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Abstract: With the developments in high-performance nano-insulation material technology, theoretical
studies on the heat transfer mechanisms in these materials have been conducted. However,
the conductivity of nanometer-sized skeletons is still unclear. It is necessary to clarify the thermal
conductivity of nanometer-sized solid skeletons in order to better understand the heat transfer
mechanisms in nano-insulation materials. In the present study, a theoretical model for the thermal
conductivity of nanometer-sized skeletons in nano-insulation materials is presented based upon
the meso-structure of the material and the equation of phonon transfer. The size effect in thermal
conductivity of the nanometer-sized particles is studied numerically, and the thermal conductivity is
theoretically obtained. At the same time, a reverse method is established for the thermal conductivity
of nanometer-sized particles based on the method of particle swarm optimization (PSO). The skeleton
thermal conductivity for a specific nano-insulation material with a density of 110 kg/m3 and porosity
of 0.94 is identified based upon experimental data from literature. Comparison results show that
the theoretical conductivity of nanometer-sized skeletons and the identified results give the values
of 0.145 and 0.124 W/(m K), respectively, clearly revealing obvious an size effect in the thermal
conductivity of nanometer-sized skeletons.
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1. Introduction

Nano-insulation materials with nanometer-sized pores and solid skeletons have many advantages,
such as high specific area, lower thermal conductivity, and light weight, and have found wide
applications in many areas such as aerospace applications [1,2] and high performance thermal building
insulation [3]. The size of the pores in the materials is usually less than the mean free path (MFP) of air
molecules under standard atmospheric conditions; thus, the gas molecule movement is restricted by
solid skeletons, leading to a size effect in gas conductivity that decreases with decreasing pore size [4,5].
Similarly, the size effect of thermal conductivity exists in the nanometer-sized solid skeletons that are
composed of nano-particles whose diameter is comparable to phonon MFP, leading to a lower thermal
conductivity in nanometer-sized skeletons than in solid materials [6].

Experimental and theoretical studies on the thermal performance of nano-insulation materials
have been conducted since the 1990s. Theoretical models were established for gas conduction [4,5]
in nanometer-sized pores, solid skeleton, and gas coupled conduction [6–8] in nanometer scales.
Although the thermal performance of nano-insulation materials has been studied, research on the
conduction properties of particles in these materials is limited. Han et al. [8] simulated the thermal
conductivity of aerogel using the Lattice Boltzmann method and proposed a model for solid and gas
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combined conduction in which the non-uniform distribution of solid was taken into account. Li et al [9]
established a two-dimensional (2D) computational model based upon a phonon radiative transfer
equation for phonon transport in a 2D rectangular SiO2 nanowire, and numerically studied the size
effects in the longitudinal and transverse conductivity. Results show that an obvious size effect in the
conductivity exists in the 2D SiO2 nanowire, and the thermal conductivity of the wire with a diameter
from 2 to 4 nm is 15% less than that of the bulk material. Han et al. [10] studied the phonon transport
characteristics in a SiO2 nano-membrane using the Lattice Boltzmann method; the thermal conductivity
across the membrane was studied, and the size effect of the membrane thermal conductivity was
obtained when the Knudson number (Kn) was larger than 0.01. Roberts et al. [11] numerically studied
the effective thermal conductivity of films using a molecular dynamics simulation. Smith et al. [12]
analyzed the effect of sub-continuum heat transport through a nanoporous silica layer using the Lattice
Boltzmann method (LBM).

Although studies on the size effect of thermal conductivity in nano SiO2 were conducted,
the conduction property of nanoparticles and skeletons in nano-insulation materials remains unclear
because the structure of nanoparticles and skeletons were not properly considered in previous
studies. It is well known that a size effect exists in the thermal conductivity of nanometer-sized
skeletons. However, the skeleton conductivity data from different studies is quite different. Moreover,
to the knowledge of the authors, no experimental data on the nanometer-sized skeleton conductivity
of nano-insulation materials exists in open literatures, and it is difficult to test theoretical thermal
conductivity results of nanometer-sized skeletons in nano-insulation materials. Therefore, it is necessary
to clarify the thermal conductivity of nanometer-sized skeletons to gain a better understanding of the
heat transfer mechanisms in these materials.

