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It has been demonstrated that in adulthood rodents show newly born neurons in the
subgranular layer (SGL) of the dentate gyrus (DG), and in the subventricular zone (SVZ).
The neurons generated in the SVZ migrate through the rostral migratory stream (RMS) to
the olfactory bulb. One of the markers of newly generated neurons is doublecortin (DCX).
The degu similarly shows significant numbers of DCX-labeled neurons in the SGL, SVZ,
and RMS. Further, most of the nuclei of these DCX-expressing neurons are also labeled
by proliferating nuclear antigen (PCNA) and Ki67. Finally, whereas in rats and mice DCX-
labeled neurons are predominantly present in the SGL and SVZ, with only a few DCX
neurons present in piriform cortex, the degu also shows significant numbers of DCX
expressing neurons in areas outside of SVZ, DG, and PC. Many areas of neocortex in
degu demonstrate DCX-labeled neurons in layer II, and most of these neurons are found
in the limbic cortices. The DCX-labeled cells do not stain with NeuN, indicating they are
immature neurons.

Keywords: Octodon degus, doublecortin, cerebral cortex, limbic system, cortical atlas

INTRODUCTION

The diurnal rodent Octodon degus has been found to be suitable model to investigate diurnal
rhythm (Jiao et al., 1999; Ocampo-Garcés et al., 2005; Hummer et al., 2007; Vivanco et al., 2007,
2010a,b; Otalora et al., 2010; Bonmati-Carrion et al., 2017; Baño-Otálora et al., 2020), cognitive
functions (Okanoya et al., 2008; Popović et al., 2010; Uekita and Okanoya, 2011; Pereda-Pérez et al.,
2013; Tarragon et al., 2014), social interactions (Braun et al., 2003; Ziabreva et al., 2003; Lee, 2004;
Poeggel et al., 2005; Colonnello et al., 2011), age-related neuropathology, and behavioral alterations
(Inestrosa et al., 2005; Popović et al., 2009; van Groen et al., 2011; Braidy et al., 2012) as well as
hippocampal neurogenesis (Kumazawa-Manita et al., 2013a; Akers et al., 2014). Akers et al. (2014)
demonstrated modest reduction in proliferating Ki67+ cells and immature doublecortin (DCX)
positive neurons in dentate gyrus (DG) of infant degus and guinea pigs in comparison to mice. This
modest reduction in hippocampal neurogenesis was related to slower infant forgetting in precocial
rodents (degus and guinea pigs). Kumazawa-Manita et al. (2013a), using bromodeoxyuridine
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(BrdU) (a marker of newly generated cells) and polysialylated-
neural cell adhesion molecule (PSA-NCAM) (a marker of
immature neurons) demonstrated that tool use training but not
radial maze increases neurogenesis in the DG of adult degus.

With the exception of two cetacean species (Northern minke
whale and harbor porpoise), in most mammals examined thus
far, the subgranular layer (SGL) of the DG and the subventricular
zone (SVZ) give rise to new neurons in the adult (review see
Taupin and Gage, 2002; Patzke et al., 2015; Lipp, 2017), including
humans (Eriksson et al., 1998; Bhardwaj et al., 2006; Knoth et al.,
2010). Variations in extent of adult neurogenesis, and natural
and experimental factors controlling it have been described
in laboratory animals (Amrein et al., 2004). A commonly
used marker for newly born neurons, DCX, labels the newly
born neurons in the SGL and SVZ. Furthermore, it has been
demonstrated that in some species, i.e., rabbit (Luzzati et al.,
2009), tenrec (Alpár et al., 2010), giant otter shrew (Patzke
et al., 2013), guinea pig (Xiong et al., 2008), Megachiropteran
and Microchiropteran bats (Chawana et al., 2013, 2016, 2020),
four-striped mice (Olaleye and Ihunwo, 2014) three prosimian
primates: Demidoff’s dwarf bushbaby, the potto, and the ring-
tailed lemur (Fasemore et al., 2018), and four afrotherian
mammals: hottentot golden mole, the rock hyrax, the eastern
rock sengi, and the four-toed sengi (Patzke et al., 2014), neuronal
DCX expression is not confined to DG and SVZ. In these species,
DCX-labeled neurons have been described in many cortical and
subcortical areas, e.g., amygdala, piriform, and limbic cortices. In
general, the DCX-positive neurons are found in limbic cortical
areas, but their expression is not limited to limbic regions of the
brain. The wide range of variation seen between species, raises the
question as to where and how much these DCX labeled neurons
are present in other rodents (Amrein et al., 2004; Schauwecker,
2006) and if they are newly born neurons (Nacher et al., 2001).
To address this issue, we investigated the brain of O. degus using
markers for proliferating cells, i.e., proliferating nuclear antigen
(PCNA), Ki67 (von Bohlen und Halbach, 2007, 2011), and a
marker for developing neurons, DCX.

