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Elastin, one of the longest-lived proteins, confers elasticity to tissues with high
mechanical constraints. During aging or pathophysiological conditions such as
cancer progression, this insoluble polymer of tropoelastin undergoes an important
degradation leading to the release of bioactive elastin-derived peptides (EDPs),
named elastokines. EDP exhibit several biological functions able to drive tumor
development by regulating cell proliferation, invasion, survival, angiogenesis, and matrix
metalloproteinase expression in various tumor and stromal cells. Although, several
receptors have been suggested to bind elastokines (αvβ3 and αvβ5 integrins, galectin-
3), their main receptor remains the elastin receptor complex (ERC). This heterotrimer
comprises a peripheral subunit, named elastin binding protein (EBP), associated to the
protective protein/cathepsin A (PPCA). The latter is bound to a membrane-associated
protein called Neuraminidase-1 (Neu-1). The pro-tumoral effects of elastokines have
been linked to their binding onto EBP. Additionally, Neu-1 sialidase activity is essential for
their signal transduction. Consistently, EDP-EBP interaction and Neu-1 activity emerge
as original anti-tumoral targets. Interestingly, besides its direct involvement in cancer
progression, the ERC also regulates diabetes outcome and thrombosis, an important
risk factor for cancer development and a vascular process highly increased in patients
suffering from cancer. In this review, we will describe ERC and elastokines involvement
in cancer development suggesting that this unique receptor would be a promising
therapeutic target. We will also discuss the pharmacological concepts aiming at blocking
its pro-tumoral activities. Finally, its emerging role in cancer-associated complications
and pathologies such as diabetes and thrombotic events will be also considered.

Keywords: extracellular matrix, elastokines, ERC, neuraminidase-1, therapeutic targets

CANCER DEVELOPMENT AND EXTRACELLULAR MATRIX

Despite a great progress concerning predictive biomarkers, diagnostic and prognostic strategies,
cancer remains the second leading cause of death worldwide after cardiovascular diseases. In 2012,
approximately 14 million of new cases and 8.2 million of cancer related deaths have been reported,
according to the World Health Organization.

Although, the development of cancer was initially thought to be initiated when a single mutated
cell begins to proliferate abnormally leading to the formation of primary tumor (in situ), the
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polyclonal origin of tumors has now been proposed (Parsons,
2008). Malignant cells then cross the tissue, possibly the basement
membrane, and invade the extracellular matrix (ECM). From
there, invasive tumor cells can spread throughout the body via
the lymphatic or circulatory systems creating metastatic tumors.

Extracellular matrix remodeling is crucial for regulating
tissue homeostasis but also contributes to disease when it
is dysregulated. It is composed of macromolecules such as
collagens, elastin, laminins, fibronectin, and proteoglycans.
Those components interact with cell receptors, transmitting
signals that orientate cell adhesion, migration, proliferation,
apoptosis, survival, or differentiation. ECM does not only behave
as a simple physical support for tissue integrity and plasticity. It is
also a reservoir of growth factors, proteases, and other signaling
molecules (Hynes, 2009).

During tumor progression, ECM is modified by proteases
secreted by both normal and tumor cells. This degradation
generates bioactive fragments called matrikines or matricryptines
(Davis et al., 2000; Maquart et al., 2004). Matrikines can
modulate cell proliferation, migration, invasion, apoptosis,
angiogenesis as well as the production and activation of matrix
metalloproteinases (MMPs) and the plasminogen system (Bellon
et al., 2004; Maquart et al., 2005). In this review, we will focus on
elastin, and especially on pro-tumoral activities of elastin-derived
peptide (EDP) through their unique receptor, the elastin receptor
complex (ERC).

ELASTIN

Elastic Fibers Components
The elastin synthesis, begins during the fetal period (Uitto et al.,
1991) and peaks just before birth. Elastogenesis then decreases
rapidly to disappear at puberty (Swee et al., 1995). The half-life of
elastin is about 70 years (Petersen et al., 2002) and neo-synthesis
is low or inexistent. In addition, the ability to form functional
elastic fibers is lost. Elastic fibers are essential components of
the ECM and are responsible for elasticity of vertebrate tissues.
They are found in abundance in tissues subjected to high
mechanical stresses requiring repeated cycles of expansion and
back to their original state such as the skin, lungs, tendons, or
arteries.

