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Abstract

Since their introduction in the 50’s, variance component mixed models have been widely

used in many application fields. In this context, ReML estimation is by far the most popular

procedure to infer the variance components of the model. Although many implementations

of the ReML procedure are readily available, there is still need for computational improve-

ments due to the ever-increasing size of the datasets to be handled, and to the complexity

of the models to be adjusted. In this paper, we present a Min-Max (MM) algorithm for ReML

inference and combine it with several speed-up procedures. The ReML MM algorithm we

present is compared to 5 state-of-the-art publicly available algorithms used in statistical

genetics. The computational performance of the different algorithms are evaluated on sev-

eral datasets representing different plant breeding experimental designs. The MM algorithm

ranks among the top 2 methods in almost all settings and is more versatile than many of its

competitors. The MM algorithm is a promising alternative to the classical AI-ReML algorithm

in the context of variance component mixed models. It is available in the MM4LMM R-

package.

Author summary

Mixed models have been a cornerstone of the quantitative genetics methodology for

decades. Due to the growing size of datasets, their associated computational cost is a

major burden, particularly in genome-wide association studies that routinely address Mil-

lions of markers, requiring as many mixed models to be fitted. In the particular case of a

2-variance component mixed models efficient procedures such as FaST-LMM or GEMMA
have been developed to analyze panels with tens of thousands of individuals. However,

there is room for improvement in cases where the computational burden is due to the

number of variance components in the model rather than the panel size, a classical situa-

tion in plant genetics where several variance components are required to handle various

polygenic effects. We consider a “MM” (Min-Max) algorithm as an alternative to the by-

default AI (Average Information) algorithm used to perform inference in mixed models.

The MM algorithm can be combined to the classical tricks used to accelerate the inference
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process (e.g. simultaneous orthogonalization or squared iterative acceleration methods).

The MM procedure is implemented in an MM4LMM package, and is competitive compared

to classical algorithms used in plant genetics. This package should help geneticists han-

dling more complex models to analyze their data than today.

This is a PLOS Computational Biology Methods paper.

Introduction

Since their formal introduction in the early 50’s [1, 2], mixed models have become an indis-

pensable tool of modern statistics. They have been successfully used in many application fields

[3] to model data with multiple sources of biological or technical variations. Starting with the

work of [4] and [5], mixed models have been a favored methodology in quantitative genetics,

and are still widely used in the context of Genome-Wide Association Studies (GWAS) and

Genomic Selection (GS).

With the development of high throughput technologies, a special care has been dedicated to

the development of efficient algorithmic procedures for the inference of mixed models [6–9].

This is illustrated by the availability of many tools/softwares that either perform inference in a

mixed model including many (fixed and random) effects on large datasets, or alternatively that

efficiently fit hundreds of thousands of mixed models with a limited number of variance com-

ponents. Many of these tools were developed in the context of animal or human quantitative

genetics, or single environment plant studies, where a popular strategy for GWAS analysis is

the one presented in [10] that requires the fitting of a simple 2-component mixed model per

marker, a favorable case for which efficient algorithms exist that allow the analysis of very large

panels with 104 − 105 individuals genotyped at 106 markers [7, 8].

In the context of plant breeding, panels are often of moderate size, including a few hun-

dreds/thousands of individuals only due to experimental/cost constraints. At the same time,

the mixed models used for the statistical analysis may be more complex that the ones used in

human genetics, since the modeling should account for the specificities of the experimental

design (e.g. when a multi-site experiment involving the same varieties in different environ-

ments has been carried out) or of the crossing design (e.g. when considering hybrids obtained

from parental lines belonging to different populations). One then aims at choosing among the

many algorithmic procedures the one that is best suited to cope with these specific features.

From a technical point of view, the Average Information (AI) algorithm [11, 12] has

become the reference algorithm for Restricted Maximum Likelihood (ReML) estimation. It

has been implemented in many packages [9, 13, 14] and different contexts, the practical imple-

mentation being sometimes slightly different from a package to another (see the Methods sec-

tion). Although in some very specific cases alternative algorithms may be more

computationally efficient, it is considered as a reference due to its versatility and its competi-

tive computational performance.

In this article we present a Min-Max (MM) algorithm for the ReML inference in Gaussian

Variance Component (VC) mixed model. MM algorithms have been previously described

[15], and applied to ML inference in mixed models [16]. We first present here the full deriva-

tion of the MM procedure applied to ReML estimation, along with the way it can be combined
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with some classical computational tricks to significantly speed-up the initial procedure. We

then provide a thorough benchmark comparison to illustrate that the proposed MM algorithm

can compete with several state-of-the-art algorithms that are widely used in quantitative genet-

ics to perform ReML estimation, including BOLT-LMM [17], FaST-LMM [7], gaston [9],

GEMMA [18] and GridLMM [19]. In our study algorithms are compared on different plant

breeding scenarios, with a focus for those that may require numerous runs of the model (e.g.

GWAS). The study reveals that differences in terms of precision may be marginal between

exact ReML procedures, but differences in computational performance may be important. In

many scenarios the MM algorithm proves to be competitive with respect to its competitors.

Results

Setting

We considered several procedures corresponding to different implementations of the optimi-

zation algorithms described in the Methods section. Our candidate procedure, called hereafter

MM4LMM, corresponds to the implementation of the Min-Max algorithm. MM4LMM is

compared to the following 3 state-of-the-art procedures:

? gaston [9] (version 1.5.7) is an R package that implements the AI algorithm. When K = 2

gaston performs ReML estimation using Newton method.

? FaST-LMM [7] (C version 2014) fits mixed models with two variance components only,

using the joint orthogonalization and profiling tricks.