In this paper, nanometer-sized skeleton conductivity was studied using a theoretical method
based upon the mesostructure of the material and a reversed method simultaneously. Size effects in
the thermal conductivity of the nanometer-sized particles in the materials were studied numerically.
At the same time, a reversed identification method for the thermal conductivity of the nanometer-sized
particles was established by the method of particle swarm optimization (PSO) based on experimental
data of equivalent thermal conductivity. The skeleton thermal conductivity and specific area for a
nano-insulation material were simultaneously identified. The theoretical value of thermal conductivity
of nanometer-sized skeletons and the identified results were compared.

2. Theoretical Simulation of Thermal Conductivity of Nanometer-Sized Skeletons in
Nano-Insulation Materials

2.1. Computational Models

Nanometer-sized skeletons in SiO2 nano-insulation materials are composed of secondary particles
with a diameter from 2 to 5 nm [13]. The secondary particles themselves have insight structure;
they have pores, and the porosity of these particles does not vary noticeably, with an average value of
approximately 0.5. The secondary particles are composed of the primary particles whose diameters are
less than 1 nm and change less with the parameters in production processes.

In present study, the phonon transfer process in primary particles of SiO2 nano-insulation materials
is described by the phonon radiative transport equation as follows [14]:

1
v
∂I
∂t

+
→

Ω∇I =
I0
− I

Λ
(1)

where I is the phonon radiation intensity, v the velocity of sound,
→

Ω the direction vector, Λ the phonon
MFP, and I0 the phonon radiation intensity under the state of equilibrium. With Planck distribution,
the radiation intensity I0 is

I0 =
σT4

π
(2)
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where T is the absolute temperature. The phonon Stefan-Boltzmann constant σ is as follows [15]:

σ = π2k4
B/40}3v2 (3)

where kB is Boltzmann constant, } = h/π, and h = 6.626 × 10−34 J s is the Planck constant.
The primary particles are tiny, with a diameter of approximately 1 nm. Although a spherical shape

maybe a more reasonable approximation for these particles, in such a scale, which is comparable to the
lattice constant, it is hard to consider the shape of primary particles to be ideally spherical. In addition,
the primary particles are interconnected, and the contact area is difficult to determine. In the present
study, one of the main purposes was to determine the boundary influence on the particle conductivity,
with the particle boundary size being the most important factor. To simplify the numerical solving
process while maintaining a reasonable precision, the primary particles were assumed to be connected
one by one, forming a two-dimensional nanowire with a square cross section as shown in Figure 1.
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Figure 1. Cross-section of a primary particle chain.

The temperature boundary condition is adopted on two opposite boundaries [16]:

T|y=0 = TH (4)

T|y=L = TL (5)

where TH, TL are boundary temperatures, and the adiabatic condition is adopted on the other
two boundaries.

The phonon radiation intensity is derived by solving the equation of phonon radiative transport
under steady state by the method of discrete ordinate. The temperature boundary condition can
be considered as a blackbody boundary in phonon stimulation. Based upon the obtained phonon
radiation intensity, the heat flux density can be calculated as

q =

∫
Ω=4π

I cosθdΩ (6)

where Ω is the solid angle. The thermal conductivity of the nanowire composed by the primary
particles can be derived from Fourier law:

λp =
q
|∇T|

(7)

where |∇T| is the module of the temperature gradient.

2.2. Phonon Mean Free Path

In the present study, the concern was the size effect in the thermal conductivity of primary particles
in nano-insulation materials; thus, it is reasonable to assume that the primary particles and the bulk
material are similar in terms of lattice defects and scattering by phonons. The difference in the phonon
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MFP between the primary particles and the bulk material is that boundary scattering exists in the
primary particles, while in the bulk material boundary scattering does not exist.

By Matthiessen’s law [17], the phonon MFP in primary particles can be determined as

1
Λ

=
1

Λbulk
+

1
Λb

(8)

where Λbulk is the phonon MFP in bulk material, and Λb is the phonon MFP caused by boundary
scattering. For a two-dimensional rectangular geometry, Λb is determined as

1
Λb

=
1
B

( 1
w

+
1
b

)
(9)

where b and w are the length and width of the rectangle, respectively. For blackbody boundaries,
mboxemphB = 0.75 [17].