Elastic fibers are complex macromolecular assemblies
consisting of a coat of fibrillin-rich microfibrils surrounding a
heart of elastin (Kielty et al., 2002). The architecture of mature
elastic fibers is extremely complex and tissue-specific, reflecting
the particular functions they have in tissues. Elastin is a highly
hydrophobic polymer of crosslinked-tropoelastin monomers.
Microfibrils are made by glycoproteins such as fibrillin-1,
fibrillin-2, microfibril-associated glycoprotein-1 (MAGP-1),
emilins, latent transforming growth factor β-binding proteins
(LTBPs), microfibrillar-associated proteins (MFAPs), and
Fibulins (Mithieux and Weiss, 1995). The tropoelastin sequence
is composed of alternating domains of very hydrophobic
repeating units (which ensure elasticity) and lysine-rich
domains. These lysine residues are essential, since the oxidative
deamination of their side chains allows the formation of mature

elastin covalent crosslinks, i.e., desmosine and isodesmosine, that
confer a great mechanical resistance to the elastomer.

Biosynthesis
Elastin is synthesized and secreted from various cell types such as
endothelial cells and fibroblasts (Rodgers and Weiss, 2005).

After a major splicing, mature tropoelastin mRNA is exported
out of the nucleus and its translation occurs on the surface of
the rough endoplasmic reticulum (RER) forming a polypeptide
of about 70 kDa with a N-terminal signal sequence of 26
amino acids which is cleaved when the protein reached the RER
lumen (Grosso and Mecham, 1988). After release of the signal
peptide, the protein is associated with elastin-binding protein
(EBP) to prevent its aggregation and premature degradation
(Hinek et al., 1995). The EBP-tropoelastin assembly is then
directed to the plasma membrane. EBP is secreted and binding
of galactose sugars on its galactolectin site causes the release of
tropoelastin, which is then aligned and properly incorporated
into the growing elastic fiber (Privitera et al., 1998). After
tropoelastin release, EBP is recycled and can accompany another
tropoelastin molecule.

ELASTIN DEGRADATION AND ELASTIN
PEPTIDES

Elastases cleave insoluble and soluble elastin and include serine-,
cysteine-, and metallo-proteinases. The serine proteinases
neutrophil elastase (Ela-2), cathepsin G, and proteinase-3 and
four members of the cysteine cathepsin family (L, S, K, and V)
display elastinolytic activity. Moreover, four MMP are elastases
(MMP-2, MMP-7, MMP-9, MMP-12). Some generated EDP
harbor a GxxPG consensus motif (where x represents any
amino acid) adopting a type VIII β-turn, essential for their
bioactivity (Brassart et al., 2001). These bioactive EDP are
referred as elastokines and the typical elastokine is the VGVAPG
peptide, found in the domain encoded by exon 24 of human
tropoelastin. Other bioactive GxxPG motifs, GVYPG, GFGPG
and GVLPG, and longer elastokines have been reported (Heinz
et al., 2012). For instance, MMP-7, -9, and -12 have been
shown to generate the bioactive peptides YTTGKLPYGYGPGG,
YGARPGVGVGGIP, and PGFGAVPGA (Heinz et al., 2010).

Elastokines contribute to cancer progression by stimulating
several capacities of tumor cells such as an elevated expression
and secretion of proteases, strongly potentiating their migration
and matrix invasion properties (Brassart et al., 1998; Ntayi
et al., 2004; Coquerel et al., 2009; Toupance et al., 2012;
Donet et al., 2014; Table 1). Interestingly, elastokines present
potent chemotactic activity on melanoma cells and their
presence at a distant organ might contribute to metastasis
(Pocza et al., 2008). EDP have also been reported to induce
in vitro proliferation of glioblastoma (Hinek et al., 1999), and
astrocytoma human cell lines (Jung et al., 1998) as well as
murine melanoma cell line (Devy et al., 2010). Our laboratory
was the first to demonstrate in vivo that EDP enhanced
murine melanoma cells growth and invasion (Devy et al.,
2010).
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Elastokines have also biological effects on normal cells. They
stimulate migration and proliferation of monocytes and skin
fibroblasts (Senior et al., 1984; Shiratsuchi et al., 2010). They up-
regulate MMP expression by fibroblasts inducing a remodeling
program in favor of melanoma cell invasion. Elastokines exhibit
pro-angiogenic activity through MT1-MMP and NO-mediated
increase of endothelial cell migration and tubulogenesis (Robinet
et al., 2005; Fahem et al., 2008; Gunda et al., 2013). A wide range
of biological effects on immune cells was reported in response
to EDP stimulation (Antonicelli et al., 2007). Among them, the
chemotactic activity (Nowak et al., 1989; Hance et al., 2002;
Houghton et al., 2006; Guo et al., 2011) and elastases production
(Hauck et al., 1995; Péterszegi et al., 1997; Varga et al., 1997)
amplify elastolysis and increase inflammatory cells recruitment
at the tumor site.

