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Abstract: People with peripheral neuropathy (PN) are at risk of falling. Many people with PN have
comorbid cognitive impairment, an independent risk factor of falls, which may further increase the
risk of falling in people with PN. However, the negative synergic effect of those factors is yet to
be reported. We investigated whether the presence of cognitive impairment exacerbates the risk
of falls in people with PN by measuring gait variability during single-task walking and dual-task
walking. Forty-four adults with PN were recruited. Based on the Montreal Cognitive Assessment
(MoCA) scores, 19 and 25 subjects were cognitively impaired and intact, respectively. We measured
coefficients of variation of gait speed, stride length, and stride time using validated body-worn
sensors. During single-task walking, no between-group differences were observed (all p > 0.05).
During dual-task walking, between-group differences were significant for gait variability for gait
speed and stride length (51.4% and 71.1%, respectively; p = 0.014 and 0.011, respectively). MoCA
scores were significantly correlated with gait variability for gait speed (r = 0.319, p = 0.035) and stride
length (r = 0.367, p = 0.014) during dual-task walking. Our findings suggest that the presence of
cognitive impairment exacerbates the risk of falls in people with PN.

Keywords: Cognitive impairment; diabetic peripheral neuropathy; chemotherapy-induced peripheral
neuropathy; single-task walking; dual-task walking; gait variability; body-worn sensors

1. Introduction

Peripheral neuropathy (PN), causing numbness in the foot, affects more than 20 million people in
the United States [1]. People with PN are prone to falls [2,3], resulting in reduced quality of life and
increased mortality [4,5]. Statistics show that people with PN have up to 23 times higher risk of falls
compared to those without [6]. Although the numbness in the foot is considered a major risk factor for
falls [7–10], a recent review suggests that the numbness may not solely explain the high risk of falls [11].
For example, one study reported that people with type 2 diabetes and foot numbness had similar
postural sway, an indicator of the risk of fall, when compared to people with type 2 diabetes but no
foot numbness [12]. Thus, in order to fully understand the mechanism of the frequent falls in people
with PN, it is necessary to identify other specific factors than foot numbness that contribute to falls.

Cognitive impairment is prevalent in people with PN [13–16] and a well-established risk factor
for falls in the general population [17,18]. For example, cognitively impaired older adults have two
times higher risk of falls compared to cognitively intact older adults [19]. Despite the association
between cognitive impairment and increased risk of falls in other populations, its effect on the risk of
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falls in people with PN remains elusive. Based on findings in other populations [17,18], it is reasonable
to hypothesize that the presence of cognitive impairment in addition to PN may exacerbate the risk
of falls.

Investigating walking under cognitively demanding conditions, i.e., dual-task walking, may be a
proper candidate test to identify the effect of cognitive impairment on the risk of falls in people with
PN. As walking is not just an automatic physical task but an attentional-demanding task of continuous
postural control, an additional cognitive task interferes with the attention of postural control during
walking [20,21]. Previous studies have reported the impact of cognitive status on dual-task walking
in the general population or patient populations other than those with PN [22–26]. For example,
the increase in gait variability from single-task walking, in which no other task but walking was
demanded, to dual-task walking was significantly greater for people with cognitive impairment
(without neurological or orthopedic disorder) compared to people without cognitive impairment [25].
In stroke survivors, gait variability increased with cognitive impairment [26]. Although these previous
studies did not directly report dual-task walking performance in people with PN, they provided
implications that gait variability may worsen with cognitive impairment in PN.

In terms of equipment to assess gait variability during single-task walking and dual-task
walking, previous studies utilized an optoelectronic motion capture system [27,28] or instrumented
walkway [29,30]. Although their validities and accuracies are well established, their high cost and
restricted capture volume (e.g., captures between 5 and 10 m) limit their applications, as continuously
discussed in previous reports [31,32]. Furthermore, they are not appropriate outside a gait laboratory
such as in busy clinical settings and home settings, which further limits translating the outcomes for
clinical use. In order to address these limitations from so-called “conventional” methods, body-worn
inertial sensors that are low-cost, not restricted by capture volume, and have a potential for clinical
translation (i.e., eligibility for translating outcomes) are more appropriate to study gait variability
associated with cognitive impairment.

