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Abstract

Collective emotion has been traditionally evaluated by questionnaire survey on a limited

number of people. Recently, big data of written texts on the Internet has been available for

analyzing collective emotion for very large scales. Although short-term reflection between

collective emotion and real social phenomena has been widely studied, long-term dynamics

of collective emotion has not been studied so far due to the lack of long persistent data sets.

In this study, we extracted collective emotion over a 10-year period from 3.6 billion Japanese

blog articles. Firstly, we find that collective emotion shows clear periodic cycles, i.e., weekly

and seasonal behaviors, accompanied with pulses caused by natural disasters. For exam-

ple, April is represented by high Tension, probably due to starting school in Japan. We also

identified long-term memory in the collective emotion that is characterized by the power-law

decay of the autocorrelation function over several months.

Introduction

Information and Communication Technology enables large amounts of data related to human

behaviors to be collected in milliseconds opening a novel research area of data-driven social

sciences [1–3]. In particular, personal opinions and feelings that cannot be known directly

from other sources are archived from blogs. In the past, only a few celebrities have been able

to express their opinions and feelings typically in a book or magazine form. Nowadays, more

and more people are writing articles and share content on the Internet, not only for archival

purposes, but also for sharing them in real-time. Since the Internet population has already

exceeded three billion and many people post their own texts online, various studies of Web-

based phenomena have been conducted since the beginning of the twenty-first century.

Diffusion phenomena on microblogging platforms such as Twitter have been well studied

in various languages [4–6]. Bursty behaviors [7] and collective attention [8] have been quanti-

fied in the Japanese Twitter space. Furthermore, studies on predicting real-world phenomena

through the Internet data are rapidly growing, e.g., stock prices [9, 10], movie box office
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revenue [11, 12], political polls [13], public health including depression mood [14, 15] and

macroeconomic indices [16].

Studies of collective emotion from the Internet are also growing rapidly. Pioneering work

of measuring collective emotion on Twitter space in the UK is conducted since 2009 [17]. The

diffusion of positive and negative emotions in Twitter has been investigated [18]. In one study,

circadian rhythms of positive and negative moods on Twitter were measured for two years

[19], and in another study, emotional contagions in Facebook posts were reported in 2014

[20]. Collective emotion and its detection method are well discussed in [21].

Collective emotion and its relation to real social phenomena have been also studied [9, 16,

22, 23]. Gilbert and Karahalios constructed an ‘Anxiety Index’ using blog data from three

periods in 2008 and performed a comparison with S&P stock market prices. They found that

a one sigma increase of the Anxiety Index corresponds to a 0.4% downturn of S&P prices [9].

Bollen et al. measured emotional mood using Twitter for nine months in 2008 and per-

formed a comparison with the Dow Jones Industrial Average. They found that adding the

emotion of calm increased prediction accuracy [22]. The United Nations project found that

increases in the emotion of confusion happened about three months ahead of the increase in

the unemployment rate in Ireland [16]. Furthermore, collective emotion is found to have

greater power in affecting ideology [23], and sometimes on misinformation spreading.

Extracting and tracing collective emotion on the Internet seems to be essential for building a

safe and secure society.

However, most of the earlier studies focused on collective emotion during relatively short-

term, i.e., three years or less. This is since social media has penetrated our daily lives only

about 10 years ago, e.g., Facebook officially launched in 2006, Twitter began to spread in early

2008, and Instagram was not released until 2010. Therefore, only a few studies on long-term

dynamics of collective emotion have been conducted [24, 25] and in particular, the possibility

of long-term memory in collective emotion have attracted very little attention so far.

In the present study, we analyzed 3.6 billion blog articles posted during a 10-year period

in Japan, from 2006 to 2016. To the best of our knowledge, the 10-year period is the longest

period for which emotions have been extracted from the Internet. Our pre-built emotional dic-

tionary was carefully tested with regard to whether the frequency of each listed word was ade-

quate and to whether the listed words were actually affiliated with the emotions of the blog

authors.