RECEPTORS AND SIGNALING

The biological effects of EDP are mediated by their binding to
their cell surface receptors. Among them, the ERC is the most
prominent but others potential receptors have also been reported,
namely galectin-3 (Pocza et al., 2008) and integrins αvβ3 and αvβ5
(Rodgers and Weiss, 2004; Lee et al., 2014b).

Galectin-3 is expressed in normal and tumor cells
and possesses diverse biological functions associated with
inflammatory response such as adhesion, cell differentiation,
cell migration, and cytokine production. It also modulates
others biological functions linked to tumor development like
angiogenesis, tumor progression, proliferation, chemotactic,
and cell-matrix interactions (Fortuna-Costa et al., 2014). It was
moreover reported that galectin-3 is able to interact with both

TABLE 1 | Cancer-associated biological effects of EDP.

Biological effects Cell types EDPs cancer-associated biological effects

Angiogenesis Endothelial cells Nackman et al., 1997; Robinet et al., 2005; Daamen et al., 2008; Fahem et al., 2008; Gunda et al.,
2013

Apoptosis and cell survival Fibroblasts Cantarelli et al., 2009

Lymphocytes Péterszegi and Robert, 1998; Péterszegi et al., 1999

Adhesion Fibroblasts Hornebeck et al., 1986; Groult et al., 1991; Yamamoto et al., 2002; Rodgers and Weiss, 2004; Bax
et al., 2009; Akhtar et al., 2011

Astrocytoma Jung et al., 1999

Carcinoma Timar et al., 1991; Svitkina and Parsons, 1993

Melanoma Timar et al., 1991; Svitkina and Parsons, 1993

Proliferation Fibroblasts Ghuysen-Itard et al., 1992; Kamoun et al., 1995; Tyagi et al., 1996; Tajima et al., 1997; Duca et al.,
2005; Shiratsuchi et al., 2010

Lymphocytes Poggi and Mingari, 1995; Péterszegi et al., 1996

Melanoma Devy et al., 2010

Astrocytoma Jung et al., 1998

Glioma Hinek et al., 1999

Endothelial cells Ito et al., 1998; Dutoya et al., 2000

Tumor invasion and proteases release Fibroblasts Gminski et al., 1991a,b; Archilla-Marcos and Robert, 1993; Landeau et al., 1994; Brassart et al.,
2001; Huet et al., 2001

Endothelial cells Robinet et al., 2005; Fahem et al., 2008; Siemianowicz et al., 2010, 2015

Monocytes Fülöp et al., 1986; Varga et al., 1997

Lymphocytes Péterszegi et al., 1996, 1999

Melanoma Ntayi et al., 2004; Pocza et al., 2008; Devy et al., 2010

Glioma Coquerel et al., 2009

3LL-HM carcinoma Timar et al., 1991

Lung cancer Toupance et al., 2012

HT1080 fibrosarcoma Brassart et al., 1998; Huet et al., 2002;Donet et al., 2014

Chomotaxis and migration Keratinocytes Fujimoto et al., 2000

Fibroblasts Senior et al., 1982, 1984; Mecham et al., 1989; Grosso and Scott, 1993b; Duca et al., 2005;
Shiratsuchi et al., 2010

Eodothelial cells Long et al., 1989; Skeie and Mullins, 2008; Skeie et al., 2012

Monocytes Senior et al., 1980, 1984; Bisaccia et al., 1994; Castiglione Morelli et al., 1997; Uemura and
Okamoto, 1997; Hance et al., 2002; Houghton et al., 2006