? GEMMA [18] (version 0.98.1) fits mixed models using the AI algorithm for variance compo-

nent estimation, combined with the joint orthogonalization trick when applied to a two var-

iance component model.

All aforementioned algorithms aim at optimizing the restricted maximum likelihood (6).

Additionally, we considered Grid-LMM [19] that performs an approximate ReML optimiza-

tion over a grid of candidate variance values, and BOLT-LMM that performs GWAS using a

Gaussian mixture modeling of SNP effects (see [17] for details).

In order to compare the different algorithms in terms of precision of variance parameter

estimation, one needs a reference procedure that provides the “true” values of the ReML esti-

mates. In the present context we considered the optimizeLmer function of the lme4 [20]

R package which performs inference using the BOBYQA algorithm [21]. This algorithm was

used as the reference procedure, lme4 being one of the most popular (and consequently one

of the most debugged) R package to fit mixed models.

We focus here on the application of mixed models to statistical plant genetics, with two spe-

cific application cases in mind: genome-wide association study (GWAS) and variance compo-

nent analysis (VCA). In GWAS, the goal is to identify markers that are significantly associated

with phenotypic variation. The relationship between a given marker and the phenotype needs

to be tested in a model that accounts for both the marker effect and background genetic effects

specific to each individual.

In classical human and animal studies and also simple plant experiments (one trait in one

environment, single population), it is classical to adjust LMM with two variance components

(genetic background and residual). Therefore, many softwares exist to fit LMM with only two

variance components. However, a number of plant and animal genetic studies address pheno-

typic data of hybrids (crosses in animals) between different populations, referred to in plants

as heterotic groups (e.g. flint and dent for maize genetics). Background genetic effects involve
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in this case more than one source of variation, at least four when considering the additive vari-

ation contributed by each group, the interaction between the two groups and the error term.

A further characteristic of plant experiments is that phenotyping of varieties is generally

conducted in multiple environments. These different environments generally reveal different

magnitudes of genetic and error variations and complex genotype x environment patterns. In

this case, algorithms have to be flexible regarding the high number of possible random effects

considered within the LMM.

Most GWAS algorithms fit mixed model including two or more variance components for

each tested marker, meaning that computational efficiency is of major importance. Alterna-

tively, some algorithms build on an approximate procedure where only the parameters associ-

ated to the fixed part of the model are updated for each marker (e.g. EMMAX or the

approximate version of FaST-LMM, see [7, 22]), resulting in a significant computational

speed-up. However, one should be sure that such speed-up approximations in the optimiza-

tion algorithm yield accurate p-values.

Algorithm comparison

The three datasets presented in the next sections were selected as representative of classical

GWAS/GS/VCA panels in plant quantitative genetics, both in terms of scale (numbers of trials,

individuals per trials and replicates per individuals) and complexity (lines or hybrids, need for

gene×environment interaction in the statistical modeling. . .). All datasets are publicly avail-

able, see the Data Availability section. Also we stress out that the models considered for each

dataset were selected in order to illustrate the many different aspects that may impact the

computational performance of the algorithms to be compared rather than providing general

guidelines about statistical modeling in quantitative genetics.

All algorithms were run and compared on a server using a Intel(R) Xeon(R) CPU E5–2420

0 @ 1.90GHz processor, applying their by-default configuration settings. Each dataset was ana-

lyzed using the same number of cores and memory setting for all algorithms.

Two variance components. Dataset. We consider the CornFed Flint Association panel—

named Flint hereafter [23]. It consists in 259 maize lines of the Flint heterotic group, geno-

typed at 39,076 biallelic markers (after quality control). These hybrids were evaluated in an 11

location network. In the following GWAS we considered least square means of the individual

phenotypes as the studied trait as in the original publication. We present here the results for

two phenotypes, DM_Y_Flo and Tass, the results being similar for the remaining ones.

Statistical analysis. For each marker ℓ and for a given trait, the analysis was performed

using the following model:

Y ¼ mþ X‘b‘ þ U þ E ;

U � N ð0; s2
GKÞ; E � N ð0; s2

EIÞ and U ? E;

with Y the vector of phenotypes, Xℓ the vector corresponding to the number of copies of allele

1 present at marker ℓ, βℓ the effect associated with allele 1, U the random effect accounting for

the genetic background, and E the error vector. K is the matrix of kinship between lines. To

identify markers associated to phenotypic variation the null hypothesis H0: {βℓ = 0} was tested

using a Wald test procedure (see S1 Appendix for details).

Computational time. The computational times corresponding to the whole genome analy-

sis are displayed in Table 1. Recall that lme4 represents the reference in terms of inference

performance (i.e. sharp estimation of parameters), but is not expected to perform well in terms

of computational time, being not optimized for GWAS analysis. Although all methods achieve

the GWAS analysis in less than 30s, a factor of at least 10 may be observed between the most
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efficient (gaston) and the less efficient (FastLMM or BOLT-LMM) methods (excluding

lme4). There is no gain in using GridLMM in this context since all exact methods are using

the simultaneous orthogonalization trick, making the inference very efficient. One also

observes that the computational time of BOLT-LMM is quite unstable from one trait to

another.

QTL detection. In order to check the precision of the methods, we applied a full marker

identification procedure accounting for multiple testing with each algorithm. A Bonferroni

correction using Meff as the number of tests was performed, with Meff being the effective num-

ber of tests as estimated using the Gao procedure [24]. For the present application one obtains

Meff = 3, 527.

We found the GWAS results to be very similar across all algorithms except BOLT-LMM.

