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ABSTRACT

PARP inhibitors (PARPi) have been effective in high-grade serous ovarian cancer 
(HGSOC), although clinical activity is limited against BRCA wild type HGSOC. The 
nearly universal loss of normal p53 regulation in HGSOCs causes dysfunction in the 
G1/S checkpoint, making tumor cells reliant on Chk1-mediated G2/M cell cycle arrest 
for DNA repair. Therefore, Chk1 is a reasonable target for a combination strategy 
with PARPi in treating BRCA wild type HGSOC. Here we investigated the combination 
of prexasertib mesylate monohydrate (LY2606368), a Chk1 and Chk2 inhibitor, and 
a PARP inhibitor, olaparib, in HGSOC cell lines (OVCAR3, OV90, PEO1 and PEO4) 
using clinically attainable concentrations. Our findings showed combination treatment 
synergistically decreased cell viability in all cell lines and induced greater DNA damage 
and apoptosis than the control and/or monotherapies (p<0.05). Treatment with 
olaparib in BRCA wild type HGSOC cells caused formation of Rad51 foci, whereas 
the combination treatment with prexasertib inhibited transnuclear localization of 
Rad51, a key protein in homologous recombination repair. Overall, our data provide 
evidence that prexasertib and olaparib combination resulted in synergistic cytotoxic 
effects against BRCA wild type HGSOC cells through reduced Rad51 foci formation and 
greater induction of apoptosis. This may be a novel therapeutic strategy for HGSOC.

INTRODUCTION

High-grade serous ovarian cancer (HGSOC) is the 
most lethal gynecologic malignancy in the United States 
[1]. More than 70% of women present at an advanced 
stage, and recurrence is nearly universal, leading to 
incurable disease where treatment options remain limited 
[2]. Approximately 15% of women with HGSOC carry 
deleterious germline mutations in BRCA1 and BRCA2, 
gene products of which are essential in homologous 
recombination (HR) repair for DNA double-stranded 
breaks (DSBs) [3]. This leaves cells dependent on other 

DNA damage response (DDR) proteins and pathways such 
as poly(ADP-ribose)polymerase 1 and 2 (PARP1 and 2), 
essential for the repair of DNA single-stranded breaks 
[4]. PARP inhibition leads to the failure of DSB repair in 
BRCA1 and BRCA2 defective cells, promoting genomic 
instability, apoptosis and cell death [5]. PARP inhibitor 
(PARPi) treatment is shown to be clinically effective in 
advanced HGSOC, with licensing of three FDA-approved 
agents to date [6-8]. Olaparib is the first licensed agent 
for use in heavily pretreated germline BRCA mutation-
associated ovarian cancer [9, 10]. Only modest clinical 
activity has been seen with PARPi monotherapy in BRCA 
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wild type HGSOC [11]. Therefore, a critical need remains 
for new therapeutic combination strategies that utilize 
the unique biology of HGSOC to increase sensitivity to 
PARPi.

A number of preclinical studies have attempted 
to sensitize HR-proficient cancer cells to PARPi by 
inhibiting elements in the HR DDR pathways, resulting in 
DNA DSBs and mitigated DNA repair [12, 13]. One such 
approach to modulate DNA repair activity in HGSOC is 
to interfere with cell cycle checkpoint signaling. An arrest 
of cell cycle progression is required to allow repair in the 
event of DNA damage and to address stalled replication 
forks; collapse into DSBs occurs in the absence of 
stabilization of stalled replication forks [14]. Essential 
members of cell cycle checkpoint signaling are the 
checkpoint kinases Chk1 and Chk2. They are activated 
by ATR in response to DNA replication stress or DNA 
damage, after which Chk1 phosphorylates and inhibits 
its substrates, the phosphatases CDC25C (S216) and 
CDC25A (S123), leading to arrest at the G2/M checkpoint 
[15-17].

