation of both flankers, indicating a global
siteof action. a Biasing errors as function of a single flanker orientation, while the
other flanker was locked at + 15°. Error bars show ±1 SEM. Colours and conven-
tions as for Fig. 2. N = 13 observers. Thick dark lines refer to the ideal observer
model (Eq. 10), thick light blue lines to the causal inference model (Eq. 15).

Thin dashed lines show best-fitting derivative of gaussian, with all parameters
free to vary (Eq. 18). b Response standard deviation as a function of the variable
flanker orientation. Conventions as in panel a. c Histogram of the centres of
the gaussian derivative for 1000 bootstrap fits. Source data are provided as a
Source Data file.
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Causal inference model
Analternativemodel prescribes that an optimalblendof information is
obtained by maximum likelihood combination of two sources
(assuming that the two curves originate from the same cause), multi-
plied by the probability that the two sources originate from the same
cause35. Within this framework maximal interaction between cues
occurs when the two sources coincide, where the weight assigned to
the two cues is the well known formula used in sensory integration
literature34,36 (see also Eq. 10):

wmax
A =

σ2
B

σ2
A + σB

2
ð12Þ

The probability of the two sources originating from a common
cause can be calculated using Bayes’ Theorem, as demonstrated in35.
Assuming gaussian probability distribution functions (with centres at
μA and μB and variances σ2

A and σ2
B), the solution is solvable

analytically35:

p A,B∣C = 1ð Þ / exp � 1
2

μA � μB

� �2
σ2
P + μA � μP

� �2
σ2
B + μB � μP

� �2
σ2
A

σ2
Aσ

2
B + σ

2
Aσ

2
P + σ

2
Bσ

2
P

 !

ð13Þ

whereμP and σ2
P) are themean and variance of the a-prior likelihood of

there being one cause (the prior, also gaussian). If no prior knowledge
is available (σ2

P ! 1) Eq. 13 simplifies to

p A,B∣C = 1ð Þ / exp � 1
2

μA � μB

� �2
σ2
A + σ

2
B

 !
ð14Þ

This is a gaussian peaking when the distributions of the two cues
coincide (μA =μB) and falling off with a space constant related to the
sum of their variances (σ2

A + σ
2
B).

In the specific case of our experimentwe canmap the two sources
of information to the flanker compound (a gaussian with centre at
μC = μ1 +μ2

� �
=2, variance σ2

C = σ
2
F=2) and the target (assumed gaussian

with centre μT , and variance σ2
T : Putting together Eqs. 12 and 14, the

bias (difference between the response and the target) is given by:

B=wmax
F p F ,T ∣C = 1ð Þ μF � μT

� �
=

σ2
T

σ2
C +σ

2
T

exp � 1
2

μC � μT

� �2
σ2
C + σ

2
T

 !
μC � μT

� �
ð15Þ

Which is a derivative of gaussian as a function of average flanker
orientation μC .

It also follows that response scatter is minimized only when the
system considers a common cause likely (Eq. 14), predicting U-shaped
(gaussian) plots of Figs. 2b and 5b.

As above, we need to incorporate regression to the mean (ρ
=0.67) and to allow for suboptimal behaviour to this end we introduce
two free parameters that regulate the amplitude of the dependency on
the flankers (β) and the breadth of the region of interaction (γ) so that
the average bias is:

B=βρ
σ2
T

σ2
C + σ

2
T

exp � 1
2

μF � μT

� �2
γ2 σ2

C + σ
2
T

� �
 !

μF � μT

� � ð16Þ

Interestingly, comparable behaviour is obtained if, instead of
constructing a system which multiplies probabilities as in35, one con-
siders a system that measures the similarity between two distributions
via their point-by-point product of the distributions and takes either
the peak or area under the distribution.

The product of gaussians is itself a gaussian, is centred at
(μBσ

2
A + μAσ

2
B

σ2
A + σ

2
B

), has variance ( σ2
Aσ

2
B

σ2
A + σ

2
B
) and peak at:

1
2πσAσB

exp � μA � μB

� �2
2 σ2

A + σ
2
B

� �
 !

ð17Þ

So the peak embeds the same behaviour of Eq. 14. It is easy to
demonstrate that also the area under the curve follows the same
gaussian dependency on the distance between cues as the area of a
gaussian is equivalent to the peak (Eq. 16) times the standard deviation

of the curve (
ffiffiffiffiffiffiffiffiffiffiffi
σ2
Aσ

2
B

σ2
A + σ

2
B

r
) and a constant factor 1=

ffiffiffiffiffiffi
2π

p
all of which are

constant once the distributions have knownwidth and thus reduce to a
scaling factor.

