
R E V I EW

Epigenomic drivers of immune dysfunction in aging

Christine R. Keenan1,2 | Rhys S. Allan1,2

1The Walter and Eliza Hall Institute of

Medical Research, Parkville, Victoria,

Australia

2Department of Medical Biology, The

University of Melbourne, Parkville, Victoria,

Australia

Correspondence

Christine R. Keenan and Rhys S. Allan,

Walter and Eliza Hall Institute, Parkville, Vic.,

Australia.

Emails: keenan.c@wehi.edu.au (CK),

rallan@wehi.edu.au (RA)

Funding information

This work is supported by the National

Health and Medical Research Council

(NHMRC) of Australia. CRK is supported by

an NHMRC Early Career Fellowship

1125436. RSA is supported by an Australian

Research Council Future Fellowship

130100541.

Abstract

Aging inevitably leads to reduced immune function, leaving the elderly more suscep-

tible to infections, less able to respond to pathogen challenges, and less responsive

to preventative vaccinations. No cell type is exempt from the ravages of age, and

extensive studies have found age‐related alterations in the frequencies and func-

tions of both stem and progenitor cells, as well as effector cells of both the innate

and adaptive immune systems. The intrinsic functional reduction in immune compe-

tence is also associated with low‐grade chronic inflammation, termed “inflamm‐
aging,” which further perpetuates immune dysfunction. While many of these age‐re-
lated cellular changes are well characterized, understanding the molecular changes

that underpin the functional decline has proven more difficult. Changes in chromatin

are increasingly appreciated as a causative mechanism of cellular and organismal

aging across species. These changes include increased genomic instability through

loss of heterochromatin and increased DNA damage, telomere attrition, and epige-

netic alterations. In this review, we discuss the connections between chromatin,

immunocompetence, and the loss of function associated with mammalian immune

aging. Through understanding the molecular events which underpin the phenotypic

changes observed in the aged immune system, it is hoped that the aged immune

system can be restored to provide youthful immunity once more.
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1 | INTRODUCTION

Old age is associated with reduced immune function that ultimately

leads to elderly individuals becoming less responsive to vaccination

and more susceptible to a range of infections (Dorshkind, Monte-

cino‐Rodriguez, & Signer, 2009; Kline & Bowdish, 2016). Extensive

studies have found a myriad of changes in cellular phenotypes and

functions across almost all compartments of the immune system.

However, elucidating why these changes occur has proven a much

more difficult prospect.

Key molecular changes underpin the time‐related functional

decline across different systems and different organisms. These

molecular changes have recently been rationalized to become the

four primary “hallmarks of aging”: genomic instability, telomere

attrition, epigenetic alterations, and loss of proteostasis (Lopez‐
Otin, Blasco, Partridge, Serrano, & Kroemer, 2013). Importantly,

three of these four primary hallmarks involve changes to chro-

matin, highlighting the importance of chromatin state for function

and health.

In this review, we discuss the evidence that particular changes to

chromatin cause the loss of function seen in the aged immune sys-

tem. Increased understanding of the connections between pheno-

typic changes and the underlying molecular events is hoped to

reveal key mediators which can be therapeutically targeted to

restore immunity (and “youth”) in old age.
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2 | THE AGING IMMUNE SYSTEM

Changes in both the innate and adaptive arms of the immune system

have been documented in aging, although the changes in the adap-

tive immune system are more well‐defined (Figure 1). These changes

have been recently reviewed elsewhere (Goronzy & Weyand, 2017;

Michel, Griffin, & Vallejo, 2016; Pereira & Akbar, 2016; Pinti et al.,

2016; Yanes, Gustafson, Weyand, & Goronzy, 2017). However, key

changes in immune cell frequency and function will be described

here for completeness. The intrinsic functional reduction in immune

competence is associated with low‐grade chronic inflammation, ter-

med “inflamm‐aging,” recently reviewed in Frasca and Blomberg

(2016), characterized by high levels of circulating cytokines and

latent viral infections. This inflammatory state then further perpetu-

ates the age‐related immune dysfunction.

2.1 | Hematopoietic stem cells (HSCs)

Hematopoietic stem cells (HSCs) are responsible for the maintenance

and replenishment of immune and hematopoietic cells throughout

life. HSC numbers actually increase with age, both in mice and

humans, but these accumulated cells show reduced reconstitution

potential (Morrison, Wandycz, Akashi, Globerson, & Weissman,

1996; Ogawa, Kitagawa, & Hirokawa, 2000; Pang et al., 2011; Rossi

et al., 2005). Stem cell diversity also appears to reduce with age with

an exponential increase in the occurrence of clonal hematopoiesis,

where one mutant HSC produces an overwhelming proportion of

mature blood cells, especially after the age of 45–60 in humans

(Genovese et al., 2014; Jaiswal et al., 2014; McKerrell & Vassiliou,

2015). Moreover, the output of these aging HSCs is also biased

toward the myeloid lineage at the expense of lymphoid cells (such as

T and B lymphocytes), again a trait conserved between mice and

humans (Pang et al., 2011; Wahlestedt, Pronk, & Bryder, 2015; Fig-

ure 1a).

A recent study using in vivo cell‐tracing labels in mice provided

evidence by which this myeloid skewing may occur (Bernitz, Kim,

MacArthur, Sieburg, & Moore, 2016). Long‐term HSCs, the most

primitive HSC population, are shown to expand numerically with

age; however, their frequency within the bone marrow decreases

due to accumulation of committed myeloid progenitors (Bernitz

et al., 2016). Intriguingly, this study suggests that a division counting

mechanism exists within this long‐term HSC compartment, whereby

these largely dormant cells undergo four self‐renewal divisions

throughout adulthood, and retain memory of their division history,

to lose regenerative potential at the fifth division (Bernitz et al.,

2016).