Chk1 also plays a critical role in HR DNA repair 
by facilitating the BRCA2-Rad51 interaction through 
phosphorylation of the BRCA2 C-terminal domain and 
Rad51 at T309, an important step that allows transnuclear 
localization of the HR repair proteins in response to DSBs 
[18, 19]. Over-expression of Rad51 can provide resistance 
to DNA-damaging agents [20], which may partly explain 
the limited monotherapy activity of PARPi against BRCA 
wild type HGSOC. Dedes et al. showed a correlation 
between reduced Rad51 nuclear focus formation and 
PARPi sensitivity in PTEN-deficient endometrial cancer 
cell lines in vitro [21]. Furthermore, 96% of HGSOCs 
harbor a mutation in TP53 [22], thus losing control in 
the earlier G1/S checkpoint and making them heavily 
rely on Chk1-mediated G2/M cell cycle arrest for DNA 
repair [23]. Therefore, Chk1 is a reasonable target for a 
combination strategy with olaparib to maximize DDR 
inhibition and drive tumor cell death in treating BRCA 
wild type HGSOC.

Prexasertib mesylate monohydrate (hereafter 
referred to as prexasertib; LY2606368) is a selective ATP 
competitive small molecule inhibitor of Chk1 and Chk2 
[24]. It blocks the autophosphorylation and subsequent 
activation of the Chk proteins, which regulate the activity 
of Rad51 and the CDC25 and cyclin-dependent kinases 
[25]. Single agent prexasertib treatment induces DNA 
damage and apoptosis in preclinical studies, and potential 
anticancer activity was shown in phase 1 clinical trials in 
solid tumors [26]. Prexasertib is currently being studied 
in phase 1/2 clinical trials as both a single agent and in 
combination with targeted agents or chemotherapy in 
adult patients with solid tumors [27]. We hypothesized that 
inhibiting Chk1 would sensitize BRCA wild type HGSOC 
to PARPi by preventing the formation of Rad51 foci. In 
this study, we aimed to evaluate the preclinical efficacy 

of prexasertib in combination with the PARPi olaparib in 
HGSOC cells at clinically attainable concentrations.

RESULTS

Prexasertib synergizes with olaparib to decrease 
cell viability in HGSOC cells

The cytotoxicity of prexasertib and olaparib was 
assessed in a panel of HGSOC cell lines. Both prexasertib 
and olaparib monotherapy decreased cell viability in a 
dose-dependent manner in both BRCA wild type and 
BRCA mutated cell lines (Figure 1A and 1B). PEO1 
(BRCA2 mutated) and PEO4 (BRCA2 mutated with a 
gain-of-function reversion mutation) were sensitive to 
prexasertib, and PEO4 did not show significant loss 
of viability at the maximum concentration of olaparib 
(200 μM) used (Supplementary Figure 4: Table 1). 
Olaparib at clinically achievable concentrations (36- 99 
μM) [28] yielded more than 50% cytotoxicity in PEO1 
and OVCAR3. IC50 values of prexasertib in all four cell 
lines ranged from 6 nM to 49 nM, which were lower than 
clinically attainable concentrations of the recommended 
phase 2 dose (98-174 nM; Table 1) [26].

We next assessed synergy of the combination 
treatment and the conditions under which such synergism 
occurred. Cell viability curves for combination treatments 
ranging from 0-20 μM for olaparib and 0-20 nM for 
prexasertib were determined from XTT assays (Figure 1C-
1F). We selected two dose combinations of prexasertib/
olaparib (5nM/5μM and 10nM/10μM) to test for 
synergism. Synergism was assessed by using Combination 
Index (CI) values as determined by Chou and Talalay 
(Supplementary Table 1) [29]. A combination of 5nM/5μM 
gave CI values that were <1 for all cell lines tested, and 
a combination of 10nM/10μM gave CI values that were 
<1 for all cell lines tested except OV90 (Supplementary 
Table 1). A prexasertib/olaparib combination dose of 
20nM/20μM gave CI values that were <0.3 for OVCAR3, 
OV90 and PEO1, suggesting strong synergism, and 
were extremely cytotoxic (cell viability <40%). Because 
lower cytotoxicity would ensure that enough remaining 
viable cells would be available for subsequent assays, a 
combination of 5nM/5μM prexasertib/olaparib was chosen 
to further study the underlying molecular mechanisms that 
may drive synergism.