For the other algorithms all GWAS analyzes led to the same list of markers (provided in

Table 2), and the correlation between the different lists of (log-transformed) p-values were

found to be higher than 0.99. The correlation observed between BOLT-LMM and the other

methods is 0.97, leading to a different list of significant markers. This could be expected since

BOLT-LMM does not rely on the same modeling than the other algorithms.

Several approximate approaches have been proposed in order to further reduce the compu-

tational burden. In gaston a score test procedure is provided. FaSTLMM also comes with an

approximate version of the test procedure, where the variance components are estimated only

once without further refitting of the restricted maximum likelihood for each marker. Although

such strategies speed up the computational performance, they result in p-values that are poorly

estimated, and possibly to different lists of significant markers (see S1 Code: TwoVariance-

Components/Rmd/SupplementaryResults_TVC.html). Alternatively, it has been advocated to

perform GWAS by considering each chromosome separately for the variance component esti-

mation, using a kinship matrix estimated on markers that do not belong to the candidate chro-

mosome under study [25]. Applying this strategy led to an increase of power (i.e. smaller p-

values for the best candidates) for the approximate approaches. However in the present exam-

ple this gain in power did not increase the number of markers detected by the approximate

methods up to that detected by the exact ones. Additionally, note that exact procedures can

also be combined to this “leave-one-chromosome-out” approach, (see also S1 Code: TwoVar-

ianceComponents/Rmd/SupplementaryResults_TVC.html).

Table 2. −log10(p-value) of markers detected by all exact algorithms for DMY_Flo.

Marker −log10(pval)
SYN10537 5.61

SYN10528 5.61

PZE-101030022 5.07

PZE-101123079 4.87

SYN13856 5.19

List of significant markers at a nominal level of 5% (Gao correction for multiple testing).

https://doi.org/10.1371/journal.pcbi.1009659.t002

Table 1. Computational time (in sec.) associated to the different algorithms for the complete GWAS analysis of the Flint dataset, trait by trait.

gaston MM4LMM FaST-LMM GEMMA BOLT-LMM GridLMM lme4

DM_Y 3 6 28 15 12 9 12886

Tass 5 17 28 15 325 5 34852

https://doi.org/10.1371/journal.pcbi.1009659.t001
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In the next two sections BOLT-LMM and FaST-LMM are not considered since they do not

handle models with more than 2 variance components.

Four variance components. Dataset. The maize dataset (called Factorial in the following)

consists in hybrids derived from an incomplete factorial crossing design between flint and

dent lines [26]. A total of nD = 123 parental dent lines and nF = 86 parental flint lines were

crossed to obtain nH = 1, 254 hybrids. Parental lines were genotyped at 32,486 markers. Two

phenotypic traits were quantified: grain yield (GY) and grain moisture (GM). We present the

results obtained on GM. The association study was performed using the following model: at a

marker ℓ and for a given trait, one has:

Y ¼ 1mþ X‘b‘ þ ZFGF þ ZDGD þ ZHGH þ E

GF � N ð0; s2
FKFÞ; GD � N ð0; s2

DKDÞ

GH � N ð0; s2
HFÞ; E � N ð0; s2

EIÞ

GF ? GD ? GH ? E

ð1Þ

with Y is the vector of phenotype, Xℓ is the vector corresponding to the number of copies of

allele 1 present at marker ℓ, βℓ the effect associated with the allele 1, GF, GD and GH are the ran-

dom polygenic effects corresponding to the flint parent, the dent parent and their specific

interaction, respectively, and ZF, ZD and ZH are the associated incidence matrices. Correlation

matrices KF and KD correspond to the kinship matrices between the dent (resp. flint) parental

lines. Matrix F corresponds to the double relatedness matrix between hybrids, of general term

F̂h;h0 ¼ ðK̂ FÞf ;f 0 � ðK̂DÞd;d0

where h (resp. h0) is the hybrid resulting from the crossing between the flint and dent lines f
and d (resp. f0 and d0). Lastly, E is the error vector.

Algorithm performances. The analysis of the Factorial dataset required 11.25h with gas-
ton, 2.5h with MM4LMM and 107 seconds with GridLMM. The performance of GEMMA is not

reported since it exceeded 20h. In terms of p-values the two exact methods led to very similar

results (correlations between −log10(p-values) series >0.999). The correlation between any

exact method and GridLMM was found to be of the same order but with p-values being bigger

for GridLMM compared with exact methods, see Fig 1. Although in the present example no

marker was declared significant whatever the method, the p-value inflation could result in a

slight loss power in some applications.

Importantly, the model considered for the analysis only assumed an additive effect for the

marker. However in most cases the analysis of a hybrid panel requires one to account for both

an additive and a dominance fixed effects. Including a dominance effect is possible when using

MM4LMM, GEMMA and gaston, but not when using GridLMM that requires the marker effect

to be included in the model through a single numeric incidence vector. This constitutes a sig-

nificant limitation for the use of GridLMM applied to GWAS in the context of plant or animal

genetics.

More than 4 variance components. Dataset. The dataset (called the NAM dataset hereaf-

ter) is constituted of nH = 951 maize hybrids derived from an incomplete factorial crossing

design between nD = 875 dent lines and nF = 883 flint lines [27]. All hybrids were evaluated for

4 phenotypes (i.e. response variable). Here we focus on the Dry Matter Yield (hereafter DMY),

the results obtained with the other traits being very similar. Hybrids were evaluated in 8 differ-

ent trials performed in two countries, with a number of measurements per hybrid in a trial

going from 0 to 2, most hybrids being measured once. The number of measurements per trial
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goes from 896 to 1001, the total number of measurements being 7,725. The goal of the study

was to evaluate the contribution of the 2 parental populations (dent and flint) to the pheno-

typic variability.