Model fitting
The predictions of the two modelling approaches are overlayed on
the data of Figs. 2 and 5 with dark and light colours. To minimize
degrees of freedom we derived the values of sensory reliability from
thedata of Fig. 2b, assuming that the extremepoints (± 30° and± 45°)
give baseline data, not influenced by flanker integration: this is 13.2
for rounded targets (blue symbols), and 10.0 for elongated targets
(red symbols).

We implemented the ideal observer model (Eq. 11) with only a
scaling constant (α), which allows for sub-optimal behaviour. Thesefits
are particularly good for the rounded targets (with largest effects),
with R2 of 0.93 and 0.71 (for bias and scatter), and 0.37 and 0.74 for
elongated targets) and come about assuming α =0.7 and 0.5 for the
two conditions. One of the key features of the ideal observer model is
that it reduces RMSE by leveraging on all available information. Thus it
predicts the Global Integration of Fig. 4, with centres of the Gaussian
derivatives close to −15°. Besides capturing this key feature, themodel
also provides goodquantitative fits to the data of Fig. 5awith R2 of 0.73
and average fits to those of Fig. 5b 0.76 for bias and scatter respec-
tively (α=0.57).

We used the same reliability values from Fig. 2b to implement the
“optimal causality gating model”35, the derivative of gaussian function
plotted with light colours in Figs. 2 and 5. The sensory reliabilities fix
both the maximal slope of the curve (see Eq. 12) and the width of the
region of interaction (see Eq. 14). Assuming the same sensory preci-
sions as above (13.2 and 10.0 for the two types of stimuli) maximal
slopes should be 0.78 and 0.53 for the two conditions. Considering
regression to the mean, which caps the possibility of detecting the
weight of the flankers to about 0.7, themodel predictions are 0.52 and
0.35, still larger than the real data (0.37 and 0.10). Also thewidths (28.4
and 28.6) are larger than those predicted by Eq. 14 (18.8 and 19.2). For
this reason we allowed two scaling factors, one enabling lower
weighting of the context (β) and the other modulating the width (γ).
Setting β = 0.71 and γ = 1.51 led to good fits with R2 =0.97 and 0.75 for
the low reliability target (bias and scatter curves), and0.73 and0.84 for
the high reliability target (β = 0.28 and γ = 1.48). As with the other
model, the prediction in Experiment 2 is for large pooling of all avail-
able cues, thus the prediction is that of a centre at −15°. Thismodel also
provides good fits for response bias (R2 = 0.89) and acceptable fits for
response scatter (R2 = 0.78,β =0.73 and γ =0.97).

Discussion
The results of this study suggest an alternative interpretation of visual
crowding: that it is a by-product of efficient Bayesian processes, which
lead in general to improved perceptual performance, minimizing RMS
error. We tested and provided evidence supporting several key pre-
dictions of this idea. Firstly, crowding, measured as flanker-induced
orientation bias, was greatest when targets had the weakest orienta-
tion signals (least reliability) and flankers had the strongest, most
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reliable, signals as predicted from most models of optimal cue
combination34,36. The magnitude of the bias varied with the difference
of target and flanker orientation, following the predicted non-linear
pattern, increasing to a maximum of around 15°, then falling off for
larger orientation differences. Importantly, the interaction of the
flankers and target was associated with a reduction in response scatter
(increased precision), which led to a reduction in total RMS error, an
index of improved performance. Finally, the results suggest that the
bias does not result from direct interactions with individual flankers,
but from interaction with a representation of the average orientations
of the two flankers. All these results were predicted by optimal feature
combination principles, and quantitatively well modelled an ideal-
observer model that minimizes reproduction errors.

Our results are consistent with previous observations showing
that crowding depends on relative strength or saliency of target and
flankers, with high contrast targets more immune to crowding, and
configurations embedded in noise leading to stronger assimilative
effects37,38. Our stimuli were matched for luminance and contrast, but
differed in strengths of orientation signals (determined by aspect
ratio), leading to different reliabilities, suggesting that the crucial
variables are not low level properties but the reliabilities that they
afford. Our results also agree with the myriad of experiments showing
that similarities in shape (in this case orientation) cause maximum
crowding6,21,39,40, and offer an explanation of why.