The overall objectives of this study were to investigate whether or not the presence of cognitive
impairment increases the risk of falls in people with PN. In order to assess risk of falls, we measured
gait variability during single-task walking and dual-task walking using body-worn inertial sensors.
Based on previous findings about the effect of cognitive impairment on gait variability in other
populations [25], we hypothesized that people with PN and cognitive impairment would have greater
gait variability (i.e., more unsteady gait) during single-task walking and dual-task walking compared
to people with PN without cognitive impairment. We also hypothesized that people with PN and
cognitive impairment, when compared to people with PN without cognitive impairment, would have
a greater increase in gait variability from single-task walking to dual-task walking.

2. Materials and Methods

2.1. Participants

This study is an additional analysis of two datasets in which walking performance in people
with foot numbness because of PN due to either diabetes mellitus or chemotherapy was assessed.
Originally, motion data from 31 people with PN due to diabetes mellitus and 35 people with PN due to
chemotherapy were available. Among them, we included participants whose data for cognitive status,
single-task walking, and dual-task walking were wholly available. In addition, in order to rule out
any confounding effects from neurological disorders outside of PN, we excluded participants with a
history of additional neurological disorders such as Parkinson’s disease, stroke, and dementia. As a
result, we included data from 44 participants. Then, the 44 people with PN were classified into two
groups: PN without cognitive impairment (N = 25) and PN with cognitive impairment (N = 19).

All participants were recruited from outpatient podiatry or oncology clinics located of the Greater
Houston Area in Texas and had foot numbness that was caused by type II diabetes mellitus or
chemotherapy. PN diagnoses were confirmed by the participants’ physicians. All participants were
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able to walk independently. The experimental protocols were conducted in the Gait Laboratory of the
Interdisciplinary Consortium on Advance Motion Performance at the Baylor College of Medicine in
accordance with the regulations and guidelines of the Declaration of Helsinki, and they were approved
by the Institutional Review Board at the Baylor College of Medicine. We obtained written informed
consent from all participants prior to their participation.

2.2. Physiological, Psycho-Cognitive, and Functional Assessments

We assessed the severity of PN by measuring vibration perception threshold (VPT) in the plantar
surface of the foot with a standard Biothesiometer (Bio-Medical Instrument, Newbury, Ohio) as
performed previously [33–37]. For each participant, we measured VPT for the first and fifth metatarsal
heads and heel in each foot with the probe of the Biothesiometer. We gradually increased the vibration
from 0 V until participants began feeling the vibration. We then continued to increase the vibration
slightly and began decreasing the vibration until participants could no longer feel any vibration. When
the difference between two vibrations was less than 2 V, the results were accepted. The greater value
was considered the VPT value for the site of evaluation. VPT was the maximum value among the six
VPT values, and it was considered as the severity of PN.

We measured cognitive status using the Montreal Cognitive Assessment (MoCA) [38]. MoCA
assesses multiple cognitive domains of visuospatial and executive functions, memory, attention,
and language with a score ranging between 0 and 30. In the current study, we used the cutoff

score of 22 and below to identify those with cognitive impairment [39]. MoCA was used to identify
dual-task related motor dysfunction previously [40,41]. Additionally, we assessed for depression in
each participant using the Center for Epidemiological Studies Depression Scale (CES-D) [42]. CES-D is
a 20-item self-administered questionnaire that evaluates symptoms associated with depression such as
sleep, appetite loss, and loneliness. Scores for each item range from 0–3 (a total of 60), and someone
with a score of 16 and over in the CES-D is considered at risk for depression. We also assessed fear
of fall using the Falls Efficacy Scale International (FES-I) [43]. FES-I is a 16-item self-administered
questionnaire. Scores for each item range from 1–4 (a total of 64), and someone with a score of 20
and over on the FES-I is considered at moderate to high fear of fall [44]. Participants also provided
information about their history of fall in the past 12 months.

2.3. Walking Performance

We evaluated walking performance under single-task and dual-task conditions in a hallway
at the Baylor College of Medicine McNair building located in Houston, Texas. Each participant
began walking from an upright standing position at a comfortable pace for them. For the single-task
walking condition, participants were instructed to walk as comfortably and normally as possible.
For the dual-task walking condition, participants were instructed to count backward from a random
number specified by clinical staff while walking. For both walking conditions, participants walked
approximately 12 m (40 feet) in the hallway.