Macrophages Kamisato et al., 1997; Guo et al., 2006, 2011

3LL-HM carcinoma Timar et al., 1991

M27 lung cancer Blood et al., 1988; Blood and Zetter, 1989, 1993; Yusa et al., 1989; Grosso and Scott, 1993a

Melanoma Mecham et al., 1989; Pocza et al., 2008

HT1080 fibrosarcoma Donet et al., 2014
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FIGURE 1 | Elastin receptor complex (ERC) structural organization and EDP-induced biological effects.

soluble and insoluble elastin in a lactose-dependent manner
(Ochieng et al., 2004). This interaction can modulate tumor
development as observed by the ability of some specific EDP,
such as VGVAPG and VAPG, to amplify melanoma invasion
(Pocza et al., 2008).

Integrin αvβ3 regulates diverse biological functions such as
cell adhesion, proliferation and migration (Byzova et al., 1998).
αvβ3 mainly binds ligands through RGD sequence recognition
but it can also recognize others ligands that do not harbor this
motif. Indeed, integrin αvβ3 recognizes with high affinity the
RKRK sequence present in the C-terminal domain of tropoelastin
(Bax et al., 2009). Moreover, a recent study has shown the ability
for αvβ5 to bind tropelastin involving the central region of the
protein (Lee et al., 2014b).

The ERC is a heterotrimeric receptor binding elastokines
presenting the GxxPG consensus sequence (Figure 1). This
receptor contains a peripheral 67-kDa protein named EBP
(accession number P16278-2), and two membrane-associated
proteins, the protective protein/cathepsin A (PPCA, 55-kDa,
accession number P10619) and neuraminidase-1 (Neu-1, 61-
kDa, accession number Q99519; Duca et al., 2007). EBP
is an enzymatically inactive spliced variant of lysosomal

β-galactosidase (Privitera et al., 1998). EBP possesses two
functional binding sites: the elastin site on which EDP binding
triggers signaling pathways, and the galactolectin site whom
occupancy by galactosugars induces EDP release and dissociation
of the complex (Mecham et al., 1991). When EDP bind to
EBP, neuraminidase-1 is activated and catalyzes the desialylation
of adjacent gangliosides such as GM3 [N-acetylneuraminic-
α-(2-3)-galactosyl-β-(1-4)-glucosyl-(1-1′)-ceramide] generating
lactosylceramide (LacCer) production (Rusciani et al., 2010;
Scandolera et al., 2015). LacCer is a second messenger
able to activate intracellular signals. Intracellular signaling
pathways modulated by EDP depend on the cell type. Duca
et al. (2002) showed that pro-MMP-1 induction mediated by
EDP in human dermal fibroblasts involves the activation of
MEK1/2/ERK1/2 pathway through a signal dependent on PKA
and PI3K. Moreover, complementary works demonstrated that
EDP are able to modulate signaling pathways involving modules
such as Ras-Raf-1-MEK1/2-ERK1/2, Gi-p110γ-Raf-1-MEK1/2-
ERK1/2, cAMP-PKA-B-Raf-MEK1/2-ERK1/2, NO-cGMP-PKG-
Raf-1-MEK1/2-ERK1/2 or Gi-p110γ-Akt-caspase9-Bad-Foxo3A.
They also induce Ca2+ mobilization (Jacob et al., 1987; Faury
et al., 1998; Duca et al., 2005; Fahem et al., 2008).
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Although EDP are the main ligands of ERC, bioactive xGxxPG
motifs are found in numerous matrix protein sequences. For
instance, laminin B1 chain harbors a LGTIPG sequence that
triggers elastin-like signaling, inducing pro-tumoral activities,
and was identified as a ligand of this receptor in melanoma
cells. That is why EBP was first called the 67-kD elastin/laminin
binding protein (Mecham et al., 1989; Hinek, 1994).

ANTI-ERC THERAPEUTIC STRATEGIES

Limiting or blocking the deleterious effects of EDP/ERC
interaction can be achieved either by limiting EDP generation
or by acting directly on the ERC and its signaling pathways. As
this review is focused on ERC, we will not detail here elastases
inhibition strategies.