2.2 | Adaptive immune system

2.2.1 | Lymphocyte output

The thymus, where T cells develop, begins to involute at puberty in

both mice and humans due to age‐related changes that affect both

T‐cell progenitors and the thymic microenvironment (Linton & Dor-

shkind, 2004; Figure 1b). Similarly, decreased hematopoietic tissue in

the bone marrow of mice and humans means B‐cell lymphopoiesis

also decreases with age (Dorshkind et al., 2009; Ogawa et al., 2000).

This reduction in primary lymphoid tissue output means that during

adulthood, lymphoid cell regeneration is nearly entirely derived from

homeostatic proliferation of the existing T‐ and B‐cell pool, meaning

that diversity cannot be increased. Interestingly, a higher ratio of

CD4+:CD8+ T cells in humans has been shown to correlate with

frailty and predisposition to disease, but not with “healthy aging”

(Strindhall et al., 2007).

2.2.2 | B lymphocyte phenotype and function

The aging B‐cell compartment shows a reduced frequency of naïve

cells and a commensurate increase in oligoclonal memory B cells.

With age, human and mouse B cells produce antibodies with lower

affinity for their antigen and have reduced ability to class switch,

which hamper immune responses to both vaccination and infection

(Kogut, Scholz, Cancro, & Cambier, 2012). Aging also leads to defects

in B‐cell tolerance mechanisms which lead to an increased
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F IGURE 1 Dysfunction of the aged immune system. Changes in
cellular frequency and function compromise the immune health of
elderly individuals. These changes are most clearly delineated in the
hematopoietic stem cell (HSC) compartment (a), and the adaptive
immune system (b), but changes are also seen in the innate
compartment (c)
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production of autoreactive antibodies and an increased incidence of

autoimmune diseases in elderly individuals. These so‐called age‐asso-
ciated B cells (ABCs), found in both mice and humans and character-

ized by high expression of T‐bet and CD11c, respond through Toll‐
like receptor activation in the absence of BCR stimulation, and can

outcompete mature B cells as they have a survival advantage by not

being reliant on B‐cell‐activating factor (Naradikian, Hao, & Cancro,

2016).

2.2.3 | T lymphocyte phenotype and function

The most well characterized age‐related alterations in the human

immune system are in the T‐cell compartment, in particular CD8+ T

cells, which show reduced numbers in age, commensurate with

reduced naïve CD8+ T‐cell priming, limiting the ability of CD8+ T‐cell
responses to be generated toward new infections (Briceno et al.,

2016; Figure 1b). In contrast, the CD4+ T‐cell compartment is stable

with age, although variable between individuals (Wertheimer et al.,

2014). Why the CD8+ T‐cell compartment shrinks with age, com-

pared to the relatively stable CD4+ T‐cell compartment is not clear.

CD8+ T cells theoretically should receive more signals from the

abundantly expressed MHC class I compared to CD4+, which receive

signals from the MHC class II molecules that are more restricted in

expression; therefore, CD8+ T cells may homeostatically proliferate

at a higher rate than CD4+ T cells which may lead to premature

senescence. Human T‐cell receptor (TCR) diversity shrinks with age

in both CD4+ and CD8+ compartments, and inequalities in clonal

size may compromise immunity or even lead to autoimmunity (Qi

et al., 2014). Frequencies of regulatory T cells (Tregs) in humans also

alter with age, with Treg numbers increasing (Gregg et al., 2005;

Simone, Zicca, & Saverino, 2008), an effect thought to contribute to

immune‐suppression in old age (Raynor, Lages, Shehata, Hildeman, &

Chougnet, 2012).

Aged CD8+ T cells in humans lose expression of co‐stimulatory

receptors such as CD28 (Effros, 1997). Accordingly, highly differenti-

ated CD27‐CD28‐CD45RA+CD57+ T cells accumulate in older indi-

viduals (Czesnikiewicz‐Guzik et al., 2008). These terminally

differentiated cells show defective T‐cell receptor (TCR) signaling,

decreased proliferative response, exhibit markers of senescence,

release pro‐inflammatory cytokines thought to contribute to the “in-

flamm‐aging” state, and are resistant to apoptosis (reviewed in refs.

Michel et al., 2016; Pereira & Akbar, 2016). Aged CD8+ T cells also

show increased proportions of cells expressing markers usually found

on NK cells such as CD16, CD56, CD57, NKp30, KLRG1, CD94,

NKG2 family members, and killer‐cell immunoglobulin‐like receptor

(KIR) family members (Vallejo, Mueller, et al., 2011). These innate‐like
T cells generally exhibit the highly differentiated senescent pheno-

type and may explain why the senescent CD8+ T cells, unlike

exhausted T cells, are able to maintain potent effector functions in

the absence of a normal proliferative response (Akbar & Henson,

2011; Henson et al., 2014). Why aged CD8+, and CD4+ T cells to

some extent, exhibit NK markers with age is an open question and

could be due to chronic antigen‐stimulation, or simply a cell‐intrinsic

feature. While innate responses from these αβT cells in the absence

of TCR engagement could contribute to autoinflammatory disease

(the incidence of which increases with age), evidence suggests that

individuals with a higher proportion of innate‐like T cells are less

likely to exhibit frailty and immune deterioration (Vallejo, Hamel,

et al., 2011).