Our paper is structured as follows. First, we provide a definition of collective emotion used

here and compare it with the definition used in earlier studies in Materials and methods. Also,

we introduce our data and statistical procedures in this section. We then provide our results

regarding the accumulation of collective emotion from blogs. Next, we show the existence of

periodic cycles in collective emotion. After removing these periodic cycles, sharp spikes attrib-

uted to external events such as natural disasters have been observed. Finally, we discuss the

long-term memory of collective emotion which we found using basic statistical methods.

Materials and methods

To quantify collective emotion for long-term, we examined the Japanese blog space that has

been widely used since around 2006. Unlike Twitter, which is currently in widespread use,

blogs generally have no character limitation and can include long texts. For long texts, it is

found that dictionary-based methods are robust to classify emotions accurately [26]. There-

fore, we applied dictionary-based methods for 10 years of blog data to determine long-term

collective emotion.

Long-term periodic cycles and memories of collective emotion
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Blog data

We employed data from the Japanese blog space between November 1, 2006 and October 31,

2016 using a fee-charging service called ‘Kuchikomi@kakaricho (https://kakaricho.jp/:

Accessed August 24, 2018)’ on December 1, 2016. This service provides the daily number of

blog articles that include any given target word more than once with a built-in spam filter via

API. Here we set the spam filter to a high level. As of October 2016, the full database contains

more than 3.6 billion blog articles from 43 million independent accounts. Basically, this data-

base contains public blog articles that are posted on major blogging platforms, tweets on Twit-

ter, and writings on a textboard system in Japanese.

Here we only use public blog articles based on the terms and conditions of the service. In

principle, the database can be used by anyone if contracted with the company (https://www.

hottolink.co.jp/: Accessed August 24, 2018)’. In fact, various studies have been conducted

based on the database so far [27–29]. Due to the system specification, if one blog article con-

tained the same word multiple times, we counted it once. On the other hand, if one blog article

contained two different words, we counted it as two. Since we mainly used word frequencies

on blog space via API, we cannot access personally identifying information. We checked sev-

eral publicly readable blog articles throughout our study, but they are anonymized, and we

cannot identify the authors.

POMS and emotion dictionary

To extract collective emotion from the Internet, one popular method is to categorize articles as

either positive or negative emotion, and then to extend these categories into more dimensions

with further complex emotions [25]. The aim of the present study is to analyze long-term peri-

odic cycles and memories of collective emotion which is extracted from the texts obtained

from blogs in the Internet. Here we categorize emotions into six dimensions based on the

well-established psychological literature [30]. Because some emotions are already difficult to

categorize into either positive or negative, e.g., feelings representing fatigue may be classified

as both positive and negative according to the context, multidimensional emotions may reveal

interesting properties of collective emotion from new perspectives.

Extracting multidimensional emotions has historically been done by psychologists using

questionnaires on relatively small groups [31]. In self-reported questionnaire surveys, partici-

pants passively answer questions. In recent years, attempts have been made to extract emotions

from online texts, which have been written actively and spontaneously, based on words con-

tained in traditional question items [32].

There exists various ways to extract multidimensional emotions. The Affective Norms for

English Words (ANEW) is an English emotion dictionary that contains about 1,000 words

[33]. ANEW has three semantic differentials, namely, good-bad, active-passive, and strong-

weak. Dodds and Danforth quantified happiness in songs, blogs, and a State of the Union

address using ANEW words [34]. The Positive and Negative Affect Schedule (PANAS) is also

a well-established English psychometric scale that consists of two 10-item mood scales [35],

including fear (negative) and joviality (positive). Recently, PANAS was expanded to extract

emotions from Twitter [36]. Unlike ANEW, PANAS is officially translated into a number of

languages, including Russian and German. However, the Japanese version of PANAS has only

been validated within a limited scope.

Here we develop and study the emotion based on the Profile of Mood States (POMS) mea-

sure of a psychological rating scale [30]. In this study, we built an original emotion dictionary

based on the Japanese version of POMS. POMS was originally developed to measure the effec-

tiveness of pharmacological therapy for veterans in the U.S. POMS can measure temporal

Long-term periodic cycles and memories of collective emotion
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mood states based on answers to 65 short questions identifying the following six extracted

emotions: Tension-Anxiety (Tension), Depression-Dejection (Depression), Anger-Hostility
(Anger), Vigor, Fatigue, and Confusion. In the following, the names of the POMS emotions will

be used as those given in parentheses.