Prexasertib does not affect PAR incorporation 
and olaparib does not alter Chk1 activity

We first examined on-target effects of each 
monotherapy treatment and their combination. Olaparib 
significantly reduced PAR incorporation in all cell lines 
both in monotherapy and in combination, and prexasertib 
neither stimulated nor inhibited PAR incorporation (Figure 
2A). Chk1 and 2 protein phosphorylation was examined to 
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investigate prexasertib target effects. Phosphorylation of 
S317 and S345 Chk1 reflect ATR activation in response 
to DNA damage, and S296 Chk1 is the activating 

autophosphorylation site, essential for downstream 
Chk1 phosphorylation activity [17, 30, 31]. Prexasertib 
monotherapy decreased S296 autophosphorylation 

Figure 1: Chk1 and PARP inhibition reduces cell viability in HGSOC. Cytotoxicity of prexasertib (A) and olaparib (B) was 
determined by XTT assay in BRCA mutated and BRCA wild type HGSOC cell lines. Cells were treated with either prexasertib (0-100 nM) 
or olaparib (0-100 μM) 24 hours after cells were seeded. XTT assay was performed 3 days after treatment. The cell viability was calculated 
relative to the 0.01% DMSO-treated control cells. The representative cell viability plots from 2 independent experiments were shown. Cells 
were then treated with combinations of prexasertib (0-20 nM) and olaparib (0-20 μM) 24 hours after seeding. XTT assay was performed 3 
days after the combination treatment for OVCAR3 (C), OV90 (D), PEO1 (E), and PEO4 (F). The cell viability was calculated relative to 
the control, and was used to calculate effective combination ratios of olaparib to prexasertib and CI values as seen in Supplementary Table 
1. The error bar represents the standard deviation (SD) of 3 replicates.
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and increased Chk1 phosphorylation at S317 and S345 
compared to the control in all cell lines except PEO4. 
Olaparib monotherapy did not significantly reduce S296 
phosphorylated Chk1 levels. Combination treatment 
inhibited S296 Chk1 autophosphorylation while it 
triggered greater Chk1 S345 and S317 phosphorylation 
than either monotherapy in all cell lines tested (Figure 
2B). Treatment with olaparib as a monotherapy and in 
combination with prexasertib increased phosphorylation 
of Chk2 (T68) in all cell lines. Total Chk1 and Chk2 
expression did not change upon either monotherapy 
treatment for all cell lines, but did decrease in the 
combination treatment for OV90 (Figure 2B). The Chk1 
downstream proteins CDC25A and CDC25C showed no 
changes (Supplementary Figure 3B).

Chk1 inhibition prevents nuclear Rad51 foci 
formation in response to olaparib treatment

To examine our hypothesis of synergistic 
cytotoxicity by reduced Rad51 response, the 
extent of Rad51 focus formation was assessed by 
immunofluorescence. Olaparib treatment induced nuclear 
Rad51 foci formation in BRCA wild type HGSOC cell 
lines and PEO4, a BRCA2 gain-of-function revertant cell 
line (Figure 3), while prexasertib had no impact on nuclear 
Rad51 foci formation. The induction of nuclear Rad51 
foci by olaparib was almost completely abrogated when 
Chk1 was inhibited by prexasertib in all BRCA wild type 
HGSOC cell lines and PEO4 (Figure 3 and Supplementary 
Figure 2).

Prexasertib and olaparib induce greater DNA 
damage in combination

Inhibition of either Chk1 or PARP is known to cause 
DNA damage and dysregulation of DNA repair [32, 33]. 
We next examined if the observed greater cytotoxicity in 
the combination therapy was induced due to increased 
DNA damage. Significantly increased DNA damage 
occurred with the combination, demonstrated by greater 
comet tail DNA percentage, compared to the control 
conditions (p<0.05, Figure 4A). Damage incurred by 

either single agent alone was not significantly different 
from the control in each cell line (Figure 4A) except for 
OV90, whereas significantly increased DNA damage was 
observed in the prexasertib treatment compared to the 
control (p<0.01, Figure 4A). Increased γH2AX (S139) 
expression was also seen with the combination treatment 
at 24 and 48 hours (Figure 4B). We performed γH2AX 
(S139) immunofluorescence confocal imaging to further 
elucidate DNA damage induced by the combination 
treatment. We found a significant increase in γH2AX focus 
formation compared to the control in OVCAR3 and PEO4 
(p<0.05; Supplementary Figure 1). Pan-nuclear γH2AX 
staining was observed in prexasertib and in combination 
treated cells, suggesting both prexasertib alone and in 
combination induced greater DNA damage and suspected 
apoptosis than olaparib alone [34].