Another factor thought to contribute to CD8+ T‐cell dysfunction
is an increase in so‐called virtual memory cells, cells that sponta-

neously mature with age to express phenotypic memory markers

without ever encountering their cognate antigen. These cells express

the same markers as those from lymphopenia‐induced homeostatic

proliferation, suggesting they develop in response to cytokine stimu-

lation rather than antigen (Haluszczak et al., 2009). Interestingly,

recent work using chimeric mice shows that defective CD8+ T‐cell
function in both naïve and memory compartments is intrinsic to the

aged cell, and is not conferred by the aged environment (Quinn

et al., 2018). While virtual memory cells have been most clearly

observed in mice that are kept in pathogen‐free environments (Niko-

lich‐Zugich, 2014), the existence of this phenomenon in humans is

yet to be conclusively proven. The frequency of memory‐phenotype
cells in older humans is certainly higher, and there are certainly T

cells specific for antigens never encountered by the host (Su, Kidd,

Han, Kotzin, & Davis, 2013). However, these cells may be a result of

cross‐reactivity, rather than spontaneous differentiation of naïve

cells. In humans, TCR sequencing studies (Qi et al., 2014) and studies

of persistent infection (Pulko et al., 2016) suggest that clonal expan-

sions generally maintain a naïve phenotype, but accumulation of

these cells may still contribute to the functional defects in prolifera-

tion and effector differentiation known to occur in old naïve T cells

(Cambier, 2005; Linton & Dorshkind, 2004).

2.3 | Innate immune system

2.3.1 | Monocytes, macrophages, and dendritic cells

The number of circulating blood monocytes does not change with

age in healthy humans (Seidler, Zimmermann, Bartneck, Trautwein, &

Tacke, 2010). However, the proportion of monocyte subsets appears

to shift with an expansion of pro‐inflammatory/non‐classical mono-

cytes (CD16+) and a commensurate reduction in classical monocyte

(CD14+CD16‐) frequency in elderly individuals (Seidler et al., 2010).

Age‐related decline in both macrophage and dendritic cell number

and effector functions have been reported, but a clear delineation of

age‐related dysfunction is yet to be defined due to discrepancies in

results between studies and groups (Figure 1c). For example, macro-

phage cytokine release and phagocytosis have both been shown to

be reduced, unchanged, or even increased with age (reviewed in refs.

Boule & Kovacs, 2017; Shaw, Goldstein, & Montgomery, 2013). Sim-

ilarly, studies on antigen presentation by dendritic cells have shown

mixed results (reviewed in refs. Shaw et al., 2013; Wong & Gold-

stein, 2013). Differences in species, anatomical location, and stimula-

tion conditions between studies certainly contribute to these

discrepancies; nevertheless, this heterogeneity may well reflect the
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difficulty in isolating the effects of aging from other interfering

comorbidities.

2.3.2 | Neutrophils

Evidence suggests that circulating neutrophil numbers remain con-

stant with age despite neutrophils exhibiting a shorter half‐life in

aged individuals (Fulop et al., 1997; Tortorella et al., 2006). Further-

more, the proliferation of neutrophil precursors in the bone marrow

of older people is also reduced (Chatta et al., 1993). In vitro studies

have shown neutrophil chemotaxis to be reduced in aged cells. How-

ever in vivo, the effect of age on neutrophil recruitment is more

complex with it reduced in some contexts and increased in others

(reviewed in refs. Boule & Kovacs, 2017). Changes in neutrophil

function have also been reported in aged individuals, including alter-

nations in cytokine production, reduction in phagocytosis capacity,

decreased formation of NETs, and increased production of reactive

oxygen species (reviewed in refs. Jackaman et al., 2017; Figure 1c).

2.3.3 | NK cells

The number of circulating natural killer (NK) cells is maintained or

even increased in old age but NK functional capacity, such as cyto-

toxicity and cytokine secretion, decreases leaving older individuals

vulnerable to tumors and infections (Manser & Uhrberg, 2016; Fig-

ure 1c). There is also a skewing of NK cell phenotypes with a

decrease in the CD56hi cytokine producing population and an expan-

sion of the CD56low cytotoxic population (Chidrawar, Khan, Chan,

Nayak, & Moss, 2006). Interestingly, the aging of the human NK

compartment is not recapitulated in mice where NK cells decline

with age (Beli et al., 2014; Shehata, Hoebe, & Chougnet, 2015). It is

not clear whether this is due to being kept in a pathogen‐free envi-

ronment, unlike humans, or whether other mechanisms underlie this

species difference.

3 | CHROMATIN CHANGES IN THE AGING
IMMUNE SYSTEM

Chromatin, a complex of DNA, RNA, and proteins, is the state in

which DNA is packaged within a eukaryotic nucleus. Consisting of

repeating nucleosome units (each 147 base pairs of DNA wrapped

around an octamer of histone proteins), chromatin structure and epi-

genetic modifications have critical roles in all aspects of DNA‐related
processes including transcription, replication, and repair (Allis and

Jenuwein 2016; provide an excellent historical tour of epigenetic

knowledge).

Changes in chromatin have been directly linked to the lifespan of

model organisms such as yeast, nematodes, and drosophila (Lopez‐
Otin et al., 2013). Much work has therefore been done to under-

stand the age‐related epigenetic changes in these model organisms

as well as in accelerated aging syndromes (progeria), in order to draw

connections to human organismal aging (reviewed in refs. Benayoun,

Pollina, & Brunet, 2015; Sen, Shah, Nativio, & Berger, 2016). Indeed,

patterns of DNA methylation have been proposed to have utility as

a biomarker of aging, a so‐called epigenetic clock (Horvath & Raj,

2018).