POMS 65 questions are attributed to each of the six emotions: 9 items for Tension, 15 for

Depression, 12 for Anger, 8 for Vigor, 7 for Fatigue, and 7 for Confusion. The participants

answer the questions with scores from zero (fully disagree) to four (fully agree). Note that

there are 2 opposite question items in Tension and Confusion. For example, the question ‘feel

relaxed’ is used for measuring Tension by scoring small values. These 2 opposite questions and

7 dummy questions that were excluded in our procedure.

The original purpose of POMS is to measure temporal emotions of individuals. However,

since many English POMS questions are simple, including items such as ‘sad’ and ‘angry,’ sev-

eral researchers have recently decided to use it to determine collective emotion on the Internet.

Bollen et al. used POMS to extract emotions from Twitter over about a 1-year period [32].

They found that POMS mood reflected some social/economic phenomena such as Thanksgiv-

ing Day and elections.

POMS was officially translated into Japanese in 1994 by a Japanese psychologist [37]. Since

then, it has been used for various purposes, such as measuring conditions of athletes and con-

ducting mental health checks in firms; therefore, POMS is considered reliable, even for Japa-

nese. The Japanese version of POMS is also used to determine collective emotion on Japanese

Twitter space for 5 months and it is found to be related to real social phenomena such as

Christmas time [38].

Here we parsed some words which are attributed to POMS emotions to build our emotion

dictionary. Overview of our dictionary building procedure is as follows (details are described

in S1 Appendix):

• Parse one word that best expresses the emotion from each POMS question

• Add orthographic variants and synonyms for each parsed word

• Remove very low and very high frequency words

When building the emotion dictionary, we adjusted the number of listed words so that spe-

cific words would not become dominant. Due to our careful procedure, the number and fre-

quency of words were comparable for each emotion. Eventually, 21 words for Tension, 25 for

Depression, 25 for Anger, 20 for Vigor, 22 for Fatigue, and 35 for Confusion were included in

our emotion dictionary. Our original emotion dictionary and each emotion time series can be

found in S2 Appendix.

Collective emotion time series

In previous literature, Bollen et al. [32] produced collective emotion by averaging the mood

vectors for each tweet that is limited to 140 characters. However, in the case of blogs that has

no limit on the number of characters, the same method is difficult to implement. Therefore, in

order to make it as simple and clear, we defined the collective emotion by aggregating the time

series of the frequency of words listed in our dictionary. We first generate the time series for

word i that belongs to emotion k at day t, xki ðtÞ, and define the time series of emotion k as fol-

lows:

XkðtÞ ¼
XMk

i¼1

xki ðtÞ ð1Þ

Long-term periodic cycles and memories of collective emotion
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where Mk is the number of words that belong to emotion k. Because the appearance of a word

in the emotion dictionary can easily fluctuate due to news and external factors, summing up

several words can reduce the fluctuation [28].

Next, to determine each of the emotional dynamics, we calculate each emotion’s time series

Zk(t). First, we calculated normalized raw dynamics as follows:

Zk
rawðtÞ ¼

XkðtÞ
XðtÞ

ð2Þ

where X(t) is the total number of blog articles posted at day t. Then, we standardized Zk
rawðtÞ as

follows:

ZkðtÞ ¼
Zk
rawðtÞ � hZ

k
rawi

sk
ð3Þ

where hZk
rawi and σk are the temporal mean and temporal standard deviation of Zk

rawðtÞ for

whole period. The standardized number of whole emotional dynamics
P6

k¼1
XkðtÞ and whole

blogs that are independent of words X(t) are displayed on a monthly scale in Fig 1.

Calculation of periodic cycles. We determined periodic cycles of time series y(t) as {y(t);
t = t0, t0 + 1, � � �, t0 + L, � � �, t0 + 2L, � � �} with its periodicity l = (0, 1, � � �, L − 1). Thus, weekly

periodicity is l = (Mon., Tue., � � �, Sun.) with L = 7, and yearly periodicity in monthly scale is

l = (Jan., Feb., � � �, Dec.) with L = 12, and yearly periodicity in daily scale is l = (1, 2, � � �, 365)

with L = 365.