Targeting EBP
Blocking the binding of EDP on EBP can be achieved either
by using the V14 peptide or a galactoside. The V14 peptide
(VVGSPSAQDEASPL) is derived from EBP sequence and can
bind EDP. As a consequence, excess V14 can trap circulating EDP
thereby blocking their effects (Robinet et al., 2007). Alternatively,
the use of galactosugars (mostly lactose or chondroitin sulfate)
leads to the shedding of EBP from the complex and blocks the
corresponding signaling (Blaise et al., 2013). Although V14 and
galactosugars helped to better understand EDP biology, their
selective delivery at the site of vascular injury is still an issue.

Targeting Neu-1
The catalytic activity of Neu-1 is required for proper EDP
signaling. As a consequence, its inhibition blocks EDP-
driven signals. The 2-deoxy-2,3-dehydro-N-acetylneuraminic
acid (ddNeu5Ac) inhibitor is currently used as a sialidase
inhibitor to block EDP effects (Duca et al., 2007). However, this
compound also inhibits other sialidases precluding its therapeutic
use.

An attempt was made to design and synthesize inhibitors for
human neuraminidases (Magesh et al., 2009) but the results were
not satisfactory. Indeed, selectivity was not achieved, probably
because the structures of human sialidases are not fully described.

Recently, O’Shea et al. (2014) used oseltamivir phosphate to
target Neu-1 and disable cancer cell survival in human pancreatic
cancer with acquired chemoresistance. This study suggests that
Tamiflu could be possibly used to selectively block Neu-1.

Blocking EDP-Mediated Signaling
Pathways
In human skin fibroblasts, Neu-1 promotes the local conversion
of the GM3 ganglioside into LacCer following EDP treatment.
LacCer can therefore be regarded as the second messenger of
the complex (Rusciani et al., 2010). Thus, blocking the signaling
pathways triggered by LacCer will suppress EDP effects. In this
context, PI3Kg is a promising target as this kinase is central to
EDP-related signaling (Duca et al., 2005).

Besides this direct signaling, Neu-1 is also known for its
ability to desialylate other membrane residing glycoconjugates,

notably receptors. During the last decade, Neu-1 has been shown
to modulate insulin receptor signaling (Blaise et al., 2013) and
to regulate TLR4 (Amith et al., 2010), Trk A (Jayanth et al.,
2010), PDGF-BB and IGF receptors (Hinek et al., 2008), EGF
and MUC1 receptors (Lillehoj et al., 2012), and CD31 (Lee et al.,
2014a). Consequently, this ERC subunit now emerges not only as
a catabolic enzyme but also as a regulator of signaling platforms
(Pshezhetsky and Hinek, 2011).

Efforts are now made to understand the intricate network
of Neu-1 partners and how they interact each other in order
to devise new strategies aiming at selectively impeding these
interactions.

ERC INVOLVEMENT IN
CANCER-ASSOCIATED PROCESSES

Diabetes
Type 2 diabetes leads to many micro- and macrovascular
complications implicating several molecular factors and with
significant impact in terms of morbidity and mortality. For
example, type 2 diabetes mellitus is associated with an increase in
the expression of MMPs, especially MMP-2 and 9, and an increase
in the degradation of elastin and, thus, the generation of EDP
(Hopps and Caimi, 2012). EDP immunogenic properties favor
the formation of anti-elastin antibodies, which concentrations are
greatly increased in diabetic patients as compared to non-diabetic
subjects (Fulop et al., 1990).

Cancer is a well-known complication of diabetes. Indeed,
cancer development is more frequent in diabetic people than in
the general population. According to recent studies and meta-
analyzes, cancers involving the pancreas (Morrison, 2012), liver
(Giovannucci et al., 2010), colon (Larsson et al., 2005), breast
(Larsson et al., 2007), urinary tract (Larsson et al., 2006), and
the endometrium (Friberg et al., 2007) occur more frequently
among patients with type 2 diabetes. In contrast, a recent meta-
analysis (Giovannucci et al., 2010) involving a total of nineteen
studies, indicates a reduced risk of occurrence of 16% for prostate
carcinoma in diabetic patients.

Several mechanisms could be involved in the initiation and/or
progression of cancer in diabetes but these mechanisms still
remain hypothetical.