Individual cell types show distinct patterns of both epigenetic

marks (DNA methylation and histone modifications) and chromatin

state (3D genome organization, heterochromatic regions, lamina‐as-
sociated domains; Javierre et al., 2016; Lara‐Astiaso et al., 2014;

Thurman et al., 2012), all of which affect gene expression and cellu-

lar function. It therefore seems likely that different cell types or tis-

sues may be more or less prone to chromatin alterations, and may

“age” at different rates. It would therefore seem inappropriate to

infer that age‐related changes in one cell type apply ubiquitously.

However, relatively few studies have been conducted to examine

molecular changes in individual immune cell lineages, perhaps due to

difficulties of obtaining sufficient numbers of cells of different lin-

eages such as tissue‐resident lineages or rare cell types (although

this is becoming less of an impediment as the sensitivity of technol-

ogy is improved), perhaps due to the cost associated with sequenc-

ing many different cell types, or perhaps simply as it was not

deemed necessary when searching for changes well‐characterized in

model organisms. We hereafter review the evidence that age‐related
changes in immune cell frequencies and function described above

are linked to cell‐intrinsic alterations in chromatin modifications or

stability (summarized in Figure 2).

3.1 | Genomic instability in immune cell aging

Maintenance of genomic integrity is mediated by multiple pathways

including DNA damage response mechanisms and chromatin remod-

eling complexes. Over time these pathways lose effectiveness caus-

ing age‐related destabilization of the genome (Vijg & Suh, 2013).

3.1.1 | DNA damage

DNA damage both promotes cellular senescence in order to allow

DNA repair mechanisms and causes activation of the innate immune

system in order to clear damaged cells (Soria‐Valles, Lopez‐Soto,
Osorio, & Lopez‐Otin, 2017). The reduced capacity of the aged

immune system to clear these cells therefore results in an accumula-

tion of genomically damaged and senescent cells within all tissues of

the body, including within the immune system itself. Unsurprisingly,

defective DNA repair mechanisms lead to premature aging disorders

(Hoeijmakers, 2009). However, there is also clear evidence that

increased levels of DNA damage are observed in physiologically aged

cells, even in murine and human HSCs (Rossi et al., 2007; Rube

et al., 2011). There are also age‐related changes in mutation rate,

and many mutations that occur within progenitor cells (such as

human HSCs) are also carried forward into their differentiated pro-

geny (Welch et al., 2012). Whether individual cell lineages are more

or less susceptible to age‐induced DNA damage is unclear. Differen-

tial sensitivity of human leukocyte subsets to exogenous mutagens

such as H2O2 and γ‐irradiation has been reported (Mori, Benotmane,

Tirone, Hooghe‐Peters, & Desaintes, 2005; Weng, Lu, Weng, &
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Morimoto, 2008), suggesting that differential effects of age‐induced
damage may well contribute to lineage‐specific cellular dysfunction.

3.1.2 | Heterochromatin and transposable elements

Higher order chromatin structure can broadly be divided into two

major forms, transcriptionally active euchromatin, in which nucleo-

somes are packed loosely allowing access by transcription factors,

and more densely packed heterochromatin which often contains

CpG‐methylated DNA and has low transcriptional activity. Loss of

repressive heterochromatin has been associated with age‐related
dysfunction in a variety of species from yeast to human supporting

the global “loss of heterochromatin” theory of aging first proposed

over 20 years ago (Tsurumi & Li, 2012; Villeponteau, 1997). This

idea that over time heterochromatin domains lose their integrity

leading to derepression of silenced genes and aberrant gene activa-

tion has been bolstered by recent discoveries of the mobilization of

transposable elements from within compacted heterochromatic

regions in aging somatic cells in vivo (De Cecco, Criscione, Peterson,

et al., 2013), as well as senescent cells in vitro (De Cecco, Criscione,

Peckham, et al., 2013). Conversely, extending the lifespan of model

organisms has been achieved by genetic manipulation by increasing

the levels of repressive heterochromatin and preventing the activa-

tion of transposable elements (Wood et al., 2016).

In mammalian immune cells, there is some limited evidence that

similar mechanisms may mediate cell‐intrinsic cellular dysfunction.

De‐repression of repetitive elements, normally silenced in a hete-

rochromatic state, has been observed in aged mouse HSCs (Sun

et al., 2014). Analysis of the chromatin accessibility in human

immune cells using the assay for transposase‐accessible chromatin

with sequencing (ATAC‐seq; Buenrostro, Giresi, Zaba, Chang, &

Greenleaf, 2013) also revealed that advanced age is associated with

increased accessibility particularly in quiescent and repressed

regions, as opposed to regions critical for cell signaling which show

decreased accessibility (Ucar et al., 2017). Interestingly, these find-

ings were most marked in CD8+ T cells, a cell type with clear aging‐
induced dysfunction (Ucar et al., 2017). These studies support a link

with loss of heterochromatin and CD8+ T‐cell aging. The role of

transposable elements in this context needs to be investigated in

future studies.

3.1.3 | Nuclear architecture

The nuclear envelope protects the genome from damage and partici-

pates in genome maintenance by providing a scaffold for tethering

chromatin complexes, particularly transcriptionally silent heterochro-

matin (Liu et al., 2005). Mutations in genes encoding lamin proteins

of the nuclear lamina cause accelerated aging syndromes, and cells

from patients with these progeria syndromes predictably show loss

of nuclear structure and dissociation of heterochromatin from lamin

filaments (Broers, Ramaekers, Bonne, Yaou, & Hutchison, 2006;

McCord et al., 2013; Scaffidi, Gordon, & Misteli, 2005; Shumaker

et al., 2006). Fibroblasts from aged individual also show nuclear

abnormalities and increased DNA damage compared with cells from

young individuals (Scaffidi & Misteli, 2006), suggesting that disrupted

nuclear structure and chromatin tethering are not an unrelated

developmental defect in progeria disorders, but rather a feature of

an aged nucleus.