These results are clearly difficult to reconcile with simple models
of obligatory integration12,41, indicating that these mechanisms are
more sophisticated and selective than previously envisaged. Passive
integration systemsmay be tweaked to explain the stronger effects for
more elongated flankers (such as having more Fourier energy at that
orientation), but cannot easily explain the fall off in crowding effects
when the difference exceeds 15°. Any basic integrator would necessa-
rily combine orientation energy of all angles, not only similar angles.
On the other hand, the flexible integrator models proposed here
(Eqs. 10 and 15) predict both the pattern and the magnitude of the
results. Furthermore, the final experiment suggests that this intelligent
orientation-dependent integration is unlikely to occur directly within a
higher order cell itself, as the orientation-dependent integration
function aligns with the average of two disparate flankers, rather than
with each individual flanker. This suggests that the integration is
between the target and a broad representation that includes both
flankers.Mechanisms operating directly between target and individual
flankers, such as the proposed “local association field”42 between
neurones of similar tuning43, are not consistent with the results of
Fig. 5, which shows that flankers are first combined with each other
before exerting their effects on the target.

Combination of target and a broad representation of both flan-
kers could be implemented in several ways. One physiologically plau-
sible mechanism would be feedback from mid-level areas, such as
V218,19 or V42,16,17, which have large receptive fields, integrating over a
wide area. These cells could contain information of both flankers (as
well as the target), which could be fed back to low levels (e.g. V1) to
integrate flexibly with finer representations of the target. Within this
framework the fine-grain target information is not lost, but combined
with broad contextual information in an optimal manner to improve
performance. This is analogous to the process of serial dependence,
where higher-level representations of perceptual history (often
termedBayesian priors) aregenerated atmid- to high-levels of analysis,
but feed back onto fairly low processing levels44. Similar processes
could evoke crowding, integrating over space rather than time.

Interesting, the spatial selectivity of serial dependence seems to
be spatiotopic, in external rather than retinal coordinates25,45. Crowd-
ing has also been shown to be spatiotopically selective46,47. Spatiotopic
selectivity is a signature of high-level and functionally complex pro-
cessing, indicating that both crowding and serial dependence involve
moderately high levels of analysis.

Similarity between target and flankers is a major diagnostic cri-
terion of crowding, and the current study suggests a reason for this.
The interaction between target and flankers is determinedby twomain
factors: relative reliability (highly related to salience) of target and
flankers and, importantly, by target-flanker similarity (d in Eq. 10,
μC � μT

� �
in Eq. 15). This explains why the biasing effects are maximal

for similarly oriented flankers, and steadily fall off. Formally, this
behaviour derives from theoretical minimization of total RMS errors,
explained in detail in the modelling section, but readily understood
intuitively. RMS Error comprises two orthogonal factors, accuracy
(average bias) and precision (scatter around the mean), whose Pytha-
gorean sum yields total error. Thus, while the contextual effects do
lead to inaccuracies (biases), these are more than offset by the
increasedprecisiondecrease in response scatter (Fig. 2c). Clearly, if the
effects were to increase continuously with orientation, then the bias
would become large, and offset the reduction in scatter, leading to
increased error: integration is therefore efficient only over a limited
range. Note that the efficiency-driven ideal model gives good fits
simultaneous to both bias and scatter data with only one free para-
meter, a scaling factor. This comes out at around 0.7 after taking into
account other known phenomena of orientation judgements, such as
regression to the mean48,49.

Our data and modelling also shed light on why it is usually the
overall stimulus configuration promotes crowding, rather than indivi-
dualflankersworking in isolation. Regardless of the assumptions leading
to the twomodels (IdealObserverorCausal Inference), theybothbenefit
from accumulation of relevant information, and hence the context as to
be ascertained by pooling both flankers. A direct consequence of this is
that it is their combined value that affects the stimulus.

Maximum crowding occurs when flankers and targets are most
similar; yet our results also showed that precision is maximal when
orientations coincide, seemingly contrary to a vast body of much lit-
erature reportingpoorperformanceat thatpoint6,7,21,50,51. However, this
apparent discrepancy depends critically on how performance is mea-
sured. As mentioned above, our technique measured separately the
accuracy and precision. Response scatter (a measure of imprecision)
was lowest when the orientations coincided, as predicted by our
models. RMSE (comprising both precision and accuracy) was also
lowest at this point. Other standard performance measures will not
necessarily show this pattern. For example, measures of “percent
correct” will be poor when there is a bias, and will not be improved by
high precision (minimal scatter around the incorrect bias). One
crowding study that measured separately bias and precision in an
orientation task (aswedid) found similar results to ours, withprecision
highest when target and flankers coincide (see Fig. 4a in52). Calcula-
tions from their data show that RMSE was also lowest when orienta-
tionsmatched, about half that of when they differed by 45°. Their data
were collected at 3.7 deg eccentricity (compared to our 26 deg),
showing that the results reported here generalize to lower eccentri-
cities. Other studiesmeasuring standarddeviation of responses do not
confirm so closely our results53, but there are differences in the para-
digms used (such as using forced choice rather than reproduction
techniques and other details of the display sequence).