Statistical analysis. Two different strategies were considered for the statistical analysis. The

first strategy consisted in a 2-step analysis. In step 1 a first model was fitted to correct the phe-

notypic data for field effects—see S2 Appendix for details. In a second step a Variance Compo-

nent Analysis was performed using the following model:

Y ¼ 1mþ XTbT þ ZFGF þ ZDGD þ ZHGH þ E

GF � N ð0; s2
FKFÞ; GD � N ð0; s2

DKDÞ

GH � N ð0; s2
HFÞ; E � N ð0; s2

EIÞ

GF ? GD ? GH ? E

ð2Þ

where Y here stands for the corrected phenotypes obtained in step 1. Here βT is the the vector

of trial fixed effects and XT is the associated incidence matrix, the other terms being defined as

in Eq (1).

Fig 1. Log-transformed p-values concordance between gaston and GridLMM, and gaston and MM4LMM.

https://doi.org/10.1371/journal.pcbi.1009659.g001

PLOS COMPUTATIONAL BIOLOGY Efficient ReML inference using MM algorithm

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009659 January 24, 2022 7 / 19

https://doi.org/10.1371/journal.pcbi.1009659.g001
https://doi.org/10.1371/journal.pcbi.1009659


The second strategy consisted in performing a one-step analysis on the whole dataset,

including all trials in a single analysis. The model has to account for both genetics and trial/

field effects, but also for gene×environment interactions, a feature that is relevant whenever

trials are expected to be diverse (in terms of environmental conditions) and genetic effects sen-

sitive to the environment. The random interaction terms are assumed to have specific vari-

ances in each trial, leading to

Y ¼ 1mþ XTbT þ ZFGF þ ZDGD þ ZHGH

þ
XNT

k¼1

½ZFTkGFTk
þ ZDTk

GDTk
þ ZHTk

GHTk

þZrowTk
GrowTk

þ ZcolTk
GcolTk

þ ZTkEk�

GFTk
� N ð0; s2

FTk
KFÞ; GDTk

� N ð0; s2
DTk
KDÞ

GHTk
� N ð0; s2

HTk
FÞ; GrowTk

� N ð0; Inrk Þ

GcolTk
� N ð0; Inck Þ Ek � N ð0; s2

ETInkÞ

GF ? GD ? GH ? GFTk
? GDTk0

? GHTk00
? Ek000 ;

ð3Þ

with NT the number of trials, GFTk
(resp. GDTk

and GHTk
) the polygenic effect associated to the

flint lines (resp. dent lines and flint-dent line interaction) within trial k, ZFTk
, ZDTk

and ZHTk
the

associated incidence matrices, GrowTk
and GcolTk

are row and column effects within trial k, ZrowTk

and ZcolTk
the associated incidence matrices, nrk and nck are the numbers of row and column

within trial k and Ek the residual effect within the trial k, nk the number of hybrids within trial

k and ZTk
the incidence matrix associated to Ek. Note that residual variances are also assumed

to be specific to each trial.

In multi-trial analyzes different factors may impact the computational efficiency of the

inference algorithm, including the number of observations, the number of trials, the computa-

tional tricks that may be implemented and the number of variance components. In order to

quantify the effect of these factors on the different algorithms considered here, we first consid-

ered simulated data mimicking a subsample of the full dataset. Synthetic phenotypes were sim-

ulated based on the observed genotypic data and the experimental design of the NAM dataset.

More precisely, we subsampled sets of hybrids from the NAM dataset and then simulated the

phenotype based on Model (2), using the observed kinship matrices and considering no fixed

effects (i.e. all observations have a null mean). The computational performance of the 4 algo-

rithms are presented on both the simulated and the NAM data, analyzed using either Model

(2) or (3). Note that Model (3) has 44 components when assuming a common error variance,

and 51 otherwise, making the model fitting significantly more involving than the previous

analyses. Consequently we considered variance component analysis rather than association

analysis.

Estimation. In terms of variance estimation, all algorithms yielded the same results when

applied to the complete NAM dataset, using Model (2). The table of the variance component

estimates is given in S3 Appendix. Similar conclusions were obtained when considering other

phenotypic traits (results not shown).

Computational time. We investigated how the number of observations impacts the

computational performance of the different algorithms. We first considered a “one-trial” sim-

ulation setting where n = 400, 500, . . ., 900 hybrids were randomly selected from the 951 avail-

able ones and phenotypes were generated as described in the previous paragraph. This process

was repeated 10 times. The data were then analyzed using Model (2). The results are displayed
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in Fig 2 (left). As expected the computational time of all procedures increases with n, with

gaston and MM4LMM being the top two algorithms. Compared to the Hybrid data applica-

tion the lower performance of GridLMM comes from the fact that here only a single model is

fitted.

In a second setting we investigated the impact of the number of trials on the computational

performance of the different algorithms. To this end, we fixed the total number of observations

at n = 2400, and randomly sampled hybrids in nT = 4, . . ., 8 trials (balancing the contribution

of the different trials). For each number of trials, the simulation process was repeated 10 times

and Model (2) was used for the analysis. Results are presented in Fig 2 (right). Apart from

MM4LMM, all algorithms are insensitive to nT: as soon as the number of variance components

in the model does not depend on nT the algorithms scale with n (which is fixed here) only.

The behavior of MM4LMM differs from the other algorithms because MM4LMM automatically

selects whether the MME trick (described in the Methods section) should be used or not.