In the immune system, surprisingly little is known of the effects

of age on nuclear architecture and chromatin organization in individ-

ual immune cell lineages. Murine HSCs show age‐associated down-

regulation of the LMNA gene which encodes both lamin A and its

splice‐variant lamin C (Chambers et al., 2007; Rossi et al., 2005), as

well as altered DNA repair processes prone to increased mutation

rate (Mohrin et al., 2010). Importantly, mature cells of the mouse

and human immune systems are notably distinct from cells in other

tissues in that few immune cell types express A‐type lamins (Rober,

Sauter, Weber, & Osborn, 1990), although differentiation of some

dendritic cell and macrophage subsets has been shown to result in

acquisition of lamin A/C (Gieseler, Xu, Schlemminger, & Peters, 1993;

Prechtel, Turza, Theodoridis, Kummer, & Steinkasserer, 2006; Rober,

Gieseler, Peters, Weber, & Osborn, 1990), and T lymphocytes also

show transient expression of lamin A/C following activation (Gonza-

lez‐Granado et al., 2014). Despite the lack of expression of lamin A/

C in immune cells themselves, age‐associated down‐regulation of

Telomere
attrition

Disorganized 
heterochromatin

Epigenetic 
alterations

Genomic 
instability

Young Aged

F IGURE 2 Cellular dysfunction may be caused by the
dysregulation of chromatin at many levels. Immune cells from young
individuals have a tightly controlled chromatin structure protected
from damage by the presence of long telomeres and compacted
heterochromatin which associates with the protective nuclear
lamina. Chromatin in aged cells exhibits telomere attrition, altered
epigenetic marks and genomic instability associated with loss of
heterochromatin
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lamin A/C (previously demonstrated in aged cardiomyocytes; Afilalo

et al., 2007; and osteoblasts; Duque & Rivas, 2006) may still affect

immune cell function, as non‐hematopoietic expression of lamin A/C

expression has been demonstrated to be essential for normal T‐ and
B‐cell development in chimeric mice (Hale, Frock, Mamman, Fink, &

Kennedy, 2010).

Considering the low expression of type A lamins in the immune

system, B‐type lamins are considered to be the major lamin fila-

ments in the immune system. There is some evidence from Droso-

phila that lamin B levels reduce with age (Chen, Zheng, & Zheng,

2014), and it is well established in mammalian (non‐immune) cells

that levels of both lamin B1 and the lamin B receptor (LBR) are

reduced as cells enter senescence. The reduction in lamin B1 in

these cells has been demonstrated to lead to irreversible alterations

in nuclear architecture including changes in nucleosome density (De

Cecco, Criscione, Peckham, et al., 2013), formation of senescence‐
associated heterochromatic foci (SAHF) (Sadaie et al., 2013; Shah

et al., 2013), and loss of chromatin interactions in regions of hete-

rochromatin (Chandra et al., 2015). It therefore seems highly likely

that age‐associated dysregulation of B‐type lamins may have cause

functional impairment in the immune system, but this is yet to be

directly proven.

3.2 | Telomere attrition in immune cell aging

Telomeres constitute protective nucleoprotein complexes at the

ends of linear chromosomes, which function to ensure complete

replication of the genome in cell division, and protect the ends of

chromosomes from being recognized as DNA double‐stranded
breaks as the ends of telomeres are not blunt ended. Human telom-

eres terminate in hexameric tandem repeats of TTAGGG which

shorten as individuals age or can be extended to render cells immor-

tal through increased expression of the enzyme telomerase, respon-

sible for writing telomeric DNA (Opresko & Shay, 2017).

Mice, which have dysfunctional telomerase rendering telomeres

critically short, show premature aging of HSCs (Choudhury et al.,

2007). However, it is unclear whether telomeres shorten to this

degree over the age of mice and humans to result in this defect in

“normal” aging (Martin‐Ruiz, Gussekloo, van Heemst, von Zglinicki, &

Westendorp, 2005). Telomere shortening with age has been mea-

sured in many human immune cell types including B cells, T cells,

granulocytes, and monocytes (Hearps et al., 2012; Rufer et al., 1999;

Spyridopoulos et al., 2009). Whether this telomere attrition actually

causes the age‐related cellular dysfunction in each of these cell types

is however far from clear. Correlations between telomere shortening

in CD8+ T cell in particular and coronary heart disease (Spyri-

dopoulos et al., 2009) suggest that telomere shortening can indeed

cause pathological T‐cell dysfunction. Furthermore, differences in

both telomere length and rate of telomere shortening have been

observed between different human leukocyte subsets such as CD4+

T cells, CD8+ T cells, and B cells (Son, Murray, Yanovski, Hodes, &

Weng, 2000), as well as between T cells, B cells, and monocytes (Lin

et al., 2015), but not between naïve and memory cells (Son et al.,

2003), providing a plausible mechanism for the heterogeneity of

effects of age in the different cell types within the one individual.