The m-th periodicity pm(l) is calculated as follows:

pmðlÞ ¼
L � yðtm þ lÞ
PL� 1

l¼0
yðtm þ lÞ

ð4Þ

where tm = t0+ mL and hpmi ¼
PL� 1

l¼0
pmðlÞ

L ¼ 1. Then, the averaged periodicity p(l) is

pðlÞ ¼
1

M

XM

m¼1

pmðlÞ ð5Þ

where M is the total number of periodic cycles in time series y(t). The standard deviations of

M ensembles s(l) is

sðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

m¼1

ðpmðlÞÞ2 � pðlÞ2
s

: ð6Þ

To exclude the periodic cycle, we simply divided y(t) = y(t0 + ml) by p(l).
Autocorrelation and power spectral density. Autocovariance function Cov(τ) for time

series z(t) is calculated as follows:

CovðtÞ ¼ hðzðtÞ � mÞðzðt � tÞ � mÞi ð7Þ

where μ is the temporal mean of z(t) and h�i is the ensemble mean. Then autocorrelation func-

tion ρ(τ) is

rðtÞ ¼
CovðtÞ
Covð0Þ

: ð8Þ

When a stationary time series has long-term memory property,
P1

t¼0
jrðtÞj ¼ 1. This

occurs when ρ(τ)� τ−α, α< 1 is a clear sign of long-term memory property.

Long-term periodic cycles and memories of collective emotion
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The power spectral density S(f) is the Fourier transform of the corresponding autocorrela-

tion function ρ(τ) by Wiener-Khinchin theorem.

Sðf Þ ¼
X1

t¼� 1

CovðtÞe� 2pitf

¼ Covð0Þ þ 2
X1

t¼1

CovðtÞcosð2ptf Þ
ð9Þ

Results

Fig 1A shows the monthly time series before removing periodic cycles of each emotional

dynamics Zk(t) since November 2006. It is seen that Confusion increased during the global

financial crisis in 2008. Tension increased sharply after the 3.11 earthquake in 2011. Vigor
turned upward, and Anger and Fatigue turned downward in late 2012, when the Japanese gov-

ernment changed over and the economic situation started to improve.

Fig 1. Monthly changes of blogs over 10 years. (A) Each emotional dynamics Zk(t) Tension, Depression, Anger, Vigor,
Fatigue, and Confusion are shown from top to bottom. (B) Standardized numbers of summed emotions

P6

k¼1
XkðtÞ

(top) and the whole number of blogs X(t) (bottom).

https://doi.org/10.1371/journal.pone.0213843.g001
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Periodic cycles

Weekly periodicity. Weekly (7-day) periodicities are observed for each of the six emo-

tional dynamics Zk(t). This is clearly indicated by the autocorrelation functions of each emo-

tional dynamics ρk(τ) before excluding the periodic cycles which show weekly periodic

correlations and sharp peak in the power spectrum densities Sk(f) (shown later in Fig 4A and

4B). To further clarify this periodicity, we averaged daily amounts of collective emotion

excluding the week of the 3.11 earthquake: March 9 to March 15 in 2011 and the 6 days at the

end of the data period in October 2016. The weekly periodicity p(l) is clearly seen in Fig 2A.

It can be seen, for example, that Fatigue is higher on Mondays. By checking blog articles

directly, we found some examples of people going out on weekends and being tired until Mon-

day. Depression also increases on Mondays probably due to non-motivation feelings with

regard to work and school. Tension increases on Fridays because people are probably worried

about the weekend weather.

Somewhat similar weekly periodicities of collective emotion were observed in Twitter space

in the United Kingdom in 2011 [39] and in the United States between 2009 and 2010 [40]. In

the U.K. study, it has not been clarified which emotions have increased on which day of the

week, they found that joy showed the most clearly periodic behavior and anger showed less. In

the U.S. study, they found that Saturday has the highest average happiness and Tuesday is the

lowest. We cannot compare these results directly to ours. But note that our results show that

Anger has weekly periodicity becoming less on weekends and more on weekdays. These weekly

periodic cycles may correspond to the result of the U.S. study of happiness.
Yearly periodicity. To test the possibility of yearly (12-month and 365-day) periodicities

of collective emotion, we calculated 12 months and each day of the month over the ten years

average amounts of collective emotion. We excluded November 2010 to October 2011 because

this span surrounds the 3.11 earthquake. Note that for calculating 365-day periodicities, we

also excluded February 29 in 2008, 2012, and 2016 for the leap years.