While participants were walking, we collected movement data using two commercially available
inertial sensors (LegSysTM, BioSensics, Watertown, Massachusetts) worn on the distal end of the
anterior surface of the shanks using flexible straps. Each inertial sensor was composed of an
accelerometer, a gyroscope, and a magnetometer that collected the linear acceleration and angular
velocity of the body segment on which the sensor was worn. The sampling frequency of each sensor
was set at 100 Hz. The locations and algorithms of the inertial sensors for measuring spatiotemporal
gait parameters (gait speed, stride length, stride time) and gait variability of the spatiotemporal gait
parameters were validated in previous studies [32,45–47].

2.4. Data Analysis

The primary outcome was gait variability. For both walking conditions, we calculated the
coefficient of variation (CV) of gait speed, stride length, and stride time. CV was calculated as
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the ratio of the standard deviation to the mean, expressed as a percentage. In addition, for both
walking conditions, we calculated spatiotemporal gait parameters such as gait speed, stride length,
and stride time.

2.5. Statistical Analysis

Between the two groups, we compared demographic and clinical characteristics using independent
sample t-tests for body mass index, MoCA scores, and VPT, Mann–Whitney U tests for age, FES-I
scores, CES-D scores, and number of falls, and chi-square tests for number of women, participants
who fell in the last 12 months, participants at risk of depression, and participants with moderate to
high fear of fall.

Between the two groups, we compared gait speed, stride length, stride time, and CV of gait speed,
stride length, and stride time for each walking condition using analysis of covariance (ANCOVA),
accounting for potential effects of age, body mass index, and sex on the outcomes. Bonferroni correction
was applied for ANCOVA tests. In addition, between the two walking conditions, we compared the
outcomes for each group using a linear mixed model with random effects of participants and fixed
effects of age, body mass index, sex (i.e., covariates), and walking conditions (i.e., single-task and
dual-task). Lastly, we investigated correlations between MoCA scores and the primary outcomes
(i.e., CV of gait speed, stride length, and stride time) across all participants using Spearman’s correlation
(rs). For all statistical analyses, a p-value less than 0.05 was considered statistically significant. We also
calculated effect size using Cohen’s d, and denoted it as d. Effect size was classified as follows: d ≤ 0.19
= no noticeable effect; 0.20 ≤ d ≤ 0.49 = small effect; 0.50 ≤ d ≤ 0.79 = medium effect; d ≥ 0.80 = large
effect [48]. We used SPSS®version 25 (IBM, Armonk, New York) for statistical analysis.

3. Results

3.1. Participant Characteristics

Table 1 shows participant demographic and clinical characteristics. As expected, MoCA scores
were significantly higher in the cognitively intact group compared to the cognitively impaired group
(p < 0.001). However, there was no significant difference between the two groups for age, body mass
index, sex, VPT, CES-D, FES-I, history of falls, high risk of depression, or moderate to high fear of fall
(all p > 0.05).

Table 1. Participant characteristics for each group. PN—peripheral neuropathy; VPT—vibration
perception threshold; MoCA—Montreal Cognitive Assessment; CES-D—Center for Epidemiological
Studies Depression Scale; FES-I—Falls Efficacy Scale International.

Measures
PN without Cognitive

Impairment
(N = 25)

PN with Cognitive
Impairment

(N = 19)
p-Value

Age, years 66.5 ± 9.1 68.5 ± 9.1 0.324
Body mass index, kg/m2 31.3 ± 5.9 29.0 ± 6.2 0.228

Men:Women, N 15:10 8:11 0.888
VPT, volts 26.3 ± 12.7 27.2 ± 12.1 0.813

MoCA 25.6 ± 1.6 19.6 ± 2.4 <0.001 *
CES-D 6.6 ± 8.2 9.1 ± 6.7 0.125

Risk of depression, N 2 4 0.184
FES-I 29.3 ± 14.7 35.2 ± 14.0 0.073

Moderate to high fear of fall, N 17 17 0.092
People who fell in the past year, N 8 7 0.737
Number of falls in the past year, N 0.9 ± 2.1 0.6 ± 1.1 0.866

Note: Variables are expressed as means ± standard deviation. Moderate to high fear of fall represents people that
had FES-I ≥ 20. Risk of depression represents people that had CES-D ≥ 16. The asterisk denotes a significant
between-group difference (p < 0.05).
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3.2. Walking Performance between the Cognitively Intact and Impaired Groups

Table 2 shows walking performance between the two groups for each walking condition. During
single-task walking, we found no significant differences for any of the gait variables between the two
groups (all p > 0.05; all d ≤ 0.50). In contrast, during dual-task walking, we found significant differences
between the two groups for CV of gait speed and stride length (p = 0.014 and 0.011, respectively;
d = 0.87 and 0.89, respectively). Stride length was marginally different between the two groups for
dual-task walking (p = 0.060; d = 0.57). However, differences in gait speed, stride time, and CV of
stride time during dual-task walking between the two groups did not reach statistical significance
(all p > 0.05; all d ≤ 0.53).