MATERIALS AND METHODS

Animals
Female O. degus were used at the age of 1 year (n = 6). The lifespan
of the degu in captivity can be up to 14 years (Lee, 2004), but most
animals only reach 5–7 years of age. In contrast, the lifespan of the
degu in the wild is only quite short, less than 50% reach 1 year of
age, and only 1% reach 2 years of age (Fulk, 1976). Reproductive
female period starts between 6 and 9 months and drops off after
4 to 4.5 years of age (Lee, 2004), together indicating the female
degu used in the present study could be considered as young adult
animals. The animals were obtained from a colony maintained at
the Animal Service of the University of Alicante. Animals were
housed in Plexiglas cages in an isolated room (Chronolab), with
controlled humidity (60%), temperature (23 ± 1◦C) and under
a 12:12 light/dark cycle (light on from 07:00 to 19:00 h). Light
was provided by fluorescent lamps controlled by an electronic
timer (Data Micro, Orbis), with a light intensity of 350–400

lux at the level of the cages. The degus were fed ad libitum
throughout the experiment, using commercial rat chow (A04,
rat-mouse maintenance, Panlab). All procedures were conducted
in accordance with the local Institutional Animal Care and Use
Committee (IACUC) guidelines and followed the guidelines of
the European Communities Council Directive of 24 November
1986 (86/609/EEC). The protocol was approved by the Local
Committee on the Ethics of Animal Experiments. All efforts were
made to minimize animal suffering.

Fixation and Tissue Preparation
In short, the degus were deeply anesthetized with sodium
pentobarbital (Ovation Pharmaceuticals, Deerfield, IL,
United States, 70 mg/kg, i.p.) and perfused transcardially
with phosphate buffered saline (PBS) followed by 4%
paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). The
brains were removed from the skull and postfixed for 4 h in the
same fixative, at 4◦C. Then, the brains were transferred to a 30%
sucrose solution in PBS overnight at 4◦C and day after were
stored in antifreeze (15% sucrose with 30% ethylene glycol).

Following washing in 30% sucrose, the brains were cut using a
freezing, sliding microtome in 30 µm thick coronal sections (six
series: 1 in 6), which were collected in PBS (100 mM, pH 7.4).

Immunohistochemistry
One half of the first series of sections was mounted unstained for
Nissl staining, the other half was stained for (1/4) DCX (goat
anti-DCX; Santa Cruz, CA, United States, sc-8066; Naritsuka
et al., 2009) and 1/4 for PCNA (goat anti-PCNA; Santa Cruz,
CA, United States, sc-9857; Martínez-Navarrete et al., 2008)
Similarly, 1/4 of the second series was stained for Ki67 (rabbit
anti-Ki67; Novocastra, Buffalo Grove, IL, United States, NCL-
Ki67p; Baker et al., 2006), according to published protocols
(Kadish et al., 2002). The last 1/4 of the second series was
used for double-staining experiments. The other series were
stored at −20◦C in antifreeze for future analysis. The sections
destined for PCNA staining were pretreated for 30 min with
hot (85◦C) citrate buffer. In short, the series of sections were
transferred to a solution containing the primary antibody, this
solution consists of TBS with 0.5% Triton X-100 added (TBS-T).
Following incubation in this solution for 18 h (overnight) on a
shaker table at room temperature (20◦C), the sections were rinsed
three times in TBS-T and transferred to the solution containing
the secondary antibody (rabbit anti-goat Ig × biotin; Thermo
Scientific or goat anti-rabbit Ig × biotin; Millipore). After 2 h,
the sections were rinsed three times with TBS-T and transferred
to a solution containing mouse ExtrAvidin R© (Sigma), following
rinsing the sections were incubated for approximately 3 min with
Ni-enhanced DAB (Kadish et al., 2002). All stained sections were
mounted on slides and coverslipped with DPX.