3.3 | Epigenetic alterations in immune cell aging

Epigenetic control is essential to the healthy development of effec-

tor cells of the immune system, as both commitment and differentia-

tion require restriction of alternate fate genes, activation of lineage‐
defining transcription factors, and alterations in chromatin accessibil-

ity by the transcriptional machinery (reviewed in refs. Busslinger &

Tarakhovsky, 2014; Henning, Roychoudhuri, & Restifo, 2018; Schon-

heit, Leutz, & Rosenbauer, 2015; Shih et al., 2014). A large number

of studies have been conducted examining the epigenetic control of

each of these processes in immune cell lineages, particularly in T

cells. Alterations in any of these processes could feasibly cause the

population shifts and functional deficits seen in the aged immune

system. For example, failure of epigenetic pathways involved in T‐
cell lineage commitment and differentiation (Allan et al., 2012; Hu

et al., 2018; Pace et al., 2018) could lead to the myeloid cell skewing

seen in aging (Wahlestedt et al., 2015). In contrast, aberrant epige-

netic processes involved in formation of memory (Abdelsamed, Zeb-

ley, & Youngblood, 2018; Scharer, Bally, Gandham, & Boss, 2017)

could lead to the increased proportions of memory cells in aging,

whether they be antigen‐experienced or so‐called virtual memory

cells (Nikolich‐Zugich, 2014; Su et al., 2013).

We here below review the direct evidence that epigenetic path-

ways are dysregulated in aged immune cells. Supporting this idea,

many studies have shown altered transcriptional profiles in aged

immune cell populations (Cao, Gollapudi, Sharman, Jia, & Gupta,

2010; Harries et al., 2011; Mirza, Pollock, Hoelzinger, Dominguez, &

Lustgarten, 2011; Reynolds et al., 2015) and alterations in epigenetic

regulation are the forefront causative candidate for these changes.

3.3.1 | DNA methylation

Change to DNA methylation patterns is probably the best‐studied
epigenetic change in aging and has been used to predict the chrono-

logical age of human tissues and individuals (Hannum et al., 2013;

Horvath, 2013), or perhaps more precisely the “biological age” which

is influenced by clinical and environmental parameters to include a

measure of health and expected longevity. Predictions have been

made from heterogeneous tissues such as lung, liver, and brain tissue

as well as whole blood and peripheral blood mononuclear cells, and

isolated CD4+ T cells, monocytes, and B cells (Horvath, 2013).

Remarkably, chronological age can be predicted from just 3 CpG din-

ucleotide sites in human blood (Weidner et al., 2014). Given the cel-

lular heterogeneity in many of these samples, and the particular

changes that occur in blood cell composition with aging, computa-

tional methods have been developed to account for age‐related
changes in cell proportions (Yuan et al., 2015), but this still does not

allow epigenetic changes in specific cell types to be elucidated.

Given the differential effects of aging in distinct cell lineages out-

lined above, this would seem to be essential in order to fully
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understand the epigenetic mechanisms underlying intrinsic immune

cell dysfunction (the difficulties of interpreting epigenome‐wide

studies in heterogeneous populations are discussed more fully in ref.

Birney, Smith, & Greally, 2016).

DNA methylation levels globally reduce in HSCs and mature

leukocytes (and other tissues) as mice or human age (Bjornsson

et al., 2008; Fuke et al., 2004; Taiwo et al., 2013). Age‐associated
changes in DNA methylation have been reported in a number of

human immune cell types including monocytes and CD4+ and CD8+

T cells (Dozmorov, Coit, Maksimowicz‐McKinnon, & Sawalha, 2017;

Reynolds et al., 2014; Tserel et al., 2015; Zhao et al., 2016), and

many of these changes appear to be cell type‐specific (Reynolds

et al., 2014; Tserel et al., 2015). While DNA methylation at a global

level is reduced with age, discrete sites are hypermethylated, particu-

larly sites that are targets of the polycomb repressor complex 2

(PRC2) (Beerman et al., 2013; Horvath et al., 2012; Taiwo et al.,

2013), a complex primarily known for imparting the repressive his-

tone mark H3K27me3, but also known to directly cause DNA

methylation through the recruitment of DNA methyltransferase

(DNMT) enzymes (Vire et al., 2006). Hypermethylation of key genes

such as the IL‐7Rα gene and other genes in the IL‐7 signaling path-

way has been observed in both human peripheral blood mononu-

clear cells (PBMCs) and sorted CD8+ T cells (Ucar et al., 2017). This

repressive hypermethylation provides a molecular explanation for at

least some of the CD8+ T‐cell dysfunction seen in old age, as

reduced expression of IL‐7Rα in elderly CD8+ T cells (Kim, Hong,

Dan, & Kang, 2006; Kim, Hwang, Kim, & Kang, 2007) prevents these

cells from responding to the critical survival factor IL‐7 (Schluns, Kie-

per, Jameson, & Lefrancois, 2000).

In CD4+ T cells, one study examining human CD28null T cells sug-

gests a link between the loss of the costimulatory molecule CD28 as

CD4+ T‐cell age, causing alterations in DNA methylation leading to

increased expression of inflammasome‐related genes (Suarez‐Alvarez
et al., 2017). Another study analyzed publicly available data including

datasets from monocytes and CD4+ T cells from older people found

increased DNA methylation at two sites in the promoter of the KLF14

gene leading indirectly to suppression of FOXP3 (Johnson et al.,

2017). Hypomethylation at the upstream enhancer of FoxP3 has also

been linked to enhanced Treg numbers in older mice (Garg et al.,

2014). These isolated reports go some way to linking aberrant DNA

methylation with functional deficits in the immune system, but a com-

prehensive understanding is clearly lacking.

3.3.2 | Histone modifications

Post‐translational modifications to the N‐terminal tails of histone

proteins result in altered chromatin accessibility for the transcrip-

tional machinery, thereby resulting in altered gene expression. Some

modifications, such as trimethylation of lysine 9 and lysine 27 of his-

tone‐H3 (H3K9me3 and H3K27me3), are canonical marks of

repressed chromatin, whereas others, such as trimethylation of lysine

4 of histone‐H3 (H3K4me3), are associated with open chromatin and

active transcription.