Table 2. Gait parameters and variability during single-task walking and dual-task walking for each
group. CV—coefficient of variation.

Measures PN without Cognitive
Impairment

PN with Cognitive
Impairment p-Value Cohen’s d

Single-task walking
Gait speed, m/s 0.96 ± 0.18 0.87 ± 0.27 0.236 0.39 S

Stride length, meters 1.16 ± 0.19 1.04 ± 0.28 0.160 0.50 M

Stride Time, seconds 1.23 ± 0.13 1.23 ± 0.12 0.855 0.00 N

CV of gait speed, % 7.21 ± 3.34 7.73 ± 3.63 0.804 0.15 N

CV of stride length, % 6.12 ± 4.29 5.62 ± 3.48 0.615 0.13 N

CV of stride time, % 4.10 ± 1.59 4.18 ±1.99 0.905 0.04 N

Dual-task walking
Gait speed, m/s 0.84 ± 0.16 0.76 ± 0.28 0.300 0.35 S

Stride length, m 1.14 ± 0.16 1.01 ± 0.28 0.060 † 0.57 M

Stride Time, s 1.40 ± 0.17 1.39 ± 0.24 0.937 0.05 N

CV of gait speed, % 7.31 ± 3.20 11.07 ± 5.22 0.014 * 0.87 L

CV of stride length, % 4.81 ± 2.80 8.23 ± 4.66 0.011 * 0.89 L

CV of stride time, % 4.89 ± 2.14 6.78 ± 4.60 0.119 0.53 M

Note: Variables are expressed as means ± standard deviation. Asterisks denote significant between-group differences
(p < 0.05). The cross denotes a marginal between-group difference. All significant differences were after accounting
for the effects of age, body mass index, and sex. Superscript letters denote the following: N = no noticeable effect;
S = small effect; M = medium effect; L = large effect.

3.3. Walking Performance between Normal and Dual-Task Conditions

Figure 1 shows changes in walking performance between the two walking conditions for each
group. For the PN without cognitive impairment group, mean gait speed decreased by 12.5% and
stride time increased by 13.8% for the dual-task walking condition compared to the single-task walking
condition (p = 0.015 and <0.001, respectively; d = 0.70 and 1.12, respectively). However, stride length
remained almost the same between the two walking conditions (p = 0.791; d = 0.11). For the PN
without cognitive impairment group, gait variability assessed based on CV of gait speed, stride length,
and stride time was not significantly different between the single-task and dual-task walking conditions
(p = 0.922, 0.791, and 0.151, respectively; d = 0.03, 0.36, and 0.42, respectively).

For the PN with cognitive impairment group, mean stride time increased by 13.0% for the dual-task
walking condition when compared to the single-task walking condition (p = 0.014; d = 0.84). Mean gait
speed slightly increased, but the increase did not reach the statistical significance (p = 0.255; d = 0.40).
Like the cognitively intact group, stride length remained almost the same between the two walking
conditions (p = 0.684; d = 0.11). For the PN with cognitive impairment group, gait variability was
significantly or marginally increased from the single-task walking condition to dual-task walking
condition. CV of gait speed, stride length, and stride time increased by 43.2%, 46.4%, and 62.2%,
respectively, for the dual-task walking condition when compared to the single-task walking condition
(p = 0.031, 0.063, and 0.035, respectively; d = 0.74, 0.63, and 0.73, respectively).
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Figure 1. Changes in gait parameters and CV of the parameters from single-task walking (ST) to
dual-task walking (DT) for the PN without cognitive impairment group and the PN with cognitive
impairment group. Asterisks denote significant changes in DT from ST (all p < 0.05). The cross denotes
a marginal change in DT from ST (p = 0.063). All significant changes were after accounting for the
effects of age, body mass index, and sex.