In a selected set of 50 sections, the cells were double-labeled
for DCX and Ca2+ binding proteins [i.e., calretinin, calbindin,
and parvalbumin (rabbit; Swant, Marly, Switzerland; Huesa
et al., 2008)] following a similar protocol with appropriately
labeled fluorescent secondary antibodies. Similarly sections were
double-labeled for DCX and NeuN (Neuronal Nuclei, Chemicon,
Temecula, CA, United States, MAB377; Mullen et al., 1992;

Frontiers in Neuroanatomy | www.frontiersin.org 2 April 2021 | Volume 15 | Article 656882

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroanatomy#articles


fnana-15-656882 April 24, 2021 Time: 18:15 # 3

van Groen et al. Doublecortin Expressing Neurons in the Degu

Vazdarjanova et al., 2006), similarly, with appropriately labeled
fluorescent secondaries. Finally, all stained sections were
mounted on slides and coverslipped.

Specificity of the Primary Antibodies
All antibodies that were used in this study are commercially
available, and have been shown to be specific for the appropriate
antigen in both the mouse and the rat brain in our hands
(Supplementary Data 1).

Image Analysis
The staining patterns of DCX, PCNA, and Ki67 were analyzed
using low-power images, the cytoarchitectonic borders of
cortical areas were established according to the adjacent
Nissl-stained section. The nomenclature was taken from the
previously described neuroanatomical regions of the degu
(Wright and Kern, 1992; Kumazawa-Manita et al., 2013b).
Digital photomicrographs were captured using DP70 camera
(Olympus) using Cellsense software (Olympus). To avoid
changes in lighting, which might affect measurements, all images
were acquired in one session. Further, to avoid differences
in staining density between sections, the measurements were
performed on sections that were stained simultaneously, i.e., in
the same staining tray (N = 24). No pixilation adjustments, or
manipulation of the captured images was undertaken, except
for the adjustment of contrast, brightness, and levels using
Cellsense software.

Semi-Quantitative Data Analysis
For semi-quantitative evaluation of Ki67, PCNA, and DCX
labeled neurons five grades were used: −, no positive neurons
present; +, one or only a few cells; ++, several neurons; +++,
a substantial number of neurons, ++++, the majority of the
expected number of cells is positive (Verwer et al., 2007). The
cortical borders were evaluated using the cytoarchitecture in
cresyl violet stained sections.

RESULTS

Distribution of Doublecortin Expressing
Cells
High numbers of labeled neurons, and dense staining are present
in the SGL of the DG of the hippocampus (Figures 1–3 and
Supplementary Table 1). In general, the dendrites are lightly
stained, and the neuronal soma are densely stained, however,
some axonal staining is also present (i.e., DCX labeling in the
mossy fibers, Figure 3B). Similar to the DG SGL, significant
labeling is present in the SVZ; Figure 3C and Supplementary
Table 1) and in the rostral migratory stream (RMS; Figure 1B and
Supplementary Table 1). Further, many DCX-labeled neurons
are present in the olfactory bulb (Figure 1A), and labeling for
DCX is also present in the olfactory axons innervating the
olfactory bulb (not illustrated).

Surprisingly, a significant number of DCX expressing neurons
is evident outside the classical two areas of adult neurogenesis

(i.e., SGL and SVZ), i.e., many areas of the neocortex show DCX-
labeled neurons (Figures 1–3). These neurons are predominantly
found in layer II of the cortex (Figures 1–3), and are more
prevalent in the superficial part of layer II (Figure 1). The
majority of staining is present in neurons of the limbic
cortex (e.g., the prelimbic, infralimbic, and piriform cortices;
Figures 1, 2), but it should be noted that, as an exception,
no DCX-labeled neurons are present in the entorhinal cortex
(Figure 1G). A significant number of DCX-labeled neurons is
present in the olfactory cortex (i.e., rostral and caudal piriform
cortex), and this is the only cortex where a few labeled neurons are
also present within layer III (Figure 3E). The labeled neurons give
rise to a large number of DCX-labeled axons (Figure 3D, arrow).
The trajectory of the labeled axons of the piriform cortex neurons
can be followed to the caudal ipsilateral piriform cortex where
they likely terminate. Furthermore, the labeled axons can also
be followed through the anterior commissure and these axons
seem to terminate in the contralateral caudal piriform cortex (not
illustrated). Finally, the DCX-labeled neurons are not limited to
the limbic cortex, quite a few labeled neurons are present in the
caudal temporal cortex, including the visual cortex (Figure 2). It
should be noted that a very small number of labeled neurons are
present in the amygdala (not illustrated), but no labeled neurons
are present in any other subcortical area.