In the present setting one can show that the algorithmic complexity of the MM algorithm is

O(n3 + K × n2 + p3) whereas the one of MM combined with the MME trick is OððnF þ nD
þ nH þ pÞ3 þ ðn2

F þ n2
D þ n2

H þ
PK

k¼1
nkÞ þ p3Þ, where p = rank(X). Here quantities nF, nD and

nH decrease with increasing values of nT, and the computational time of MM4LMM decreases

accordingly. Consequently, depending on the balance between the number of random effects

and of measurements, the MME trick may be beneficial (e.g. when all trials are considered) or

detrimental (eg when only 2 or 4 trials are included in the analysis).

Although the previous simulated settings allow one to disentangle the effect of the number

of observations and the number of trials, we considered a more realistic setting where both

numbers increase together, i.e. a setting where the number of slots in a trial does not depend

on nT. Here we used the real NAM data, built intermediate versions of the complete dataset by

selecting subsets of 2, 4 or 6 trials among the 8 available ones and analyzed these subsets with

Model (2). Table 3 displays the computational time associated with each algorithm. One

observes that differences in terms of performance may be important, as quantified using the

ratio between the worst and the best computational time obtained (last column), with no single

algorithm being uniformly the most efficient. Note that the Bayesian estimation procedure

implemented in the MCMCglmm package [28] was also considered for this analysis. Results

Fig 2. Computational time for variance component analysis with simulated data. Computational time of the algorithms with respect to the number

of observations (left) and the number of trials (right).

https://doi.org/10.1371/journal.pcbi.1009659.g002
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were similar in terms of parameter estimation but are not reported here due to prohibitive

computational costs (>24h for a single 2-trial analysis).

We then considered the analysis of all trials using Model (3). In this context the use of the

MME trick would be detrimental since the cumulative size of the correlation matrices may

become significantly high. The computational times obtained are summarized in Table 4.

Note that no performance is reported for GridLMM since it cannot handle such a large num-

ber of variance components (the memory size required for matrix storage—>80Go for the

first iteration—becomes highly prohibitive). The table of the variance component estimates is

given in S4 Appendix.

Lastly, note that Model (3) assumes a homogeneous error variance across trials, a strong

hypothesis that is highly unlikely in practice. The third strategy is then to analyze the full data-

set using Model (3), except that one now assumes that Ek � N ð0; s2
ETk
InkÞ for each trial k. A

comparison between the homogeneous and trial specific error variance models based on the

BIC criterion confirms that the heterogeneous error variance model is to be preferred for the

NAM dataset (BIC(homogeneous)=15,279, BIC(specific)=14,850, smaller is better). Although

highly desirable for the statistical analysis, this last model cannot be fitted by the algorithms

presented here except for MM4LMM, that run the analysis in 4410 seconds.

Discussion

As illustrated in the Results section, the MM algorithm is a competitive algorithm in the con-

text of ReML inference for VC mixed models. When K = 2, it can be combined with the simul-

taneous orthogonalization trick to compete with algorithms dedicated to the 2-component

case such as FaST-LMM or BOLT-LMM when applied to datasets of moderate size. For large

values of K the number of available methods reduces to gaston, GEMMA and MM4LMM, the

last one being the more versatile to e.g. handle models including heterogeneous error vari-

ances. This versatility is important in the context of GS, GWAS or VCA since it gives access to

models more complex than the “reference” model that only includes a polygenic and an error

components (as proposed in [10]). Note that the MM4LMM R package also provides estimated

standard error values for the variance parameters that help to better interpret the results when

the number of variance components is high. These features make MM4LMM a method of choice

for i) the analysis of multi-environment trials and ii) the analysis of crossing designs where the

modeling of non-additive marker effects is at stake, as these two settings are usually character-

ized by a large number of variance components.

Table 4. Computational time (in sec.) associated to the analysis of the NAM dataset using Model (3).

gaston MM4LMM GEMMA

5207 15739 >30000

https://doi.org/10.1371/journal.pcbi.1009659.t004

Table 3. Computational time (in sec.) associated to the analysis of different subsamples of trials of the NAM dataset, using Model (2). Bold numbers correspond to

the best performance.

Nb Trials Avg Nb Obs gaston MM4LMM GEMMA GridLMM Ratio

mean sd mean sd mean sd mean sd

2 1,931.25 16.28 4.43 42.15 7.05 58.35 16.48 23.02 4.45 3.6

4 3,862.50 170.44 24.15 288.08 44.62 386.03 30.02 106.74 14.28 3.6

6 5,793.75 659.35 72.58 308.11 25.87 1244.19 152.15 326.58 37.15 4.0

8 7,725 1786.87 333.15 3100.94 792.59 9.3

https://doi.org/10.1371/journal.pcbi.1009659.t003
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The analysis of the NAM dataset showed that the MME trick is only beneficial if the num-

ber of observations is much higher than the total number of latent effects, but may be detri-

mental otherwise. Also note that the MME trick requires each matrix Vk in the model to be

invertible, a stringent condition that is not required by the ReML procedure itself, and is not

satisfied in many applications. For these reasons the use of the MME trick should be restricted

to some applications only, an optional strategy that is available in the MM4LMM package but

not in most packages/softwares.

Conclusion

The Min-Max algorithm is a simple alternative to the by-default AI-ReML algorithm that is

commonly implemented in most packages. We demonstrated that most classical speed-up

tricks used in the context of mixed model inference can be easily combined with the MM algo-

rithm, yielding an efficient estimation procedure than can compete with state of the art com-

petitors in most contexts that are commonly encountered in animal or plant genetics—even

those for which efficient alternatives exist (such as the K = 2 case). This first study opens a way

for new algorithmic developments in the field of VC mixed models and more generally in

ReML inference for other classes of mixed models. A limitation for such further developments

is the fact that MM methods require the derivation of a specific surrogate function for each

class of mixed model to be considered, making the extension of the inference procedure to e.g.

auto-regressive or factor analytic models [29] not straightforward.