3.4. Correlations between Cognitive Function and Stride-to-Stride Variability

Figure 2 shows correlations between MoCA scores and CV of gait speed, stride length, and stride
time for each walking condition across all participants. There were no significant correlations between
MoCA scores and gait variability during single-task walking (all p > 0.05; all rs < 0.200). For the
dual-task walking condition, CVs of gait speed and stride length were significantly correlated with
MoCA scores (p = 0.035 and 0.014, respectively; rs = 0.319 and 0.367, respectively). However, CV of
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stride time was not significantly correlated with MoCA score during dual-task walking (p = 0.345;
rs = 0.146).
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4. Discussion

In this study, we investigated whether the presence of cognitive impairment would increase gait
variability in people with PN by examining CV of gait speed, stride length, and stride time during
single-task and dual-task walking. We found that people with PN with cognitive impairment had more
variability in gait speed and stride length (i.e., a more unsteady gait) during dual-task walking when
compared to people with PN without cognitive impairment, but that, during single-task walking, there
was no statistical difference between the two groups. Another primary finding was that, within the
PN with cognitive impairment group, gait variability significantly increased from single-task walking
to dual-task walking; however, within the PN without cognitive impairment group, gait variability
did not significantly change from single-task walking to dual-task walking. Additionally, MoCA
scores were significantly correlated with CV of gait speed and stride length during dual-task walking.
This suggests that the presence of cognitive impairment exacerbates the risk of falls in people with PN
and that cognitive impairment is an additional cause of falls to the somatosensory deficits.

As hypothesized, increases in CV of gait speed, stride length, and stride time from single-task
walking to dual-task walking were greater for the group of foot numbness (i.e., PN) with cognitive
impairment than for the group of foot numbness without cognitive impairment, and they tended to
be significant only for the group of foot numbness and cognitive impairment. These results suggest
that the effects of dual tasks while walking on gait variability were significant only for the cognitively
impaired people with PN. One possible reason for these results is the impairment in the postural
compensatory strategies. A previous study suggested that the foot numbness results in deteriorated
postural compensatory strategies during a motor task in people with PN [49]. The deteriorated postural
compensatory strategies would have resulted in heavy reliance on cognitive function during walking
in order to avoid falls. However, when one has cognitive impairment in addition to foot numbness and
an additional cognitively demanding task is given, this mechanism is disturbed, which is manifested
as significant increases in gait variability. Our findings are in line with previous work that reported
significant increases in stride time variability in people with mild cognitive impairment [25,50], as well
as stride length variability in people with diabetes mellitus (with and without PN) with cognitive
impairment [51]. Although both groups performed similarly during single-task walking, the dual-task
condition seems to have played a significant role in interfering with the attention of balance control for
the cognitively impaired group.

One implication of a more unsteady gait in cognitively impaired people with PN is risk of fall [52],
a major cause of death and loss of independence [53]. Falls during walking often occur when an
additional task such as talking is being performed in conjunction with walking, and the attention
to walking is distracted [54]. Taken together, the significant increases in gait variability during the
dual-task walking condition compared with the single-task walking condition in people with PN and
cognitive impairment suggest higher risk of falls compared to those without cognitive impairment.

Results from this study emphasize the necessity of the systematic and continuous monitoring of
somatosensory and cognitive declines, as these independently contribute to the increased risk of falls
in people with PN. The monitoring would be possible through digital health technology such as smart
shoes or smart socks. For example, gait variables examined in this study can be embedded in smart
shoes or smart socks, a topic that has been discussed in a recent article [55]. This would allow the
clinical care team to continuously monitor changes in the risk of fall during day-to-day activities, and it
may be possible to inform the team any notable changes that are likely to increase the risk of falls.

One limitation in our study was small sample size. Due to the small sample size, it was not
possible to investigate if a sub-component of the cognitive domains such as visuospatial and executive
functions, attention, and memory is the main cause of increasing gait variability. Future studies with
a larger sample size are recommended in order to confirm generalizability of our results. Another
limitation is that we included people with PN due to two different causes, type II diabetes mellitus
and chemotherapy, in this study. The two causes may have had different neurodegenerative effects
on cognition that could have affected performance during the dual-task walking condition. It is
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recommended that clinicians and researchers investigate effects of cognitive impairment due to each of
these causes on walking performance in future studies.

5. Conclusions

We demonstrated that the presence of cognitive impairment exacerbates the risk of falls in people
with PN. We confirmed that cognitive impairment in people with PN increased gait variability only
for the dual-task walking condition and not for the single-task walking condition. Since we used
body-worn sensors in this study, we believe that outcomes from this study have the potential to be
implemented in digital health technology. Based on our findings, we propose for clinicians to consider
people with PN and cognitive impairment at a higher risk for fall as compared to those with PN but no
cognitive impairment.
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