In contrast to the olfactory bulb and SGL of the DG, where
all labeled neurons are granular neurons (Figure 3), nearly all of
the labeled neurons in the neocortex seem to be pyramidal cells
(Figure 3 and Supplementary Figure 2). To investigate if any
of these DCX-labeled neurons were interneurons, doublestaining
with DCX and either parvalbumin, calretinin, or calbindin28D
was performed. None of these revealed any double-labeled
neurons (Figure 4), neither in the olfactory bulb (not illustrated),
neocortex, nor DG (Figure 4). The combined staining of DCX
with either GAD67 or nNOS also did not show any double-
labeled neurons anywhere (not illustrated). Finally, no observable
staining of DCX is present in either astrocytes, oligodendrocytes
or microglial cells, neither are any DCX-labeled cells present in
blood vessel walls. It should be noted that none of the DCX-
labeled neurons in the hippocampus or neocortex was also
labeled with either calretinin or NeuN.

The DCX-positive cells exhibited pyramidal neuron-like
phenotype in layer II of the cortex (Figure 3 and Supplementary
Figure 2), with relatively heterogeneous morphological
characteristics (Figure 3D). Most are smaller cells, but a
few larger cells are present (Figure 3). The dendrites are
present in different number, length and branching complexity,
but most neurons have apical dendrites extending into layer
I, while the basal dendrites are present in layers II and III.
Axon-like processes elongate and extend to deeper cortical layers
(Figure 3D). The axons of the DCX-labeled DG granule cells
extend into the mossy fiber pathway (Figure 3B).

Distribution of PCNA and Ki67
Expressing Cells
In general, the distribution of PCNA and Ki67 labeled cells
is similar to the distribution of DCX labeled neurons,
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FIGURE 1 | Two schematic drawings of rostral and one of caudal coronal sections, respectively, through the degu forebrain, the red dots indicate the position of
doublecortin labeled cells, the boxes indicate the position of the nine photomicrographs below. Nine photomicrographs of coronal sections of a degu brain stained
with doublecortin. (A) Olfactory bulb; (B) rostral migratory stream; (C), dentate gyrus; (D1) piriform cortex (PC); (D2) adjacent Nissl-stained section; (E) dorsolateral
frontal cortex; (F1) prelimbic cortex; (F2) adjacent Nissl-stained section; (G) perirhinal and ectorhinal cortex. Arrow in G indicates the border between entorhinal
cortex and perirhinal cortex.

Frontiers in Neuroanatomy | www.frontiersin.org 4 April 2021 | Volume 15 | Article 656882

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroanatomy#articles


fnana-15-656882 April 24, 2021 Time: 18:15 # 5

van Groen et al. Doublecortin Expressing Neurons in the Degu

FIGURE 2 | Nine schematic drawings of coronal sections of the degu brain, from rostral to caudal, the dots indicate the position of doublecortin labeled cells. The
open arrow indicates the rhinal sulcus. The distance between the drawings is approximately 1.5 mm, the location of bregma is indicated by the vertical arrow. EC,
entorhinal cortex; PC, piriform cortex; RMS, rostral migratory stream; RS, rhinal sulcus; SGL, subgranular layer; SVZ, subventricular zone. Modified from Wright and
Kern (1992).

especially in the DG and RMS (Supplementary Figure 1).
Relatively high numbers of PCNA labeled cells are present
in the SGL of the DG of the hippocampus, similarly,
a large number of labeled cells is present in the RMS
(Supplementary Table 1). Overall, the distribution
of labeled cells in the neocortex is similar between
DCX, PCNA, and Ki67.

DISCUSSION

Overall, our findings indicate that, similar to rats and mice,
degu brains present molecular markers strongly reminiscent
of neurogenesis in the SVZ and in the SGL of the DG. In
contrast to rats and mice, however, degu brains also show a
significant amount of DCX-labeled immature neurons in the
neocortex. This suggests that the degu is another wild-type
animal model to show DCX expression in widespread areas of
the neocortex, similarly to the guinea pig (Xiong et al., 2010)

and rabbit (Luzzati et al., 2009). However, these cells are
most likely immature neurons (no Neu-N expression is present
in these cells).