Methods

Variance component mixed model

In this article we focus on variance component models of the form:

Y � N ðXb;
XK

k¼1

s2

kVkÞ ð4Þ

where Y is a vector of n observations, X is an incidence matrix, β is the vector of fixed effects,

Vk is the (known) correlation matrix associated to the kth random effect and g ¼ ðs2
1
; . . . ; s2

KÞ

is the vector of variances associated to the K random effects. In what follows X is assumed to

be a full rank matrix. A special case of Model (4) is the following mixed model:

Y ¼ Xbþ
XK� 1

k¼1

ZkUk þ E

with

Uk � N ð0; s2
kRkÞ; k ¼ 1; . . . ;K � 1;

E � N ð0; s2
KVKÞ

U1 ? . . . ? UK� 1 ? E ;

8
>>><

>>>:

ð5Þ

where Uk is the kth random effect vector of size nk, Zk (resp. Rk) is the incidence matrix (resp.

the correlation matrix) associated with random effect Uk, E is an error vector, and notation A
? B stands for “A and B are independent”. Model (5) boils down to Model (4) where

Vk ¼ ZkRkZT
k . Lastly, we introduce Sg ¼

PK
k¼1
s2
kVk, the covariance matrix of vector Y.

The goal is to infer the unknown fixed effects and variance parameters β and γ. Here we

consider the Restricted Maximum Likelihood (ReML) estimation procedure [30, 31].

Let PX? = I − X(XT X)−1 XT be the projection matrix on span(X)?, and M be any matrix

built from the columns of PX? such that M is of full rank and rank(M) = rank(PX?) = m.
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Applying M to the initial data vector y allows one to get rid of the fixed effects. The restricted

(log-) likelihood corresponds to the (log-) likelihood of the transformed data My, and has the

following expression (up to a constant):

LRðgÞ ¼ �
1

2
logðjXTS� 1

g
XjÞ þ logðjSgjÞ þ yTPgy

h i
ð6Þ

where |H| stands for the determinant of matrix H and

Pg ¼ MTðMSgMTÞ
� 1M

¼ S� 1

g
� S� 1

g
XðXTS� 1

g
XÞ� 1XTS� 1

g
:

Note that LRðgÞ does not depend on β (since MX = 0 by construction), nor on the specific

choice of M thanks to the second expression of Pγ above [32]. Variance parameters γ can be

estimated by applying the classical Maximum Likelihood procedure to LR, then fixed effects

can be obtained using the following formula:

b̂ ¼ ðXTS� 1

ĝ
XÞ� 1XTS� 1

ĝ
y:

Although quite popular, the ReML procedure may be quite challenging from a computa-

tional point of view, the bottleneck being the maximization of the log-likelihood (6) w.r.t. γ.

Although the first derivative of LR with respect to s2
k has a simple expression:

@LR

@s2
k
¼ �

1

2
trðPgVkÞ � yTPgVkPgy
� �

;

solving the K equations
@LR
@s2

k
¼ 0, k = 1, . . ., K does not lead to a closed form expression for ĝ. Con-

sequently likelihood maximization has to be performed numerically. The next section presents

the Newton optimization algorithm and its derivatives to obtain the ReML variance estimates.

Newton based algorithms

Newton algorithm. Let first rewrite Model (4) as

Y ¼ Xbþ ZU þ E

where Z = (Z1|. . .|ZK−1), U ¼ ðUT
1
j . . . jUT

K� 1
Þ
T
. The joint distribution of (U, E) is

U
E

" #

� N 0;s2
K

Gd 0

0 VK

" # !

where d ¼
s2

1

s2
K

; . . .
s2
K� 1

s2
K

� �

and Gd ¼

d1R1 0 . . . 0

0 d2R2 . . . 0

. . . . . . . . . . . .

0 0 . . . dK� 1RK� 1

0

B
B
B
B
@

1

C
C
C
C
A
:

The restricted likelihood LR can be reformulated as:

LRðd; s
2
KÞ ¼ �

1

2
m logðs2

KÞ þ logðjXTS� 1

d
XjÞ

�

þlogðjSdjÞ þ
yTPdy
s2
K

�
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where Sδ = ZGδ ZT + VK, Pd ¼ s2
KPg and m = rank(M). Starting from this last expression, one

can perform optimization of LR using an iterative scheme like the Newton algorithm that

requires the first and second derivatives of LR w.r.t. both δ and s2
K . The first derivatives are

½rLRðd; s
2
KÞ�k ¼ �

1

2
trðPdVkÞ �

yTPdVkPdy
s2
K

� �

1 � k < K;

½rLRðd; s
2
KÞ�K ¼ �

1

2

m
s2
K

�
yTPdy
s4
K

� �

:

Similarly, the second derivatives are

½HLRðd; s
2
KÞ�kk0 ¼

1

2
trðPdVkPdVk0 Þ �

yTPdVkPdVk0Pdy
s2
K

;

½HLRðd; s
2
KÞ�kK ¼ �

1

2

yTPdVkPdy
s4
K

;

½HLRðd; s
2
KÞ�KK ¼

m
2s4

K

�
yTPdy
s6
K

:

Denotingr
ðtÞ
LR

and HðtÞ
LR

the gradient and the Hessian matrix of LR evaluated at point

ðd
ðtÞ
; s

2ðtÞ
K Þ respectively, the Newton method then iterates the following recursion:

d
ðtþ1Þ

s
2ðtþ1Þ

K

 !