Combination treatment yields greater apoptosis 
than either monotherapy in HGSOC cells

We next examined whether the decreased cell 
viability was attributable to greater apoptosis. We 
observed greater caspase 3 activity with the combination 
treatment compared to the control in all cell lines (Figure 
5), suggesting the combination treatment induced greater 
apoptosis and cell death in both BRCA wild type and 
BRCA mutated HGSOC cell lines.

Chk1 inhibition perturbs G2/M cell cycle arrest 
induced by olaparib

Chk1 is essential in arresting DNA damaged 
cells at the G2/M checkpoint. We investigated how 
this perturbation could be contributing to the observed 
synergism. Cells treated with olaparib monotherapy 
showed enrichment in the G2/M phase compared to DMSO 
treated cells except for OV90 (Figures 6A; Supplementary 
Figure 3A). Prexasertib alone did not change the cell cycle 
distribution in all cell lines except in OV90. Cells in the 
G2/M phase were reduced in the combination treatment 
compared to olaparib monotherapy in these three cell 
lines: from 73.3% to 43.7% for OVCAR3 (p<0.001), 
59.4% to 51.5% for PEO1 (p=0.018) and 39.0% to 27.9% 

Table 1: IC50 values of prexasertib and olaparib in HGSOC cells. Cell viabilities were calculated relative to the control, 
and IC50 values were determined by Prism and the mean ± SD of 2 independent experiments were shown.

Cell Line Olaparib (μM), mean ± SD Prexasertib (nM), mean ± SD

OVCAR3 6.18 ± 2.16 6.34 ± 1.8

OV90 57.00 ± 24.65 35.22 ± 11.71

PEO1 2.04 ± 0.49 12.65 ± 8.27

PEO4 ND 48.79 ± 3.89

ND: Not determined. PEO4 did not show significant loss of viability (81-89% viable cells) at the maximum concentration 
of olaparib (200 μM) used in XTT assay.
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Figure 2: Prexasertib and olaparib display on-target effects at lower than clinically achievable doses. (A) Olaparib’s 
effect on PARP1 activity was measured by assessing decreases in PAR levels. The experiment was repeated twice, with each experiment 
having two replicates. The mean ± SD of 2 independent experiments was shown. (B) Prexasertib’s inhibitory effect on Chk1 and Chk2 was 
assessed by immunoblotting. The representative immunoblot images were shown. GAPDH was used as a loading control.
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Figure 3: Chk1 inhibition suppresses the nuclear Rad51 foci formation in response to olaparib treatment. (A) Percent of 
cells with more than 5 Rad51 foci was determined. The data was presented as the mean ± SD of 3 independent experiments. The statistical 
significance was analyzed using one-way ANOVA. (* = p < 0.05, ** = p < 0.01). (B) Confocal microscopic images of OVCAR3 cells were 
shown as representative images.
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Figure 4: Prexasertib and olaparib cause DNA damage in HGSOC cells. DNA damage was assessed with alkaline comet assay 
(A) and immunoblotting (B). (A) The percentage of DNA in comet tails significantly increased by the combination treatment compared to 
the control in all cell lines (p<0.05). The experiment was repeated 3 times and the data was presented as the mean ± SEM. The statistical 
significance was analyzed using one-way ANOVA (* = p < 0.05, ** = p < 0.01). (B) γH2AX (S139) immunoblotting was performed with total 
lysates for 24 and 48 hours after treatment. The representative immunoblot images were shown. GAPDH was used as a loading control.
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for PEO4 (p=0.018) (Figure 6A). Phospho(p)-Histone 
H3 levels also increased in the combination treatment 
compared to olaparib alone in OVCAR3 (Figure 6B), 
indicating that prexasertib in the combination treatment 
forced the olaparib-induced arrested cells to enter M 
phase. Collectively, these results support the idea that 
prexasertib overrides olaparib-induced G2/M arrest.