Fig 2B and 2C show the yearly periodicities p(l) for each emotion in monthly scale with

shaded colored areas indicating the standard deviations s(l) (see Eq (6) in Materials and

methods) and in daily scale with points indicating the major peaks as shown in Table 1.

By collecting blog articles selectively and reading their content, we suggest the following

reasons for the yearly periodicities in monthly scale. Fatigue increases in July and August,

which are summer months in Japan. Because people suffer from hot and humid weather dur-

ing the Japanese summer, they get tired easily. Because new school and fiscal years start every

April in Japan, and many people start new schools or workplaces, this probably creates in

April high Tension. Depression and Confusion tend to increase slightly in winter times, particu-

larly in December and January, which might be caused by the short day-length. On the other

hand, we did not detect clear monthly trends in the other emotions, Anger and Vigor.
In Table 1, we list the specific dates for which the amount of each emotion increased more

than 10% from the temporal average over the 10-year study period after excluding weekly and

yearly cycles in monthly scale. In order to extract dates that are systematically high every year,

we show dates where the emotion rate’s standard deviations are less than 15% in Table 1. As

expected, the listed dates correspond to typical annual events such as New Year’s Eve and Val-

entine’s Day.

Fatigue tends to be higher after the end of consecutive holidays. For example, Golden Week

(GW) holidays that are consecutive national holidays every spring in Japan, show increased

Fatigue. Although Fatigue rate is not more than 110%, after New Year’s holidays (108.8% and

108.5% for January 5 and 6 respectively) and traditional Japanese summer holidays (108.7%

for August 17) show also higher Fatigue. Interestingly, Depression shows slightly higher on the

Long-term periodic cycles and memories of collective emotion
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final day of GW holidays (108.9% for May 6). This result suggests that people feel sad about

the end of the holidays.

It is also interesting to note that there are some dates that emotions steadily decrease every

year. For example, January 1 is a special day that all emotions except Confusion decrease less

Fig 2. Weekly and yearly periodicities p(l). (A) Weekly periodicities p(l) for each of the emotional dynamics with

error bars representing standard deviations, s(l), over 520 weeks. Most emotions show differences between weekdays

and weekends. (B)(C) Yearly periodicities p(l) for each of the emotional dynamics in monthly scale (bold) and in daily

scale (dotted) with shaded area representing standard deviations s(l) for nine years. Fatigue increases during summer

times (July and August) while Depression and Confusion slightly increases during winter times (December and

January).

https://doi.org/10.1371/journal.pone.0213843.g002

Long-term periodic cycles and memories of collective emotion
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than 90%. Christmas Eve is also a special day that all emotions except Depression decrease less

than 90%. During New Year’s Days, GW holidays and Christmas days, Tension continues to

decrease less than 90%. These findings suggest that people are spending relaxed time (Details

are in S1 Appendix).

Yearly periodicities of collective emotion on Twitter in the U.K. has been recently investi-

gated during a period of four years from 2010 to 2014, excluding 2012 [41]. In the U.K., anger
and sadness peak in the winter month and anxiety peaks in the autumn and spring. Our data

did not show seasonal cycles in Anger, however, we find that also Tension peaks in the spring.

Dzogang et al. [41] did not suggest the possible reasons of anxiety, however, since new school

year in the U.K. starts in autumn, it may coincide with our results for Tension(-Anxiety).

Furthermore, happy dates in the U.S. between 2008 and 2010 are reported by using Twit-

ter [40] e.g., Christmas Eve and Day, New Year’s Eve and Day, Valentine’s Day, Thanksgiv-

ing etc. Some of these days coincide with our outlier dates shown in Table 1, while emotions

are very different in both places. For example, New Year’s Eve is a happy day in the U.S. but

Confusion and Depression increases in this day in Japan. This might be due to the differences

between the typical people character in the U.S. and Japan. In New Year’s holiday, people

expect to spend with family in both the U.S. and Japan. On the other hand, in Japan, the per-

son who spends alone tends to feel much more lonely and post their feeling blogs causing

high Depression.