¼
d
ðtÞ

s
2ðtÞ
K

 !

� ½HðtÞ
LR
�
� 1
r
ðtÞ
LR
:

A classical shortcut consists in making use of the fact that the last gradient component leads

to an explicit expression of s2
K when the ratio δ is known:

ŝ2
KðdÞ ¼

yTPdy
m

: ð7Þ

One can then apply the Newton algorithm to update δ only, which reduces the number of

unknown parameter by one in the Newton update procedure. This trick is classically known as

the “profiling” trick. Additional computational shortcuts are presented in the Computational

shortcuts section.

Fisher scoring and average information. It has been suggested [11, 30] that the use of

alternative matrices in place of the Hessian matrix in the Newton procedure could be benefi-

cial in terms of convergence rate and/or computational burden. The first alternative, known as

the Fisher algorithm, consists in replacing HðtÞ
LR

by its expected value. The expectations of the

Hessian matrix terms are

E½HLRðd; s
2
KÞ�kk0 ¼ � 0:5� trðPdVkPdVk0 Þ;

E½HLRðd; s
2
KÞ�kK ¼ � 0:5� trðPdVkÞ=s

4
K ;

E½HLRðd; s
2
KÞ�KK ¼ � 0:5�m=s4

K :

A second alternative is the use of the Average Information (AI) matrix [12]. The AI matrix

is defined as the average of the Hessian and its expectation. The efficiency of this strategy leads
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in the general expression of the resulting matrix. One has

AIkk0 ¼
yTPdVkPdVk0Pdy

2s2
K

;

AIkK �
yTPdVkPdy

2s4
K

; AIKK ¼
yTPdy
2s6

K

;

ð8Þ

where for the second term the approximation tr(Vk Pδ)� yTPδVkPδy is used. Compared with

the previous expressions obtained for the Newton and FS algorithms, computing the AI matrix

does not involve any trace computation anymore. Note that Pδ is computed at each step using

formula

Pd ¼ S� 1

d
� S� 1

d
XðXTS� 1

d
XÞ� 1XTS� 1

d

where δ and s2
K are fixed at their current value.

Computational shortcuts. Simultaneous orthogonalization. As mentioned in the New-

ton based algorithms section, the profiling trick reduces the computational complexity by dis-

carding one of the variance component in the update procedure: the numerical optimization

only applies to δ, s2
K being estimated afterwards using its explicit expression (7). When applied

to the case where K = 2, profiling may be combined to the simultaneous orthogonalization of

the two covariance matrices to obtain an even simpler expression of the restricted likelihood.

Assuming one of the two matrices (say V2) is positive definite, then there exist a matrix Λ and

a diagonal matrix D such that

LV1L
T
¼ D and LV2L

T
¼ In:

One can reexpress the restricted log-likelihood associated with Model (4) as a function of

s2
2
, δ and D as follows:

LRðd; s
2
2
Þ ¼ �

1

2
m logðs2

2
Þ þ logðjDdþ InjÞ

�

þlogðj~XTðDdþ InÞ
� 1 ~X jÞ þ

1

s2
2

~yTPd~y�;
ð9Þ

where ~y ¼ Ly and ~X ¼ LX. The expression of ŝ2
2
ðdÞ can then be plugged back into Eq (9) to

obtain a function that depends on δ only:

LRðdÞ ¼ �
1

2
m logðŝ2

2
ðdÞÞ þ logðjDdþ InjÞ

�

þ logðj~XTðDdþ InÞ
� 1 ~X jÞ þm� :

ð10Þ

This last expression can then be optimized w.r.t. δ. This strategy is implemented in the R

package gaston where a Newton Raphson algorithm, followed by a Brent algorithm (if the

procedure has not already converged) are used for the optimization of (10), and also in

FaST-LMM where the optimization is first performed on a grid then refined using the Brent

algorithm [7, 9]. One can observe that the simultaneous orthogonalization trick drastically

reduces the computational burden whenever many models with identical random effects but

different fixed effects have to be adjusted, the orthogonalization being performed only once

(i.e. Λ is common to all models).

Henderson equation shortcut. As mentioned earlier, one needs to invert matrix Sδ at each

step to update matrix Pδ. This operation is the computational bottleneck of the optimization
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procedure and may become cumbersome when the number of measurements n is large. In

some configurations this step may be relaxed by deriving the quantities required for the update

of δ from the Henderson Mixed Model Equations (MME)

XTV � 1
K X XTV � 1

K Z
ZTV � 1

K X ZTV � 1
K Z þ G� 1

d

" #
b̂

û

" #

¼
XTV � 1

K y
ZTV � 1

K y

" #

ð11Þ

Noting C the coefficient matrix appearing in the left hand side of the equation, one first

notices that solving the system requires the inversion of C, of size ∑k nk + p, where nk is the

length of vector Uk and p is the rank of matrix X. Second, it has been shown that the quantities

appearing in AI matrix (8) can be reexpressed using C−1, details are given in S5 Appendix [12].

One has:

AIkk0 ¼
½yTPdZk�Rk½ZT

k PdZk0 �Rk0 ½Zk0Pdy�
2s2

K

;

AIkK ¼
½yTPdZk�Rk½ZT

k Pdy�
2s4

K

; AIKK ¼
yTPdy
2s6

K

and

ZTPdy ¼ G� 1
d
û

ZTPdZ ¼ G� 1
d
� G� 1

d
½C� 1�uuG

� 1
d

Pdy ¼ V � 1
K ê:

ð12Þ

where ê ¼ y � Xb̂ � Zû and [C−1]uu corresponds to the submatrix of C−1 associated with

the random component u. Assuming all matrices Vk are invertible (i.e. definite positive),

all these expressions are easily obtained from b̂, û and C−1. As soon as ∑k nk + p� n it

becomes computationally efficient to compute the AI matrix through the MME rather than

through direct inversion of Pδ. In the following, this shortcut will be referred to as the

“MME trick”.