DISCUSSION

Inhibition of the ATR/Chk1 axis has been reported 
to cause replication catastrophe, DNA damage and cell 
death [35], making this pathway an attractive target for a 
combination strategy with the PARPi olaparib in HGSOC 
[36]. We demonstrated the synergistic cytotoxicity 
of prexasertib and olaparib combination against both 
BRCA wild type and BRCA mutant HGSOC cell lines at 
clinically attainable concentrations. PARP inhibition is 
associated with induction of Rad51 nuclear accumulation 
and focuses to sites of DNA damage for initiation of 
repair [37]. Prexasertib, with little direct effect on 
Rad51 focus formation by itself, abrogated olaparib-
induced Rad51 focus formation, resulting in greater DNA 

damage that was measured by several means. The drug 
concentrations used in this study were carefully selected 
to perform a clinically relevant in vitro study given 
both drugs cause significant myelotoxicity in humans 
[26, 38]. In a phase 1 study by Hong et al., prexasertib 
resulted in grade 4 neutropenia in 73% of patients with 
advanced solid tumors, which may become a challenge 
for clinical investigations when combined with cytotoxic 
chemotherapy or DNA repair inhibitors such as PARPi. 
We proceeded using doses of prexasertib and olaparib at 
clinically attainable concentrations, which are below the 
concentrations achieved by the recommended phase 2 
doses for each drug (36 μM for olaparib and 98 nM for 
prexasertib) [26, 28].

One of the major cellular HR responses to DNA 
damage includes the nuclear recruitment of the BRCA2-
Rad51 complex [20, 39]. Rad51 translocates into the 
nucleus upon DNA damage, forming foci and assisting the 
DNA strand-pairing step of HR [40, 41]. Rad51 suppression 
via microRNA-506 has been shown to sensitize serous 
ovarian cancer to DNA damaging drugs such as cisplatin 
and PARPi [42]. Low quantities of Rad51 foci measured 
by immunofluorescence in post-chemotherapy biopsies 

Figure 5: Combination treatment increases apoptosis in HGSOC. The caspase 3 activity in each condition was calculated 
relative to the control. The experiment was performed in duplicate and repeated twice. The data is presented as the mean ± SD of 2 
independent experiments. The statistical significance was analyzed using multiple comparison t tests (* = p < 0.05, ** = p < 0.01).
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Figure 6: Prexasertib perturbs the cell cycle. (A) The mean ± SD of 3 independent experiments of cell cycle analysis via flow 
cytometry was shown. (B) The percentage of phospho(p)-Histone H3 (S10) positive cells relative to the total number of cells was analyzed 
by flow cytometry 48 hours after treatment (* = p < 0.05, ** = p < 0.01).
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were also associated with pathologic complete responses 
to anthracycline-based chemotherapy in sporadic primary 
breast cancers [43]. Additionally, reduced levels of Rad51 
expression by siRNA are shown to increase sensitivity to 
PARPi in human gastric cancer cells, and restoration of 
Rad51 via plasmid transfection attenuated drug sensitivity 
[44]. Recently, Narayanaswamy and colleagues reported 
prexasertib blocked nuclear localization of Rad51 in 
pancreatic cancer cell lines in response to DNA damage 
by gemcitabine [45]. A Wee-1 inhibitor, AZD1775, also 
attenuated Rad51 nuclear localization in pancreatic cancer 
cells, and resulted in sensitization to DNA damaging effects 
from radiation and PARPi [12]. We observed increased 
nuclear Rad51 foci levels by olaparib treatment in non-
BRCA mutated HGSOC cell lines, and these levels were 
significantly diminished in the combination treatment. 
Furthermore, the combination treatment caused greater 
apoptosis relative to the control in all BRCA wild type cell 
lines. The PARPi olaparib has shown clinical benefit both 
in BRCA mutant and wild type HGSOC, although response 
is reduced in recurrent BRCA wild type HGSOC [9]. Thus, 
our findings suggest a potential benefit of the combination 
therapy in non-BRCA mutated HGSOC by attenuation of 
DNA repair activity and greater apoptosis.