In the hippocampus, some of the cells that are labeled by
DCX are also labeled by PCNA and Ki67, two cell cycle markers.
The expression of PCNA and Ki67 has been proposed to assay
cell proliferation in situ (Kurki et al., 1986; Valero et al., 2005).
PCNA, a cofactor of DNA polymerase, is expressed during the
S-phase of cell cycle (Kurki et al., 1986) while Ki67 is expressed
in all phases of the cell cycle except the resting phase and
a short period at the beginning of the phase G1 (Zacchetti
et al., 2003). Ki67 has a very short half-life, is not detectable
during DNA repair processes and is strongly downregulated,
if not absent, in quiescent cells (Zacchetti et al., 2003). It
has been suggested that Ki67 offers a more reliable marker
to identify cells that reenter the cell cycle than PCNA (Kee
et al., 2001). Consistent with these observations, we noticed
significantly more labeled cell nuclei using PCNA as a marker of
cell division than with Ki67.
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FIGURE 3 | Five photomicrographs of coronal sections of the degu brain, stained for doublecortin. (A) Olfactory bulb; (B) dentate gyrus; (C) subventricular zone
(SVZ); (D) caudal piriform cortex; (E) caudal piriform cortex. Open arrow in (B) indicates labeled axons in the mossy fiber bundle, arrow in (D) indicates labeled axons
innervating the posterior piriform cortex that originated from the rostral piriform cortex. Note that the doublecortin labeled neurons in the neocortical areas are
pyramidal cells.

In this study, the protocol that we followed did not allow
for injection of BrdU, therefore we have used Ki67 as putative
marker for proliferation. The quantification of Ki67-positive cells
has been shown to reflect cellular proliferation in a manner
consistent with BrdU labeling in the adult DG (Eadie et al., 2005),
supporting the use of markers of cell cycle for studying adult
neurogenesis. When using Ki67 to quantify cell proliferation,
significantly more cells will be immunolabeled with Ki67 than
by BrdU, as the former is expressed during most phases of
the cell cycle and the latter labels only S-phase cells, thereby
possibly allowing a better estimation of the proliferative activity
(Muskhelishvili et al., 2003; Eadie et al., 2005).

As mentioned earlier, adult hippocampal neurogenesis has
been reported in the vast majority of mammals investigated so
far (for review, see Taupin and Gage, 2002; Patzke et al., 2015),
including non-human primates (Rakic, 2002; Cai et al., 2009;

Zhang et al., 2009; Jabès et al., 2010) and humans (Eriksson
et al., 1998; Bhardwaj et al., 2006; Knoth et al., 2010). Only two
cetacean species (Northern minke whale and harbor porpoise)
appearing to lack adult neurogenesis (Patzke et al., 2015). The
rate of adult neurogenesis as well as the number of proliferation
sites decreases in adult mammals (Walter et al., 2009). In
all mammals investigated (except possibly some bats, Amrein
et al., 2007), the SGL of the DG and the SVZ give rise to
new neurons, with additional reports of neurogenesis in the
substantia nigra (Zhao et al., 2003) and some cortical areas in
the tenrec (Alpár et al., 2010), guinea pig (Xiong et al., 2010),
rabbit (Luzzati et al., 2009), cat and primate (Cai et al., 2009).
We demonstrate, for the first time, adult neurogenesis in the
young, adult degu SVZ, and SGL. Further, we show significant
numbers of immature neurons labeled by DCX in widespread
areas of the neocortex.
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FIGURE 4 | Four sets of three photomicrographs of coronal sections doublestained for neuronal markers and DCX in the piriform cortex. From top to bottom,
sections stained for calbindin, calretinin, nNOS (neuronal nitric oxide), and NeuN (neuronal nucleus), respectively, please note the lack of double-labeled neurons.
Bottom row, three photomicrographs of the dentate gyrus, doublestained for DCX and, parvalbumin, calretinin, and calbindin, respectively, again note the lack of
doublestained neurons, indicating the DCX neurons likely are not interneurons.

It has been demonstrated that within the SGL of the DG
endogenous precursor cells continuously proliferate, migrate into
the granule cell layer (GCL) and give rise to mature neurons

which – under physiological conditions – functionally integrate
into the existing hippocampal circuitry (Cameron et al., 1993;
Kee et al., 2001; van Praag et al., 2002). Similarly, in the degu,
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the precursor cells proliferate in the SGL of the DG, migrate
to their appropriate position, and most likely, integrate into the
local circuitry, as indicated by the DCX-labeled mossy fibers
that synapse on CA3 neurons. It is likely that the immature
neocortical neurons also integrate into and/or participate in the
local circuitry, as indicated by the DCX-positive axons in the
caudal piriform cortex, that arise from the DCX-labeled neurons
in the rostral piriform cortex. These axons from the rostral
piriform cortex terminate in the appropriate area of the posterior
piriform cortex (Haberly and Price, 1978).