Min-Max algorithm for ReML

MM algorithm for ReML inference. MM algorithms represent another class of iterative

schemes [15]. We provide a brief overview of the MM principle based on the previous refer-

ence. Consider an optimization problem where one aims at finding the minimizer θ� of a

function f(θ) (in our setting f ¼ � LR and θ = γ), one builds at each step t a surrogate function

g(t) satisfying

gðtÞðyÞ � f ðyÞ and gðtÞðyðt� 1Þ
Þ ¼ f ðyðt� 1Þ

Þ ;

where θ(t−1) is the current evaluation of θ�. Assuming the surrogate function can be minimized

easily, one defines

y
ðtÞ
¼ argmin

y
gðtÞðyÞ :

One can show that the sequence (θ(t))t�1 satisfies the descent property f(θ(t+1))� f(θ(t)). In

practice, the convergence is assessed using a convergence criterion such as

jjyt � yt� 1jj1 ¼ max
i
ðjyt;i � yt� 1;ijÞ < �
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or

f ðyt� 1Þ � f ðytÞ < �:

In the present article both criteria were used with � = 10−5.

In the context of variance component mixed models, a MM method has been proposed to

maximize the likelihood [16]. Following the same line of proof, we present an MM algorithm

for ReML inference. The main difficulty to apply MM optimization is to derive the sequence of

surrogate functions. Proposition 1 provides the surrogate function at step t + 1 for the ReML

optimization problem:

Proposition 1 Define function g(t+1)(γ) as

gðtþ1ÞðgÞ ¼
1

2

XK

k¼1

s2

ktrðP
ðtÞ
g
VkÞ þ

s
4ðtÞ
k

s2
k
yTPðtÞ

g
VkP

ðtÞ
g
y

" #

þlogðjMSðtÞ
g
MTjÞ � m;

ð13Þ

where m = rank(M). Then

gðtþ1ÞðgÞ � � LRðgÞ

where equality holds at point γ(t).

The proof of Proposition 1 is adapted from the one given for ML inference [16] and is

given in S6 Appendix. Because at each step t the surrogate function g(t) is linear with respect

to s2
1
; . . . ; s2

K , one easily obtains its optimizer by setting its gradient at 0. This provides the fol-

lowing update for the variance parameters:

s
2ðtþ1Þ

k ¼ s
2ðtÞ
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yTPðtÞ

g
VkPðtÞg y

trðPðtÞg VkÞ

s

: ð14Þ

The next section presents the adaptation of the computational tricks presented in the New-

ton based algorithms section to the ReML MM procedure.

Computational shortcuts for the ReML MM procedure. Two matrix shortcut. In the

particular case when K = 2 the correlation matrices can be jointly orthogonalized. Similar to

the profiling trick, we introduce

gðtþ1ÞðdÞ ¼
1

2
m log

1

m
~yTPðtÞd

d
2ðtÞ

d
Dþ In

 !

PðtÞd ~y

 !

þ trðPðtÞd ðDdþ IÞÞ þ cðtÞ
" #

;

where c(t) is an irrelevant constant. As detailed in S7 Appendix, one can show that optimizing

function g(t+1) boils down to solving a quadratic function that admits a unique positive solution

corresponding to δ(t+1).

K matrix shortcut. When relevant, the MME trick can be applied to speed up the computa-

tion of the quantities appearing in the surrogate function (13). Since Pd ¼ s2
KPg and

Vk ¼ ZkRkZT
k , the update formulas (14) can be rewritten as follows:

s
2ðtþ1Þ

k ¼ s
2ðtÞ
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yTPðtÞd ZkRkZT

k P
ðtÞ
d y

s
2ðtÞ
K trðZT

k P
ðtÞ
d ZkRkÞ

s

and can be computed using expressions (12) for k = 1, . . ., K − 1 (recall that Z does not include

ZK). For the case k = K, the numerator can be easily obtained from the expression of PðtÞd y in

(12), and tr(PVK) can be calculated using the following proposition:
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Proposition 2 Define S ¼ V � 1
K � V � 1

K XðXTV � 1
K XÞ� 1XTV � 1

K .

Then trðPVKÞ ¼ m � trðZTSZ½C� 1�uuÞ:

Note that S does not need any update and can be computed at once. The demonstration is

given in S8 Appendix.

MM Acceleration. Similar to EM algorithms, MM algorithms can benefit from accelerating

strategies to achieve better rates of convergence (by reducing the number of iterations

required to achieve a given precision). Here we combined the MM algorithm with a squared

iterative method [33]. Assuming one aims at minimizing a function f using a MM algorithm,

note θ(t−2), θ(t−1) and θ(t) the MM estimates obtained at steps t − 2, t −1 and t, respectively. At

step t one also computes

r ¼ y
ðt� 1Þ
� y

ðt� 2Þ
; v ¼ yðtÞ � yðt� 2Þ

; a ¼ � jjrjj
2
=jjvjj

2

y
ðt0Þ
¼ y

ðt� 2Þ
� 2ar þ a2v

If f(θ(t0))< f(θ(t)) then θ(t) θ(t0). The acceleration process is then iterated with θ(t+2).
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