Taken together, yearly periodicities exist independent of language, culture and social media

platform, but these characteristics might be different depending on them. There are various

contexts behind collective emotion due to cultural background and platform usage. Since the

difference of cyclic behaviors in Wikipedia editorial activities has been also observed to depend

on various cultural backgrounds [42], comparing these periodic cycles in collective emotion

across the countries may be of interest in future studies.

Remaining spikes

After removing the weekly and yearly periodicities, autocorrelation functions ρk(τ) show no

periodic behaviors (shown later in Fig 4C) and distributions of the daily difference of each

emotional dynamics, ΔZk(t) = Zk(t) − Zk(t − 1), show normal distribution in every emotion (S1

Appendix). However, we still identify several sharp spikes in each of the emotional dynamics.

In Table 2, the major spikes that the emotion increased above the average value estimated

from earlier seven days are listed. We confirmed that these spikes are associated with real

events. We verified that most spikes were attributed to Tension in conjunction with natural

disasters such as earthquakes and typhoons that occurred throughout the observation period.

Table 1. Major dates in which emotion increased significantly every year. Rates are calculated from the temporal

average, see also Fig 2.

Date Emotion Rate (%) Event

February 14 Tension 112.3±13.7 Valentine’s Day

April 6 Tension 111.2±11.6 Entrance ceremonies

April 7 Tension 113.0±12.4

April 8 Tension 112.4±10.6

May 7 Fatigue 127.1±8.9 After GW holidays

December 30 Confusion 111.9±9.6 New Year’s Eve

December 31 Depression 115.6±12.6

Confusion 122.7±8.5

https://doi.org/10.1371/journal.pone.0213843.t001
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As for the duration of increased emotion, all cases except for the 3.11 earthquake returned to

their original baseline within a week (Fig 3).

The 3.11 earthquake was a special case where Tension continued to increase more than one

month (37 days), followed by Depression and Confusion. It is also interesting to mention that

the peak day of each emotion is different at the 3.11 earthquake. The peak day of Tension is

one day after the earthquake, Depression is two days, and Confusion is three days after the

earthquake. It reflects the fact that collective emotions are changing day by day. After the 3.11

earthquake, the social mood has been regarded to have changed qualitatively. At the time, an

Fig 3. Examples of sharp spikes of collective emotion after removing weekly and yearly periodicities. (A) Tension,

Depression, and Confusion continue to increase for more than a week at the 3.11 earthquake period in 2011. (B)

Tension at the Kumamoto (the southwest of Japan) earthquake in 2016, and (C) Confusion at the heavy snowfall in the

Tokyo metropolitan area in 2016. Except for the 3.11 earthquake, most sharp spikes returned to their original baseline

within a week.

https://doi.org/10.1371/journal.pone.0213843.g003

Table 2. Major spikes in descending order of increased rate which are estimated from averaging earlier seven days. Tension shows many spikes due to earthquakes and

typhoons.

Day Emotion Rate (%) Event

March 11, 2011 Tension 602.6 the 3.11 earthquake

March 12, 2011 Deression 305.1 the day after the 3.11 earthquake

Confusion 273.6

April 15, 2016 Tension 240.3 Kumamoto earthquake

September 21, 2011 Tension 193.4 Typhoon Roke

October 7, 2009 Tension 177.1 Typhoon Melor

June 14, 2008 Tension 167.5 Iwate earthquake

January 18, 2016 Confusion 157.9 Heavy snowfall in Tokyo metropolitan area

September 10, 2015 Tension 156.7 Heavy rain in Tokyo metropolitan area

August 11, 2009 Tension 154.5 Shizuoka earthquake

October 15, 2013 Tension 153.8 Typhoon Wipha

https://doi.org/10.1371/journal.pone.0213843.t002
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extraordinary mood, the so-called ‘self-restraint mood,’ has been prevalent in Japanese society.