2.3. Simulation of Thermal Conductivity of SiO2 Nanometer-Sized Skeletons

The size effect in the thermal conductivity of primary particles in SiO2 nano-insulation materials
was simulated numerically at room temperature. The material is considered as gray medium.
The phonon MFP in the bulk material is Λbulk = 0.6 nm, with cV = 1.79 ×106 J/(m3 K), and the average
velocity is v = 4100 m/s [18]. From the above parameters, the theoretical conductivity of the bulk
material can be calculated from phonon kinematic theory as follows:

λbulk =
1
3

cVvΛbulk (10)

which has a theoretical value of 1.47 W/(m K).
Under the boundary conditions with TH = 301 K and TL = 299 K, the phonon radiation intensity

is obtained by numerically solving Equation (1). According to Equations (6) and (7), the thermal
conductivity of the particle can be calculated.

Figure 2 shows the variation of thermal conductivity of the particle with the Knudson number,
which is defined as the ratio of the MFP to the characteristic length L.

Kn =
Λbulk

L
(11)

The diameter of primary particles in SiO2 nano-insulation materials is less than 1 nm, which is
comparable to the phonon MFP. It can be seen from the figure that the thermal conductivity of primary
particles is clearly less than that of the bulk material.
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By linear fitting, a formula between the thermal conductivity of SiO2 primary particle chains and
the Kn is obtained as follows:

λP

λbulk
= (0.637 + 4.31Kn)−1, (0.5 ≤ Kn ≤ 1.5) (12)

Figure 3 presents the comparison between the fitted conductivity and the numerical results. It can
be seen that the fitted results and the numerical data are well matched.
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Studies on the influence of manufacturing parameters on the diameter of primary particles
revealed that the diameter of primary particles in SiO2 nano-insulation materials is less than 1 nm,
and the diameter varies less obviously with the manufacturing process [19], with an average value of
0.9 nm approximately.

In present study, a two-dimensional computational model with a square cross-section was
established for a primary particle chain. The length of the square in the established model can be
determined according to the criteria that the spherical primary particle with diameter dp has the same
surface area as a cube with the side length L. Consequently, the relation between the model parameter
L and the primary particle diameter dp can be obtained as follows:

L =

√
π
6

dp (13)

For primary particles with an average diameter dp of 0.9nm, the model parameter L = 0.65 nm
and Kn = 0.923. From Equation (12), the ratio of the thermal conductivity of the primary particles to
that of the bulk material can be calculated and has a value of 0.217 W/(m K). The thermal conductivity
of SiO2 bulk material has an experimental value of 1.34 W/(m K) [17], and the thermal conductivity of
primary particles is

λp = 0.291 W/(m K) (14)

The secondary particles are composed of primary particles and have pores with a porosity of
approximately 0.5 [13,19]. Thus, the thermal conductivity of SiO2 secondary particles is

λs = 0.5λp = 0.145 W/(m K) (15)

which is the thermal conductivity of the skeletons in SiO2 nano-insulation materials.
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3. Identification of Thermal Conductivity of Skeletons in Nano-Insulation Materials

3.1. Nanometer-Sized Skeleton and Gas Conduction Model

Cubic array models for the coupled conduction of nanometer-sized skeletons and gas in
nano-insulation materials are commonly used in most studies. Figure 4 shows the diagram of
the cubic sphere array model where the nano-skeletons are composed of nanometer-sized uniform
spheres with a diameter d, and the diameter of the contact area between adjoining nanometer-sized
spheres is a. The side length of the cube is D, corresponding to the mean diameter of pores in aerogels.
The other coupled conduction model commonly used is the cubic cylinder array model, which is
similar to the cubic sphere array model mentioned above. In the cubic cylinder array model the shape
of the nano-skeletons is a cylinder with a diameter d.
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Zeng [6] indicated that the difference in the effective thermal conductivity results obtained from
the cubic cylinder and the cubic sphere array models was not obvious. Thus, the cubic cylinder array
model was used in this study.

The effective thermal conductivity for the nanometer-sized coupled conduction in the cubic
cylinder array model is described as

λc =
π
4

(
d
D

)2

λs +

(
1−

d
D

)2

λg +
π− B2

B1

d
D

(
1−

d
D

)
λg (16)

The model parameters of B1, B2 are defined as

B1 =

(
λg

λs
− 1

)
d
D

(17)

B2 =
4√

1− B2
1

tan−1

√ 1− B1

1 + B1

 (18)

In the cubic cylinder array model, the diameter of the nanometer-sized skeleton d and the mean
diameter D of pores can be determined from the parameters of porosity Π and specific area S of the
insulation material as follows:

Π =
√

2
(

d
D

)3

−
3π
4

(
d
D

)2

+ 1 (19)