The current experiment shows that under conditions of crowding,
information about the target is not necessarily lost. This is consistent
with a good deal of previous evidence (see reference54 for review),
including studies showing that it can affect the ensemble judgment12,
can cause adaptation10 and that crowding-induced biases may not
affect grasping55. Even more dramatic are the demonstrations that
increasing flanker length56 or adding additional flankers22 can decrease
or eliminate crowding. Our study employed simple, well controlled
stimuli to allowquantitative prediction andmeasurement of crowding-
effects, similar to the studieswith serial dependence studies. Thus they
do not readily relate to the clever uncrowding studies of Herzog and
colleagues. However, it is not difficult to envisage extensions to the
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model incorporating grouping principles within the rules of integra-
tion, in the spirit of the general principles of our model: flexible,
“intelligent” combination of signals, rather than a rigid integration via
“rectify and sum” or similar rules18.

We are not the first to propose that crowdingmay be beneficial to
vision. Parkes et al.12 suggested that compulsory integration could be a
by-product of ensemble perception, the ability to judge some average,
global property, such as orientation: what is lost in the individual
perceptionmay be gained by a perception of the gist of the ensemble.
However, when examined closely, this idea did not hold up, as
ensemble perception and crowding follow different psychophysical
rules, suggesting they are different processes57. It would be interesting
to see whether applying a similar approach to ensemble perception
(asking observers to report average rather than target orientation)
would help further to explore the commonalities and differences of
the two processes.

Readers may find it paradoxical that we are claiming that crowd-
ing, which impacts heavily on so many fundamental aspects of daily
life, such as face recognition and reading, could be considered in any
sense “optimal” or “efficient”. Clearly, optimality depends on what is
being optimized. Our models lead to minimization of total root-mean-
square error, a criterion used in many branches of engineering and
science, and becoming increasingly popular in neuroscience, parti-
cular motor and perceptual research34,58–61. However, minimizing
scatter and total error can also lead to misperceptions, or illusions
such as the “ventriloquist effect”36 or the “hollow mask illusion”29.
Similarly, minimizing total error may be “ideal” for some basic tasks,
but can lead to biasing errors that impact strongly on face and letter
recognition.

Crowding occurs for many object properties, including contrast,
motion and colour8,21,53. Herewehave demonstrated clear signatures of
optimality in crowding of orientation, a fundamental feature for shape
perception, object recognition and reading. However, it is not certain
that the effect will generalize to all forms of crowding. It would be
interesting to extend the paradigm to other examples, such as colour
ormotion53, to testwhether crowding of these features cause the same
form of optimal integration. Similarly, it would be interesting to
measure integration under conditions where crowding is minimal,
such as in central viewing, to test whether crowding and integration
are causally related.

In summary, the current study suggests that crowding may be
analogous to serial dependence, an index of predictive coding-like
processes, pointing to similar function and mechanisms. As serial
dependence has been shown to exploit temporal redundancies to
maximize performance, crowdingmay also reflect similar exploitation
of redundancies over space. It is worth noting that while the rules
governing crowding are flexible, leading to improved performance,
crowding remains completely obligatory: no effort of will or deploy-
ment of attention can allow us to resolve the crowded objects, or to
ignore the contextual effects of the orientated flankers. Indeed, while
our proposed pooling process is flexible and “intelligent”, it remains
automatic, not subject to voluntary control. This is similar to many of
the experience-driven perceptual illusions, such as the “hollow mask
illusion”29: no effort of will can cause us to see the inside of a hollow
mask as concave, we always see the convex face. However, while visual
crowding remains an obligatory limitation to object recognition, we
conclude that like the effects of temporal context and experience, it is
best understood not as a defect or bottleneck of the system, but the
consequence of efficient exploitation of spatial redundancies of the
natural world.

Methods
Participants
Experimental procedures are in line with the declaration of Helsinki
and approved by the local ethics committee (Commissione per l’Etica

della Ricerca, University of Florence, n. 111 7 July 2020). Written
informed consent was obtained from each participant, which included
consent to process, preserve and publish the data in anonymous form.

Nineteen participants with normal or corrected-to-normal vision
were recruited (aged 18–55 years, mean age = 34, 10 females).