Very few studies have been conducted to date examining age‐re-
lated genome‐wide changes in histone modifications in mammalian

cells, let alone cells of the immune system. One study examining epi-

genetic changes in old and young mouse HSCs found increased

H3K4me3 peaks in the promoters of genes associated with HSC

identity and self‐renewal, and conversely increased DNA methylation

at transcription factor binding sites in differentiation‐promoting

genes (Sun et al., 2014). These changes correlate with changes in

expression of these genes (Kowalczyk et al., 2015) and provide a

plausible molecular cause for the changes in HSC phenotype and

function in old age, described above. Global levels of the constitutive

heterochromatin mark H3K9me3, and expression of the prototypical

enzyme responsible for depositing this mark, suppressor of variega-

tion 39 homologue 1 (SUV39H1), have also both been shown to

reduce with age in a variety of cells types and tissues including

mouse and human HSCs (Djeghloul et al., 2016), human stem cells

(Zhang et al., 2015), and rat spleen and thymus (Sidler et al., 2013),

and therefore may have a causative role in age‐associated immune

dysfunction. Supporting this view, Suv39h1 null mice show poor

CD8+ T‐cell effector responses to Listeria monocytogenes infection

together with a defect in the silencing of stem‐related and memory‐
related genes (Pace et al., 2018). A study using progeria mouse mod-

els, however, suggests that Suv39h1 exacerbates premature aging,

with deletion of Suv39h1 associated with longer life (Liu et al.,

2013). This inconsistency highlights the fact that organismal aging,

premature aging syndromes, and age‐associated immune dysfunction

may all be driven by different processes, despite all being considered

“aging.”

Recent studies examining chromatin accessibility using ATAC‐seq
support the idea that the epigenetic landscape of CD8+ T cells is

altered with age (Moskowitz et al., 2017; Ucar et al., 2017). One

study found that naïve and central memory CD8+ T cells from older

humans showed a loss of chromatin accessibility at gene promoters

targeted by the transcription factor NRF1 (Moskowitz et al., 2017),

which regulates expression of mitochondrial respiratory chain genes,

a plausible although not conclusively proven explanation of the cellu-

lar dysfunction seen in the CD8+ T‐cell compartment in old age.

Another study found that chromatin in human PBMCs from older

individuals was more closed at promoters and enhancers associated

with T‐cell signaling, such as the IL‐7Rα gene as previously men-

tioned, compared to that seen in younger individuals (Ucar et al.,

2017).

There are a plethora of other chromatin‐modifying proteins

which impart and remove a wide variety of histone modifications

but which have not been examined in the context of immune aging.

A study recently published used a single cell mass cytometry

approach to provide the first insight of the effect of aging on 40 of

these marks in different human immune cell populations, revealing

more variation in chromatin modification profiles in older individuals

compared to younger individuals (Cheung et al., 2018). Tracing the

chromatin landscape within the same individuals over time will pro-

vide a more powerful characterization of the effect of age as this

will not be influenced by inter‐individual variation. Candidate histone
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modifications which are likely to have a role in the mammalian

immune system can also be prioritized from studies in other organs

and species. For example, regulators of H3K4me3 (Greer et al.,

2010) and H3K27me3 (Maures, Greer, Hauswirth, & Brunet, 2011)

have been found to control the lifespan of C. elegans and may well

have a role in immune aging.

Increased levels of H4K20me3 have been found in the liver and

kidneys of aged rats (Sarg, Koutzamani, Helliger, Rundquist, & Lind-

ner, 2002). Epigenetic enzymes involved in DNA repair may also play

critical roles. For example, SIRT6, an H3K9 deacetylase involved in

telomere maintenance (Michishita et al., 2008), is critical for DNA

repair and survival of mice past 3 weeks of life (Mostoslavsky et al.,

2006). SIRT1 is similarly critical to DNA repair, and SIRT1 target

genes have been shown to be dysregulated in the neocortex of the

brain of aged mice (Michishita et al., 2008). The histone deacetylases

HDAC1 and HDAC2 also have roles in DNA repair (Miller et al.,

2010) and have been linked to cellular senescence and aging in

mouse brain and liver, and human fibroblasts (Chouliaras et al.,

2013; Willis‐Martinez, Richards, Timchenko, & Medrano, 2010). Age‐
associated loss of histones and altered nucleosome occupancy has

been seen in cultured human fibroblast cells as they are serially pas-

saged (O'Sullivan, Kubicek, Schreiber, & Karlseder, 2010), adding a

further layer of complexity to histone‐based regulation. Further work

is clearly needed to characterize global age‐relating alterations in his-

tone modifications in immune cell types.

Dysregulation of histone post‐translational modifications does

not need to occur genomewide to have marked influences on cellu-

lar function as changes in the epigenetic regulation of key genes can

lead to cellular senescence and aging. For example, decreased his-

tone acetylation at the mouse Bach2 locus has been linked to CD4+

T‐cell senescence (Kuwahara et al., 2014). Perhaps the best‐charac-
terized example of this in the immune system is the epigenetic regu-

lation of the INK4 family of cyclin‐dependent kinase (CDK) inhibitors

encoded by the INK4A‐ARF locus, which leads to cellular senescence

and aging of a variety of cell types including mouse HSCs (Janzen

et al., 2006) and mouse and human fibroblasts (Bracken et al., 2007).