Other preclinical studies have provided evidence 
that the combination of Chk1 inhibitors and PARPi result 
in increased γH2AX phosphorylation and apoptosis in 
mammary carcinoma cells [46]. The combination therapy 
that we used demonstrated increased cytotoxicity by 
causing DNA damage, inhibiting Rad51 transnuclear 
localization and abrogating critical cell cycle checkpoints 
in BRCA wild type HGSOC [42]. Kim et al. recently 
demonstrated that combination of the ATR inhibitor 
AZD 6738 with olaparib caused an accumulation in 
chromosomal breakage, abrogation of the G2/M cell cycle 
checkpoint and increased apoptosis in BRCA2 mutated 
ovarian cancer cells [47]. Similar to our results, they also 
found that the combination of the Chk1 inhibitor MK8776 
with olaparib was synergistically cytotoxic in PEO1 cells, 
but not in PEO4 cells [47]. Our results show Rad51 foci 
formation was inhibited by prexasertib, indicating that 
decreased efficiency of HR DNA repair contributed to the 
sensitization of the cell lines to olaparib.

Accumulated DNA damage is a key factor resulting 
in greater cell death and possible synergistic cytotoxicity 
of olaparib with Chk1 or ATR inhibitors [48]. Sen et al. 
demonstrated the synergistic cytotoxicity of prexasertib 
and olaparib in small cell lung cancer, documenting 
increased γH2AX expression and apoptotic cell death [49]. 
It has been reported that DNA damage and replication 
stress induce γH2AX phosphorylation, either with separate 
foci formation in damaged cells or pan-nuclear staining in 
apoptotic cells by immunofluorescence [50]. Consistent 
with this, our findings showed γH2AX foci formation in 
olaparib-treated cells. Pan-nucleic γH2AX staining was 
observed in prexasertib and in the combination treated 

cells, suggesting prexasertib induced greater apoptosis and 
replication stress than olaparib alone [51-53].

Most tumor cells largely rely on the G2/M 
checkpoint for DNA damage response because of a lack 
of G1/S checkpoint function, due to aberrant p53 function 
[54]. Our study confirms olaparib induces HGSOC cells to 
arrest in the G2/M phase as previously demonstrated [55]. 
This G2/M arrest was abrogated by prexasertib treatment 
in HGSOC cell lines. Thus, it is plausible that the 
combination of olaparib and prexasertib largely inhibits 
the function of the G2/M checkpoint, and speeds up the 
cell cycle, forcing cells with unrepaired DNA damage into 
mitosis and eventually leading to apoptosis and cell death 
[56], more dominantly in the BRCA wild type cell lines.

Prexasertib monotherapy is currently under clinical 
investigation and demonstrates early clinical activity in 
women with recurrent HGSOC (NCT02203513) [57]. 
Transient grade 4 neutropenia has been reported in 73% 
of prexasertib-treated patients, but clinically significant 
febrile neutropenia was rare [26, 57]. PARPi as a class 
also result in reduction of neutrophils [58], although this 
class of agents has been documented to have activity at 
submaximal doses when used in combination treatments 
[47]. Synergistic drug combinations carry the expectation 
of greater therapeutic efficacy, although they may also 
increase the severity of adverse effects. In addition, an 
ongoing phase 1 study of prexasertib and olaparib in 
advanced solid tumors (NCT03057145) and phase 2 study 
of prexasertib in solid tumors with replication stress or 
HR deficiency (NCT02873975) will reveal greater insight 
into the possible mechanisms driving clinical activity, as 
well as strategies for chemotherapeutic combinations that 
exploit such mechanisms.

Here we demonstrated the synergistic cytotoxicity 
of the combination treatment of prexasertib and olaparib 
against HGSOC. Prexasertib treatment increased cell cycle 
replication stress, and impaired Rad51 foci formation 
induced by olaparib in the combination treatment. Our 
study supports further evaluation of the therapeutic 
potential of the combination treatment including a Chk1 
inhibitor and PARPi for BRCA wild type HGSOC.