In relation to this mood, many people refrained from going out, such as choosing not to hold/

attend annual cherry blossom viewing parties. In addition, fewer corporate TV commercials

were broadcasts, and movie premiers and new product launches were postponed. To the best

of our knowledge, there has been no previous quantitative survey regarding how long this

unusual mood continued. Therefore, the present study is the first attempt to measure this

unusual mood quantitatively based on the Internet. The 3.11 earthquake has been found to

cause relatively low happiness in the U.S. Twitter space as well as found for the Chilean earth-

quake in February, 2010 [40].

We note that while events such as the Bailout of the U.S. financial system and the Royal

Wedding of Prince William caused outlier days of happiness [40], our observed outlier days in

Japanese blog space could be only attributed to the natural disasters.

Long-term memory

Long-term correlation. Fig 4 shows autocorrelation functions ρk(τ) and power spectral

densities Sk(f) of each daily emotional dynamics Zk(t) in log-log scale. We first separated Zk(t)
every one year and ρk(τ) was calculated with maximum lag τ = 365 days. The average

Fig 4. Autocorrelation functions ρk(τ) and power spectral density Sk(f) of collective emotion. ρk(τ) and Sk(f) are

calculated for (A)(B) Raw emotional dynamics which shows periodic cycles, (C)(D) Emotional dynamics without

periodic cycles which shows long-term memory, (E)(F) Weekly randomized dynamics which diminished correlations

larger than weekly scale.

https://doi.org/10.1371/journal.pone.0213843.g004
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autocorrelation function ρk(τ) which are shown in Fig 4C is calculated using only the station-

ary samples (Details are in S1 Appendix) to clearly see the exponent of ρk(τ). The power spec-

tral densities Sk(f) are averaged over 10 years by Welch’s method [43] after removing leap days

(29 February). Compared to the result of raw series (Fig 4A and 4B) that has high correlations

in one week and one month (peaks), we can observe clear persistence or long-term correla-

tions without periodic peaks, after removing periodic cycles (Fig 4C and 4D).

Fig 4E and 4F show results of weekly randomized time series, after 10 times averaging. We

made randomized series following three patterns: monthly randomized, weekly randomized,

and daily randomized. For monthly randomized series, we keep the time series for periods

shorter than one month and shuffled randomly the different months in the time series. For

weekly randomized series, we applied the same procedure but shuffled randomly the weeks

without 6 days at the end of the data period in October 2016. For daily randomized series, we

fully randomized the time series on a daily basis.

The autocorrelation functions ρk(τ) show approximately a power-law decay, ρk(τ)� τ−α in

the real data (Fig 4C). The power law exponent is found to be close to α� 0.5 for all six emo-

tions, and after six months, ρk(τ)� 0. The long-term persistence is supported by the observa-

tion that ρk(τ) decays much sharper in randomized samples depending on the randomized

time scales (Fig 4E and S1 Appendix). In particular the results of daily randomized series show

indeed ρk(τ)� 0 for τ> 0 as expected.

For the power spectral densities S(f), all emotions show approximately S(f)� f−0.5 in the

low-frequency range (Fig 4D), and white noise is observed in daily randomized result (S1

Appendix). From the Wiener-Khintchine theorem, the power spectral density Sk(f) can be

expressed by the Fourier transform of its autocorrelation function ρk(τ), resulting in the fol-

lowing relation between the exponents. For ρk(τ)� τ−α, the Sk(f) behaves as Sk(f)� f−(1−α).

Thus, we can see that α is indeed approximately 0.5 for all emotions indicating that each emo-

tional dynamics has long-term memory of order of a few months.

Coarse-grained movement. Since positive correlation of emotional dynamics ρk(τ) is

found to roughly six months, we performed principal component analysis for time series sum-

marized every six months of each emotional dynamics Zk(t).
The first and second eigenvectors accompanying with component scores are shown in

Fig 5. Up to the second principal component, the cumulative contribution ratio was 96.1%

Fig 5. Results of principal component analysis for each emotion time series organized every six months. Results of

(A) Raw emotional dynamics, that moved gradually for every six month, and (B) Weekly randomized dynamics that

jumped from point to point are shown.

https://doi.org/10.1371/journal.pone.0213843.g005
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(Fig 5A), and 88.6% (weekly randomized in Fig 5B). Thus, the results of principal component

analysis reflect the dominant part of the six emotional dynamics in two dimensions. Note that

the first principal component was mainly Vigor, and the second was mainly Fatigue for real

time series in Fig 5A. Since there are no periodic cycles in time series summarized every six

months, we cannot confirm a clear difference between before and after removing periodic

cycles.