S =
3πdD− 6

√
2d2

D3ρ
(20)
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The nano-insulation material of pure SiO2 aerogel is not effective in attenuating radiation
heat transfer [20], and the insulation material applied in engineering is generally opacified [21,22].
Consequently, the conduction transfer process in the material is coupled with radiation heat transfer.
In the present study, the carbon opacified SiO2 aerogel was considered and its spectral absorption
coefficient is shown in Reference [22]. The spectral absorption coefficient of the opacified aerogel is
large in most of the spectral range. It is reasonable to consider the insulation of the opacified aerogel
to be optically thick, and Rosseland averaged approximation can be used to obtain its full-spectrum
averaged absorption coefficient ka,R.

ka,R =

∫
∞

0

1
kaλ

dEbλ
dEb

dλ (21)

where kaλ is the spectral absorption coefficient of nano-insulation material, Ebλ is the spectral emission
power of a black body, Eb is the emission power of a black body, and λ is its wavelength.

Figure 5 shows the Rosseland averaged absorption coefficient ka,R of the carbon opacified aerogel
under various temperatures, which is about 3663 m−1 at room temperature.
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Under optically thick approximation, the radiative equivalent conductivity is

λr =
16n2σT3

3ka,R
(22)

where n is the refractive index of the insulation material, T is the absolute temperature, and σ = 5.67 ×
10−8 W/(m2 K4) is the Stefan Bolzmann constant. The refractive index of aerogel can be calculated from
the Clausius-Mosotti formula as

n = 1 + 0.2ρ (23)

where ρ is the density of the aerogel in g/cm3. In this study, the density of the aerogel is 110 kg/m3,
and its refractive index is 1.02. It can be obtained from Equation (22) that the radiative equivalent
conductivity of the considered aerogel at room temperature is about 2.2 × 10−3 W/(m K).

Considering both heat conduction and radiation transfer in the aerogel, its equivalent thermal
conductivity is

λeq = λc + λr (24)

Therefore, the effective conductivity of nanometer-sized skeleton and gas in the aerogel is:

λc = λeq − λr (25)
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Reference [6] shows the measured equivalent thermal conductivity under various atmospheric
pressures. From Equation (25), the experimental data of effective conductivity of the nano-insulation
material can be deduced.

Figure 6 shows the deduced experimental effective conductivity for the specific SiO2 aerogel with
density of 110 kg/m3, specific area of 7.976 × 105 m2/kg, and porosity of 0.94 in Reference [6].Nanomaterials 2018, 8, x FOR PEER REVIEW  8 of 14 
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It needs to be clarified that the thermal conductivity given in Figure 6 contains the contribution
from the conduction in nanometer-sized solid skeletons, in pores, and through the adulteration particles
of carbon black. The mass content of carbon black in the SiO2 aerogel is 3.25% [6]. It can be easily
derived that the carbon black volume content is 0.176%, which is very low. Consequently, the influence
of carbon black on thermal conductivity can be neglected.

3.2. Identification Method for Thermal Conductivity of Nano-Skeletons in Aerogels

The particle swarm optimization (PSO) method combined with the coupled conduction model of
the cubic cylinder model was used to identify the nanometer-sized skeleton conductivity.

The PSO method is an intelligent algorithm based upon a searching model of velocity-position.
The solution of the optimization problem is treated as a particle swarm flying in a searching space,
with each particle having its specific velocity, which can be adjusted dynamically by its experience and
position. For a swarm composed of m particles in a d-dimensional space, the position of the particle
labeled i in the swarm is Xi = (xi1, xi2, . . . , xid), its velocity is Vi = (vi1, vi2, . . . , vid), and its optimal
position (individual optimal adaptability) is Pbest = (P1, P2, . . . , Pd). The global optimum position
among all particles is denoted as Gbest = (G1, G2, . . . , Gd). The position and velocity of each particle in
the next iteration are determined by the following equations:

Vi j(t + 1) = wVi j(t) + C1R1
[
P j(t) − xi j(t)

]
+ C2R2

[
G j(t) − xi j(t)

]
, ( j = 1, 2, . . . , d) (26)

xi j(t + 1) = xi j(t) + Vi j(t + 1), ( j = 1, 2, . . . , d) (27)

where C1, C2, usually equal to 2, are known as the learning factors, which adjust the maximum step
towards the global and local optimal particle positions; w is the inertial weight.