MATERIALS AND METHODS

Cell lines

OVCAR3 (BRCA wild-type) cells were obtained 
from ATCC (Manassas, VA, USA), and OV90 (BRCA 
wild-type), PEO1 (BRCA1 wild-type and BRCA2 mutated 
4035T>C) [47, 59], and PEO4 (BRCA1 wild-type and 
BRCA2 mutated with gain-of-function mutation) cells 
were gifted by Dr. Annunziata (National Cancer Institute; 
Bethesda, MD, USA) [60-62]. The authentication of all cell 
lines was performed at the Frederick National Laboratory 
for Cancer Research on March 18th, 2016. 15 STR markers 
(D8S1179, D21S11, D7S820, CSF1P0, D3S1358, TH01, 
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D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, 
D18S51, D5S818, and FGA) and amelogenin for gender 
determination were tested to determine unique identity. 
All cell lines were grown in RPMI 1640 medium with (+) 
L-glutamine supplemented with 10% fetal bovine serum 
and 1% Penicillin/Streptomycin.

Drug preparations

Stock solutions of 100 mM olaparib (AZD2281) 
(Selleck Chemicals; Houston, TX, USA, Cat No. 
S1060) and 100 μM prexasertib (LY2606368) (Eli Lilly; 
Indianapolis, IN, USA; MTA in disclosures) were prepared 
in dimethylsulfoxide (DMSO) and stored in aliquots at 
-80 °C. Treatment solutions with concentrations of 5 nM 
and 5 μM for prexasertib and olaparib, respectively, were 
prepared by diluting stock solutions in cell culture medium.

Cell viability (XTT) assay

Cell viability was assessed by the Cell Proliferation 
Kit II (XTT assay) (Roche; Indianapolis, IN, USA) 
according to manufacturer’s instructions. 2000 cells/
well were seeded in 96-well plates and treated with 
either olaparib (0-100 μM), prexasertib (0-100 nM), 
both or 0.01% DMSO 24 hours after seeding. Cells were 
treated for 3 days, and the absorbances were measured 
by SpectraMax M5 (Molecular Devices, Sunnyvale, CA, 
USA). Cell viability was calculated relative to DMSO-
treated control cells. Based on the dose-response curves 
plotted from the relative absorbance values, IC50 values 
were calculated using GraphPad Prism v. 7.0 (GraphPad 
Software Inc., La Jolla, CA, USA) (Table 1). Combination 
Index (CI) values were calculated using the Compusyn 
software (ComboSyn Inc., Paramus, NJ, USA). CI values 
less than 1 indicate synergism [63].

PAR concentration assay

Cells were seeded at 2000 cells/well were seeded 
in 96-well plates and treated with either 5 μM olaparib, 
5 nM prexasertib, both or 0.01% DMSO for 48 hours, 
and 50 μg of the lysate were used in the analysis. PAR 
levels in cellular lysates were measured using a PARP 
in vivo Pharmacodynamic Assay II (Trevigen) per the 
manufacturer’s instructions. PAR level was calculated 
relative to the 0.01% DMSO-treated cells.

Immunoblotting

Cells were seeded at 2000 cells/well in 96-
well plates and treated with either 5 μM olaparib, 5 
nM prexasertib, both or 0.01% DMSO for 48 hours, 
and subjected to immunoblotting [64]. The following 
antibodies were used: CDC25C (Cell Signaling 

Technology, #4688; Danvers, MA, USA), S216-pCDC25C 
(Cell Signaling, #9528), T48-pCDC25C (Cell Signaling, 
#9527), CDC25A (Cell Signaling, #3652), S124-
pCDC25A (Abcam, #ab156574), CDC2 (Cell Signaling, 
#9112), Y15-pCDC2 (Cell Signaling, #9111), Chk1 (Cell 
Signaling, #2360), S296-pChk1 (Cell Signaling, #2349), 
S317-pChk1 (Cell Signaling, #2344), S345-pChk1 (Cell 
Signaling, #2341), Chk2 (Cell Signaling, #2662), T68-
pChk2 (Cell Signaling, #2197), GAPDH (Cell Signaling, 
#2118), S139-γH2AX (Abcam, #ab11174), ECL goat anti-
mouse IgG HRP and ECL goat anti-rabbit IgG HRP (Cell 
signaling, #7076 and #7074).