Stimuli
The stimuli, illustrated in Fig. 1a, were generatedwith Psychtoolbox for
MATLAB (R2016b;MathWorks). They comprised an oval-shaped visual
target flanked by oval-shaped upper and lower visual flankers, dis-
played 26 deg eccentric fromthefixationpoint,with the target close to
the horizontal meridian (vertical position was slightly varied from trial
to trial to avoid pre-allocation of attention to the target) and flankers
5.5 deg away from the target. Both target and flankers were sketches of
oval shapes, defined by 12 dark grey dots (diameter 0.3 deg, 1.4 deg
inter-dots distant, 16.8 deg perimeter), presented against a uniform
grey background. The target was orientated either + 35° or + 55°
(clockwise) from the vertical, and flanker orientation randomly chosen
in steps of 5° from −45° to + 45° with respect to the target orientation.
The two flankers were 5.5 deg from target, leading to a Bouma ratio of
0.2. Wemanipulated the reliability of orientation information of target
and flanker stimuli by using two different aspect ratios, 2.8 (axes 3.48
and 1.23 deg) and 1.4 (axes 3.19 and 2.28 deg), illustrated in Fig. 1a. The
more elongated target was always associated with more rounded
flankers, and vice versa. In each experimental session of the three
experiments, the two target-flanker combinations were shown both
kinds of stimuli in random order.

Procedure
Stimuli were displayed on a linearized 22” LCD monitor (resolution
1920 × 1080 pixels, refresh rate 60Hz). Observers were positioned
57 cm from the monitor, in a quiet room with dim lighting, and
maintained fixation on a small (0.35 deg) black central dot. After a
random delay from the observer initiating the trial, the stimulus was
displayed for 167ms. Then a thin rotatable white bar (0.05 × 5 degwith
a gaussian profile) was presented at the fixation point with random
orientation, and observersmatched its orientation to that of the target
by mouse control. In the first two experiments, the orientation of the
two flankers was yoked, while in the third, one flanker was always +15°
(clockwise) while the other varied from −45° to +45°. In the second
experiment, the target-flanker distance varied, being 5.5, 7.5, 11.0 and
16.6 deg, leading to a normalized target-flanker distance of 0.21,
0.27, 0.4, 0.6.

Ten observers (6 females, mean age = 36) participated in the first
experiment, five in the second (3 females, mean age = 40), thirteen in
the third (7 females, mean age = 34). They contributed for a total of
10699 trials for the first experiment, 14377 for the second (spread
across the four flanker-target distances) and 16574 for the last.

As a control experiment, aimed at measuring response standard
deviation, we repeated the experiment probing two baseline condi-
tions either with 90° flankers or unflanked. As in this experiment often
there would have been a recognizable unflanked target we increased
the number of possible target orientations so that they spanned from
(22.5° to 67.5°) either clockwise from vertical or counter clockwise
from vertical. Eight observers (5 females, mean age = 35) participated
to this extra batch of data, contributing for a total of 889 trials.

Data analysis
Responses occurred out from the range between 0.5 and 3 seconds
after the stimulus offset were removed (for a total of 15.9% trials across
the 3 experiments), as were responses with reproduction error greater
than 35° (6.9% of trials).

For each target and relative orientation of the flanker, we calcu-
lated the average constant error (bias, positive meaning clockwise)
and scatter (computing residuals separately for each observer and
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averaging them). We then averaged the values for the two targets. Bias
functionswerefitted by a derivative of gaussian function, which can be
considered to be a gaussian of width s multiplied by a straight line of
slope a [or w], which can be considered the weighting given to the
flankers: 1means the flankers are weighted equally to the target. Bias is
given by:

B=a � θ�mð Þexp � θ�mð Þ2
s2

 !
+ b ð18Þ

Where θ is orientation difference, m the centre, and b the vertical
offset of the function. a, b and m were free to vary.

Scatter (S) was defined as the average root variance in each con-
dition. The variation with orientation a gaussian function in the form:

S=a � exp � θ�mð Þ2
s2

 !
+b ð19Þ

Where b is the baseline at high orientation differences and a is the
amplitude of the Gaussian. As Bias and Scatter likely originate from the
same process, we yoked the parameter s to best fit both curves.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The processed data needed to evaluate the conclusions in the paper
are available as a Source Data file. The raw data used in this study are
available in the Zenodo database under accession code (10.5281/
zenodo.6460723)62. Source data are provided with this paper.

Code availability
TheMATLAB source codes thatwere used to generate the datasets and
analyse the results are available at a dedicated Zenodo repository
(https://doi.org/10.5281/zenodo.6460723)62.
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