This locus is epigenetically silenced in young cells by polycomb

repressive complexes PRC1 and PRC2 which impart the silencing

H3K27me3 mark (Bracken et al., 2007). As cells age, enhancer of

zeste homologue 2 (EZH2), the enzymatic component of PRC2, is

down‐regulated (Kamminga et al., 2006; Sun et al., 2014). Addition-

ally, H3K27me3 is demethylated by Jumonji D3 (Agger et al., 2009;

Barradas et al., 2009), and the activating mark H3K4me3 is imparted

by mixed‐lineage leukemia 1 (MLL1) (Kotake, Zeng, & Xiong, 2009),

together resulting in de‐repression of the INK4 family of cyclin‐de-
pendent kinase (CDK) inhibitors leading to cellular senescence. His-

tone acetylation by MYST family members at this locus also

regulates the senescence of HSCs and other cell types (Perez‐Campo

et al., 2014; Sheikh, Phipson, et al., 2015). However, the relevance

of this mechanism to age‐related dysfunction is unknown, with most

work focusing on harnessing this pathway in the treatment of blood

cancers (Baell et al., 2018; Sheikh, Lee, et al., 2015).

Complex interplay between the ARF protein encoded by the

INK4A‐ARF locus, the p53 tumor suppressor, and the histone

demethylase Jumonji D3 may also occur as this has been reported in

mouse neural stem cells (Sola et al., 2011), HEK293 cells, and

glioblastoma cells (Ene et al., 2012). In these cell types, Jumonji D3

demethylation of the INK4A‐ARF locus leads to expression of the

ARF protein which causes nuclear accumulation of p53 and

increased transcription of the p21 gene, a cyclin‐dependent kinase

inhibitor which induces cellular senescence (Ene et al., 2012).

Whether this occurs in immune cell types is yet to be shown.

Expression of p16INK4A, another protein encoded in the INK4A‐ARF

locus, has been proposed to have utility as a biomarker of aging

when measured in human peripheral T lymphocytes (Y. Liu et al.,

2009), supporting a role for this gene in differentiated immune cells,

not just stem cells.

4 | DETERMINING MOLECULAR
CAUSALITY IN IMMUNE DYSFUNCTION

As summarized above, there is no doubt that aging is both associ-

ated with alterations in immune cell frequency and function, as well

as a suite of chromatin changes in immune and non‐immune cell

Proliferation rate?

Cellular/Nuclear structure?

Requirement for recombination?Environmental exposures?

Nuclear Lamina

Depletion of epigenetic substrates?Cellular stability?

Cell type-specific effects of aging?

Differential enzymatic requirements?

Nucleosomes

Histone Tail

Differential factors?

Transcriptional requirements?

Cell functionCell frequencies

Chromatin alterations

F IGURE 3 Differential susceptibility of
cell types to age‐related dysfunction may
be due to intrinsic or extrinsic factors.
Chromatin alterations may drive cellular
dysfunction, or cellular dysfunction may
result in chromatin alterations. Regardless,
understanding connections between
chromatin state and cellular dysfunction
may enable manipulation of chromatin‐
modifying pathways to restore a youthful
cellular phenotype and protective
immunity
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types. Determining causality between these two phenomena is

somewhat more difficult. Chromatin alterations observed with age

may drive the cellular dysfunction, or alternatively, cellular dysfunc-

tion may cause chromatin alterations, or perhaps both (see Figure 3).

Different cell types are clearly differentially susceptible to age‐re-
lated changes which may reflect intrinsic differences in chromatin

requirements, such as the initiation or maintenance of transcriptional

programs, or requirements for epigenetic enzymes to alter chromatin

state in processes such as differentiation. Some cell types have dif-

ferent requirements for 3‐dimensional genome organization such as

that required to perform V(D)J recombination in the adaptive but

not the innate immune system (Rivera‐Munoz et al., 2007; Shih &

Krangel, 2013). Alternatively, differences in cellular environment

such as exposure to DNA damage‐inducing stimuli could influence

the chromatin environment (Chen, Hales, & Ozanne, 2007). Similarly,

cell types with high rates of turnover or less protective nuclear lam-

ina may result in accumulation of mutations and disruption in chro-

matin organization (Criscione, Teo, & Neretti, 2016).

Regardless of whether chromatin alterations or cellular pheno-

type or environment are considered the “cause” of the differential

effects of aging, if the phenotype can be rescued through modulat-

ing chromatin‐modifying enzymes then the chromatin alteration can

surely be viewed as the molecular driver of age‐related immune dys-

function. This is clearly the case when telomerase activity is restored

(Bodnar et al., 1998), and there is some evidence that ectopic Ezh2

expression can partially prevent cellular senescence (Ito, Teo, Evans,

Neretti, & Sedivy, 2018)), albeit not yet shown in immune cell types.

More work needs to be done in this space to truly confirm a causal

role for each of the chromatin alterations discussed above, with the

rescue of immunity the ultimate goal in this context, rather than

increased lifespan per se.

5 | CONCLUDING REMARKS

The quest for a central unified theory of aging has revealed several

molecular hallmarks common across cell type and species. We can

infer a lot from studies in model organisms; however, direct evidence

demonstrating the molecular basis of cell type‐specific dysfunction

within the human immune system remains scarce. Part of the reason

for this may be the technical limitations of performing genomewide

epigenomic analysis on limited starting material, such as that

required for human samples and smaller cellular populations from

mice and other non‐human mammals. Rapid technological develop-

ment including the advent and more wide‐spread use of single cell

RNA‐seq and ATAC‐seq methodologies, and advances in ChIP‐seq‐
based assays, mean molecular analyses of small cell numbers is now

more achievable than ever. Applying these technological advances to

the phenotypic changes observed in the aged immune system will

rapidly advance this field and hopefully reveal key molecular events

which underpin the loss of immune function in old age. Through this

approach and the burgeoning field of epigenetic drug discovery

(Tough, Tak, Tarakhovsky, & Prinjha, 2016), it is hoped that youthful

immunity can be restored in old age.
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