Immunofluorescence confocal microscopy (IF)

Cells were grown on 12mm poly L-Lysine-coated 
coverslips (Corning Inc., Oneonta, NY, USA) and 
treated with either 5 μM olaparib, 5 nM prexasertib, 
both or 0.01% DMSO. OVCAR3, OV90, and PEO1 
were treated for 48 hours while PEO4 was treated for 72 
hours. Cells were fixed in 4% paraformaldehyde for 10 
minutes, permeabilized with 0.25% Triton-X, and blocked 
with 1% BSA in PBS. Cells were incubated in primary 
and secondary antibodies for 1 hour each. For primary 
antibodies, anti-rabbit Rad51 (Santa Cruz Biotechnology, 
Santa Cruz, CA, #8349) at 1:50 ratio or anti-human 
γH2AX (Abcam; Cambridge, MA, USA, #11174) at 
1:600 ratio in 1% BSA were used. Alexa Fluor 488nm 
(Invitrogen, Carlsbad, CA) goat anti-rabbit secondary 
antibodies (1:100) and Alexa Fluor 647nm (Invitrogen) 
goat anti-mouse secondary antibodies (1:200) were used 
for Rad51 and γH2AX detection. The slides were mounted 
with Vectashield mounting medium with DAPI (Vector 
Labs, Burlingame, CA, USA), and images were collected 
with the LSM 780 confocal microscope with a 63x/1.4 
oil immersion objective. The number of Rad51 foci was 
quantified in more than 100 cells per condition using the 
Focinator software [65]. Rad51 foci positive cells were 
defined as cells with more than 5 foci in the nucleus [12]. 
For γH2AX staining, cells with γH2AX foci formation 
were categorized as having 5-9, 10-14 or >15 foci per 
nucleus, or having pan-nuclear staining [66].

Comet assay

Cells were seeded in 6-well plates at a range of 2-3x105 
cells/well, and treated with 5 μM olaparib, 5 nM prexasertib, 
both or 0.01 % DMSO for 48 hours. DNA double-strand 
breaks were measured by alkaline comet assay according 
to the manufacturer’s instruction (Trevigen; Gaithersburg, 
MD, USA). Stained cells were imaged with a Nikon Diaphot 
microscope. The percentage of DNA in tail was measured in 
more than 50 cells/condition with CometScore Pro (TriTek 
Corporation; Sumerduck, VA, USA). Three independent 
experiments were performed for each condition.
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Caspase 3 activity assay

Cells were seeded in 6-well plates at 3 x 105 cells/
well and treated with 5 μM olaparib, 5 nM prexasertib, 
both or 0.01% DMSO for 24 hours and 48 hours, and 
50 μg of the lysate were used in analysis. Caspase 3 
activity was examined using a CaspACE Assay System, 
Colorimetric (Promega; Madison, WI, USA) according 
to the manufacture’s instruction. Caspase 3 activity was 
calculated relative to the control.

Flow cytometry

Cells were seeded in 6-well plates at 3x105 cells/
well and treated with 5 μM olaparib, 5 nM prexasertib, 
both or 0.01% DMSO. Cells were treated with indicated 
drugs for 24 hours and 48 hours for cell cycle analysis. 
Briefly, cells were fixed in 4% paraformaldehyde for 
15 minutes, permeabilized with 0.25% Triton-X for 
5 minutes, and blocked with 10% goat serum in PBS 
for 30 minutes. Cells were incubated in primary and 
secondary antibodies for 1 hour each at 4°C. Cellular 
DNA was stained using 7-AAD. For primary antibodies, 
anti-mouse phospho-Histone H3 (Ser10) (Cell Signaling, 
#9701) at 1:50 ratio in 10% goat serum/PBS was used. 
Alexa Fluor 488nm goat anti-rabbit secondary antibodies 
(Invitrogen) and Alexa Fluor 647nm goat anti-mouse 
secondary antibodies (Invitrogen) were used at 1:500 
dilutions. Cell cycle analysis was performed using the 
BD Pharmingen APC BrdU flow kit according to the 
manufacturer’s protocol (BD Biosciences; San Jose, CA, 
USA). Stained cells were collected with a FACScalibur 
(BD Biosciences) and analyzed using the FlowJo v. X.0.8 
software (Treestar; Ashland, OR, USA).

Statistical analysis

The data were subjected to one-way ANOVA with 
Tukey post-comparison tests and multiple comparison t 
tests in GraphPad Prism v. 7.0 (GraphPad Software). All 
differences were considered statistically significant if 
p<0.05.
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