w = wmax −
t

tmax
(wmax −wmin) (28)

where wmax is the maximum inertial weight, wmin is the minimum inertial weight, t is the iteration
number and tmax is the maximum iteration number. In present study wmax and wmin are set to be 0.9
and 0.4 respectively. The optimization process iterates based upon Equations (26) and (27) until the
maximum iteration number is reached or the solution precision is satisfied. Figure 7 shows the flow
chart of the PSO method.
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3.3. Identification of Thermal Conductivity of Nanometer-Sized Solid Skeletons

The thermal conductivity of the nanometer-sized solid skeletons in the carbon opacified aerogel
with a density of 110 kg/m3 and porosity of 0.94 was identified using the method of PSO under the
condition where the specific area of 7.976 × 105 m2/kg is regarded as a given parameter. The objective
function is defined as

min f (λs) =

√√√
1
N

N∑
i=1

[
λ

exp
c (pi) − λnum

c (λs, pi)
]2

(29)

where λexp
c (pi) is the measured effective conductivity of the opacified aerogel under the atmospheric

pressure of pi, and λnum
c (λs, pi) are the theoretical results obtained from the cubic cylinder array

model. The bulk material of the aerogel considered is SiO2, with a thermal conductivity of about
1.34 W/(m K); thus, the thermal conductivity of the nanometer-sized skeleton is constrained by a range
of 0.01–1.34 W/(m K). The experimental effective thermal conductivity of the aerogel under various
pressures is shown in Figure 6. The experimental data on effective conductivity is assumed to be free
of stochastic errors in the identification process. The particle number is set to be 20 with the maximum
generation number of 1000.

Figure 8 shows the evolution of the identified thermal conductivity of the nanometer-sized solid
skeletons. It can be seen that the identified conductivity converged in less than 100 generations with
20 particles, and the identified conductivity of nanometer-sized skeletons was about 0.118 W/(m K).
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Figure 9 shows the evolution of the objective function. It can be seen that the converged value of
the objective function is about 2.51 × 10−4 W/(m K).
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Figure 10 shows the effective thermal conductivity obtained from the cubic cylinder array model
based upon the identified skeleton conductivity. It can be observed that the theoretical results match
the deduced experimental data very well.
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Figure 10. Effective thermal conductivity obtained from the theoretical model based upon the identified
skeleton conductivity.

Table 1 shows the influence of the stochastic error e in the measured effective conductivity on the
identified conductivity of nanometer-sized skeletons. It can be observed that the stochastic error e
of less than 20% in the measured data has little influence on the identified nanometer-sized skeleton
conductivity. The deviation in the identified conductivity is less than 0.2%.

Table 1. Influence of stochastic error in the measured data on the identified conductivity of
nanometer-sized skeleton.

e (%) 0 5 10 15 20

λs (W/(m K)) 0.1183 0.1184 0.1184 0.1185 0.1185

3.4. Identification of Thermal Conductivity of Nanometer-Sized Solid Skeletons and Specific Area

The thermal conductivity of the nanometer-sized solid skeletons and specific area of the aerogel
with a density of 110 kg/m3 and porosity of 0.94 were identified simultaneously. The objective function
is defined as

min f (λs, S) =

√√√
1
N

N∑
i=1

[
λ

exp
c (pi) − λnum

c (λs, S, pi)
]2

(30)

where λnum
c (λs, S, pi) is the effective conductivity obtained from the theoretical model of the cubic

cylinder array based upon the specific area S, thermal conductivity λs of the nanometer-sized solid
skeletons, and the atmospheric pressure pi. It is assumed that the stochastic error does not exist in the
measured data.
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Figures 11 and 12 show the evolution of the identified thermal conductivity of the nanometer-sized
solid skeletons and the identified specific area. It can be observed that the identified conductivity is
about 0.1206 W/(m K), and the identified specific area is 8.11 × 105 m2/kg. The identified specific area of
the material matches its measured value of 7.976 × 105 m2/kg very well, with a relative error of less than
2%. Consequently, it is reasonably deduced that the identified conductivity of the nanometer-sized
solid skeletons is reliable. In addition, the identified conductivity of 0.1206 W/(m K) matches the
identified value of 0.118 W/(m K) in the previous section.
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Figure 13 shows the effective thermal conductivity obtained from the cubic cylinder array model
based upon the identified skeleton conductivity and specific area, and its comparison with the
experimental values. It can be observed that the theoretical results match the deduced experimental
data very well as in the previous section.
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Tables 2 and 3 show the influence of the stochastic error in the measured data on the identified
results. It can be observed that the identification precision of the nanometer-sized skeleton conductivity
and specific area decreases with the increase in measurement uncertainty. The stochastic error in the
measured data has a small influence on the identified results. With an error of less than 20% in the
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measured effective conductivity, the identified thermal conductivity of nanometer-sized skeletons has
a relative error of less than 6.5%, and the identified specific area has a relative error of less than 4.5%.