Insulin and its associated receptor seem to have a key role,
as well as the insulin-like growth factor 1 and its receptor,
in the interplay between cancer and diabetes (Cohen and
LeRoith, 2012). Furthermore, hyperglycemia could promote
tumor progression due to increased intracellular metabolic
activity specific to cancer cells and a greater membrane
transport of glucose. Interestingly, it has been shown that the
activation of pro-tumoral factors such as neutrophil elastase
(NE; Moroy et al., 2012) and the accumulation of EDP in
blood may represent inducible factors of insulin resistance in
mice (Blaise et al., 2013). Indeed, NE−/− mice have increased
blood glucose, decreased insulin pathway activity, and increased
gluconeogenesis (Talukdar et al., 2012). This insulin resistance
might be due to a decrease in the expression of Hsp90 and
an increase of the inhibitory protein (IkB) of the transcription
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factor NFkB. The pro-inflammatory state present in diabetics
could decrease the efficiency of intracellular antioxidants and
also participate in carcinogenesis. Some cytokines, such as tumor
necrosis factor α (TNF-α), promote tumor growth by activating
NF-κB (Szlosarek et al., 2006). Another mechanism related to
the pro-inflammatory state, mitochondrial dysfunction, would be
present in diabetic patients resulting in decreased energy available
for DNA repair. Meanwhile, our laboratory has shown that
EDP, which are products of NE activity, induce hyperglycemia
and insulin resistance in animals by inhibiting insulin receptor
signaling pathways in muscle, liver, and adipose tissue. Although
the precise mechanism remains to be elucidated, it appears that
this inhibitory effect involves a physical interaction between the
insulin receptor and the ERC via its Neu-1 subunit (Blaise et al.,
2013). Consequently, the ERC could not only exhibit a clear pro-
tumoral aspect, but is also involved in the outcome of diabetes
influencing cancer development.

Thrombosis
Cancer-associated thrombosis is a major cause of morbidity and
mortality in patients with cancer. Thrombotic complications,
mostly from venous thromboembolism, are the second cause of
death among patients with cancer (Khorana et al., 2007). Several
mechanisms have been suggested to contribute to these increased
thrombotic complications such as the prothrombotic activity of
cancer cells (Mitrugno et al., 2015), the secondary deleterious
effects of anti-cancer therapies and the interaction of cancer
cells with blood platelets. Indeed, cumulative evidences show
that platelets and their activation play important roles in cancer
growth and dissemination (Gay and Felding-Habermann, 2011).
Therefore, antiplatelet therapy to minimize platelet activation
and aggregation, typically reserved for cardiovascular diseases,
may have profound implications in cancer treatment (Franco
et al., 2015).

In a recent study published by Kawecki et al. (2014), EDP
were shown to decrease human platelet aggregation in whole
blood and washed platelets. Both EDP and the VGVAPG peptide
strongly reduced thrombus formation in vitro and in vivo in
wild-type mice. Moreover, EDP and VGVAPG also prolonged tail
bleeding times. The same study also reported that the regulatory
role of EDP relies on a dual mechanism that involves effects
on platelets, that express a functional ERC able to trigger an
increase of platelet sialidase activity, and on the ability of EDP to

disrupt plasma von Willebrand factor interaction with collagen.
Therefore, it is tempting to speculate that EDP may rather have
beneficial effects on cancer-associated thrombosis by reducing
platelet aggregation and thrombus formation.

However, if EDP modulate the formation of procoagulant
microparticles by malignant cells and tissue factor expression
of, the major molecular driver of cancer-associated coagulopathy
and thromboembolic disorders (Mitrugno et al., 2015), remains
unknown so far. Additional experiments are required to better
understand the overall effects of elastin degradation products on
cancer-associated thrombosis.

CONCLUSION

It is now admitted that ECM can directly influence cell fate and
is involved in the phenotypic modulation of cells during cancer
progression. Matrix-derived peptides, originating from tumor
microenvironment degradation, are crucial actors involved in the
pathology and a potential source of innovative therapy. Thus,
among all the matrikines described up to now, bibliographic
data show that elastokines and their singular receptor, present
important pro-tumoral activities. Consequently, the targeting
of the ERC is of particular interest as it is not only directly
involved in cancer development where an important elastolysis is
observed, but also in cancer-associated processes such as diabetes
and thrombosis.
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