We confirmed that they were almost independent eigenvectors. However, there were some

overlapping parts in the emotion directions (Fig 5). Duplicate words did not exist in different

emotions, but the vector directions still overlapped. This may be due to the process of summa-

rizing time series for every six months, e.g., Depression and Confusion moved same directions

for a long time in Fig 1.

For the first and second principal component scores, each point in the figure corresponds

to a six months average and it moved gradually from point to point in the real data (Fig 5A)

rather than jumping between the points in the randomized data (Fig 5B). This indicates that

the emotional dynamics changed moderately over time. Thus, we could successfully capture,

for the first time, the evidence of the slow dynamics of collective emotion.

Discussion

People are increasingly active on the Internet, and this currently available data can provide

new perspectives of collective human behaviors. Extracting and tracing collective emotion

is a challenging new research topic because social media has only become widespread in the

past decade. Here we extracted collective emotion from the Japanese blog space for 10 years

between 2006 and 2016, analyzing 3.6 billion blogs based on dictionary-based method.

Firstly, the periodic cycles for each of the emotional dynamics has been observed after aver-

aging over the 10 years. Weekly and yearly periodicities appeared in each of the emotional

dynamics in the Japanese blog space that were connected to real phenomena. In particular,

Fatigue tends to increase after consecutive holidays. In Japan, it is known that suicide numbers

tend to increase after consecutive holidays. Suicide number is known to be associated with

Google Trends in England [44] and Korean blogs [45], measuring collective emotion might be

applied to identify earlier signals of suicides.

Secondly, after removing these periodic cycles from each of the emotional time series, we

find that sharp spikes could be attributed to natural disasters. In particular, collective emotion

increased largely under the influence of the 3.11 earthquake. This influence continued to be

high over a month in Tension, Depression, and Confusion. During the 3.11 earthquake period,

many rumors spread [5]. It was argued that feelings of anxiety contribute to the spread of

rumors during a disaster [46]. In addition, a psychological study involving 24 introductory

psychology students reported that anxious feelings accelerate rumor spreading [47]. We

achieved similar results but with much richer data from our 3.6 billion blog articles.

Finally, our study is the first to shed light on long-term memory of collective emotion

which have attracted little attention so far. In every emotion of real data, autocorrelation

showed power-law decay with an exponent much less than one which suggests the existence of

long-term memory. Also, the result of power spectrum density and principal component anal-

ysis suggest strong indications of long-term memories in collective emotion for time scales of

several months.

There are important limitations of this research. Since there are no ground-truth data for

collective emotion, our results represent an estimation and plausible. We expect to accumulate

a broader range of similar studies and data of collective emotion for future analysis. Also, due

to the current lack of geo-located data, we cannot consider the geographical differences of
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collective emotions in different locations. We believe that considering geographic differences

will provide deeper insights and understanding, especially in the cases of natural disasters.

To further develop the present research, the following points could be considered. First, we

only focused on the Japanese blog space, which is not equivalent to other cultures in the world.

Compared with previous studies with a limited number of participants answering question-

naires, our study used rich data from actively writing individuals. This larger variety of data

compared to others represents the high-quality nature of the present study. Second, our results

were limited by our dictionary based on POMS [30]. Our dictionary was built based on a tradi-

tional psychology scale, the extracted emotions depended on six dimensions with five negative

emotions and one positive emotion. However, it is obvious that these emotions do not cover

whole dimensions of collective emotion. Especially it is important to add new positive emo-

tions in the analysis. For example, POMS2 [48], the second edition of POMS with new positive

emotion Friendliness, has been released and translated into Japanese recently. Additionally, we

applied naive summation of dictionary listed words that are checked manually. Using Word2-

vec [49] and Doc2vec [50] could be a new possible direction for dictionary building procedure

semi-automatically. Furthermore, there exists numerous other psychological measures that

could be analyzed. Extracting multidimensional emotions is a still challenging task that should

attract researchers in the future.
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