Axons showing intracellular presence of DCX have been
demonstrated before in several species. For instance, axons in
olfactory nerve of the degu demonstrate the presence of DCX,
as has been demonstrated previously in the rat (Nacher et al.,
2001). Similarly, mossy fiber axons of the degu are labeled by
DCX, as has been demonstrated in the rat and mouse (Cameron
and McKay, 2001; von Bohlen und Halbach, 2007).

It has been shown that the early postmitotic stage of granule
cell development during adult hippocampal neurogenesis is
characterized by transient expression of calretinin (Brandt et al.,
2003). Calretinin expression could be detected as early as
1 day after dividing cells were labeled with BrdU. Further,
early after BrdU labeling, calretinin was colocalized with the
immature neuronal marker DCX; and, at later stages of neuronal
maturation, calretinin was shown to be present together with the
persisting neuronal marker NeuN in the mouse (von Bohlen und
Halbach, 2007). Surprisingly, in our material we did not see any
double-labeling with DCX and calretinin anywhere, including
the DG SGL. Most likely this is caused by the difference in
species, i.e., mouse versus degu. Along those lines we also did
not see any double-labeling for DCX and NeuN, indicating that
the DCX-labeled neurons in the DG are not yet fully mature
neurons, as has been demonstrated previously (von Bohlen und
Halbach, 2007). Similarly, it has been demonstrated that during
their maturation, neurons in the SGL, after starting to express
DCX, express calretinin followed by calbindin (Brandt et al.,
2003; Kempermann et al., 2004). Again, our material does not
show any DCX neurons expressing either calretinin or calbindin.
This can be caused by the difference in the expression of Ca-
binding proteins between species, i.e., mouse/rat versus degu, or
by a different species-specific neuronal maturation process. Most
likely the neuronal maturation process is slightly different, since
Ca2+ binding protein expression is quite similar between degu
and mice (van Groen, 2001; Braun et al., 2011).

The neocortical layer II DCX cells exhibited remarkably
heterogeneous yet apparently correlated morphological
characteristics. They show the same anatomical characteristics
as the non-DCX-labeled neurons surrounding the labeled
neurons. From small to larger cells, somal shape ranges from
round/oval to bipolar, including multipolar or irregular. The
dendrites increase in number, length, and branching complexity;
and axon-like processes elongate and extend to deeper cortical
layers and contralateral cortex. These morphological variables
observed across DCX cells are largely comparable to those
characterized in developing cortical neurons in vivo and in vitro
(del Rio et al., 1992; de Lima and Voigt, 1997). Thus, it is
quite plausible that layer II DCX cells may be immature and

developing neurons (Bonfanti and Nacher, 2012). Consistent
with this hypothesis, the relative levels of DCX in individual
cells correlate with somal size and the complexity of neuritic
processes. Thus, DCX expression appears to increase as the
cells become larger and more mature-looking, most likely
until some peak point which is followed by downregulation
of DCX expression.

Adult neurogenesis in mammals can be downregulated by
age and stress (Tanapat et al., 1998; Gould and Tanapat, 1999).
It has been suggested that the social environment contributes
to neurogenesis, i.e., isolation decreases proliferation and “male
exposure” increase cell numbers (Fowler et al., 2002). Degus
are very social animals with, for instance, communal rearing of
young, and are also communicating much with sound (Ziabreva
et al., 2003; Lee, 2004; Poeggel et al., 2005). Recently, it has been
shown that paternal recognition of their young is related to newly
integrated neurons in both the olfactory bulb and the DG (Mak
and Weiss, 2010). The social structure of degu colonies would
likely need similar mechanisms, while this would likely explain
putative new neurons in the olfactory cortices, and possibly even
the limbic cortices, it is, at the present, unclear which factors
cause the long-lasting neuronal immaturity in layer II of the
neocortex of the degu.

CONCLUSION

In conclusion, similar to other species, in degu many DCX-
labeled neurons are present in DG, SVZ, RMS, and olfactory
bulb. However, in contrast to laboratory mouse and rat, but
similar to tenrec and guinea pig, the young, adult degu also shows
significant numbers of immature DCX-labeled neurons in many
areas of neocortex. In future, BrdU labeling experiments will be
performed to answer questions raised in the present study.
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