Table 2. Influence of stochastic error e in the measured data on the identified conductivity of
nanometer-sized skeleton and specific area.

e (%) 0 5 10 15 20

λs (W/(m K)) 0.1206 0.1225 0.1244 0.1264 0.1283
S (× 105 m2/kg) 8.1107 8.1998 8.2906 8.3831 8.4774

Table 3. Influence of stochastic error e in the measured data on the relative error of the identified
conductivity of nanometer-sized skeleton and specific area.

e (%) 5 10 15 20

eλs (%) 1.6 3.2 4.8 6.4
es(%) 1.1 2.2 3.4 4.5

4. Comparison of Identified Thermal Conductivity of Skeletons in Nano-Insulation Materials
with Theoretical Results

Table 4 shows the comparison between the theoretical and identified values of the thermal
conductivity of nanometer-sized skeletons. It can be seen that the deviation of the identified results
from the theoretical results is not substantial. The deviation of the theoretical results from those
identified is less than 20%.

Table 4. Comparison between theoretical and identified values of thermal conductivity of
nanometer-sized skeletons.

e (%)
Single Parameter Identification Double Parameter Identification Theory
λs (W/(m K)) Deviation (%) λs (W/(m K)) Deviation (%)

0 0.1183 −18.4 0.1206 −16.8

0.145
5 0.1184 −18.3 0.1225 −15.5
10 0.1184 −18.3 0.1244 −14.2
15 0.1185 −18.3 0.1264 −12.8
20 0.1185 −18.3 0.1283 −11.5

5. Conclusions

The presented theoretical model based upon the mesostructure of nano-insulation materials and
the equation of phonon radiative transfer is feasible. The method to identify the thermal conductivity of
nanometer-sized solid skeletons, which is established using PSO and a cubic cylinder array conduction
model, was tested to be reliable.

For a specific nano-insulation material with a density of 110 kg/m3 and porosity of 0.94,
the theoretical analysis yielded a thermal conductivity of the nanometer-sized skeleton in the aerogel of
approximately 0.145 W/(m K), which was much less than the bulk material conductivity. The identified
thermal conductivity of nanometer-sized solid skeletons was 0.1206 W/(m K). Theoretical and identified
results of the thermal conductivity of nanometer-sized skeletons are well matched, clearly revealing an
obvious size effect in the thermal conductivity of nanometer-sized skeletons.
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Nomenclature

I phonon radiation intensity, W/(m2 sr)
v velocity of sound, m/s
Λ phonon MFP, nm
TH, TL boundary temperature, K
q heat flux density, W/m2

λp, λs thermal conductivity of primary and secondary particles, W/(m K)
Kn Knudson number
dρ diameter of nanometer-sized spheres, m
D mean diameter of pores in aerogels, m
λc effective thermal conductivity for nanometer-sized coupled conduction, W/(m K)
λg thermal conductivity of gas in pores, W/(m K)
Π porosity
S specific area, m2/kg
B1, B2 parameters defined in Equations (7) and (8)
ρ density of nano-insulation material, kg/m3

ka,R spectrum averaged absorption coefficient, 1/m
kaλ spectral absorption of nano-insulation material, 1/m
Ebλ spectral emission power of black body, W/(m2 µm)
Eb emission power of black body, W/m2

λ Wavelength, µm
λr radiative equivalent conductivity, W/(m K)
T absolute temperature, K
λeq equivalent thermal conductivity of nano-insulation material, W/(m K)
m number of particles in swarm
Xi position vector of a particle labeled i in a swarm
Vi velocity vector of a particle labeled i particle in a swarm
Pbest individual optimal adaptability
Gbest global optimum position among all particles
Vij jth component of velocity vector of a particle labeled i in a swarm, (i = 1, . . . ,m)
Xij jth component of position vector of a particle labeled i in a swarm, (i = 1, . . . ,m)
C1, C2 learning factors
w inertial weight
t number of iteration
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