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Simple Summary: Folic acid (FA) plays a critical role in regulating fetal development. Cause of the
association between maternal metabolism and fetal development has created interest to study FA’s
effects on maternal blood metabolism and milk composition. FA was supplemented in the diet of
ewes with different litter size during pregnancy and blood parameters, and milk composition was
monitored. The results indicated that FA supplementation improved folate metabolism balance during
gestation of prolific ewes, and contributed to the ewe’s blood metabolism and health. In addition,
immune-related compounds in milk were improved with dietary FA supplementation, thus, the
newborn lamb should benefit from the improvement in milk quality.

Abstract: The objective of the present study was to investigate the dynamic change of serum
parameters and milk composition by dietary FA supplementation with ewes with different litter
size from mating to lambing. The ewes were divided into six treatments (TW-CON, TW-F16,
TW-F32, TR-CON, TR-F16, TR-F32) according to dietary FA levels (control, CON; 16 or 32 mg·kg−1

rumen-protect-FA supplementation, F16 and F32) and litter size (twin born, TW; and triplet born, TR).
In serum, the concentration of folate increased linearly with dietary FA supplementation (P < 0.05),
regardless of the litter size, they showed a quadratic response to gestation progression (P < 0.05). With
dietary FA addition, IGFI-I levels significant increased from late gestation to after lambing (P < 0.05),
and linearly increased immunoglobulin during the perinatal period (P < 0.05). In colostrum and milk
at d 15, the content of folate, lactoferrin, and IgG were affected positively by FA supplementation
(P < 0.05). IgG was higher in the TW group than TR in colostrum (P < 0.05), and lactoferrin in TW
was lower than TR in milk of d 15 (P < 0.05). FA supplementation increased protein content in
colostrum (P < 0.05), while it had no effect on the fat, lactose, and BUN of colostrum and milk of d 15
(P > 0.05). These results suggest that FA supplementation during gestation could regulate maternal
blood metabolism and contribute to milk immune composition.
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1. Introduction

As an essential micronutrient, folic acid (FA) plays a crucial role in various metabolic processes of
the cell, and it is necessary to maintain and improve fetal body development during pregnancy in
humans and animals. The positive effects of FA supplementation on birth weight is well documented [1].
Its benefit for animal growth may be because adequate FA intake is required for cell division and
homeostasis due to its essential role as a coenzyme in nucleic acid synthesis and repair [2,3]. FA also
regulates mitochondrial biogenesis and function through changing the mitochondrial DNA content and
gene expression levels to compensate tissue impairment [4]. FA contributes to increased antioxidant
capacity in rats [5] and immunity in freshwater prawns [6]. Collectively, these functions suggest that
FA is necessary in regulating the fetus or young animals’ growth, development, and metabolism
processes. We speculate that the maternal metabolism could also be modulated by dietary FA ingestion
and this may affect the offspring’s metabolism, especially in the early stages of growth.

Due to genetic improvement and intensification in past decades, the reproduction performance
in prolific breeds of sheep and the lactation performance of cows has increased substantially. This
increased performance may result in an increased demand for FA to maintain higher production. In
ruminants, rumen microorganisms synthesize folate. Several studies have demonstrated that dietary
FA (unprotected and protected) supplementation increased milk production, protein concentration,
and milk yield of dairy cows [7–10]. The level of folates supplied by diet and ruminal microbes is not
sufficient to maintain the serum folate concentrations at a constant level throughout gestation, and the
decrease of serum concentrations is greater in prolific breeds from mating to 60 days of gestation of
ewes [11]. Collectively, these results suggest that FA requirements are increased during gestation and
lactation in high performing females.

Haematochemical parameters are good indicators of the physiological and health conditions
in animals [12,13]; and the quality of milk in ewe is critical for neonatal lambs, especially for the
acquisition of passive immunity [14]. Most previous studies focused on fetal growth or dam milk
production, few studies have reported the effects of FA supplementation on maternal metabolism
in ewes.

The aim of the present study was undertaken to determine the effect of protected dietary FA
supplementation throughout the gestation period on the time-course of serum parameters from mating
to lambing and milk components in prolific ewes with twin or triplet fetuses.

2. Material and Methods

2.1. Animals and Experiment Design

Procedures throughout this experiment were in accordance with the Animal Ethics Committee of
Beijing. The protocol used throughout the study was approved by the Institutional Animal Care and
Use Committee of the China Agricultural University (Permit number: DK996).

One hundred and twenty Hu sheep with similar body weights (44.00 ± 0.39 kg), and multiparous
ewes (all animals had given birth twice before, 24 ± 4.2 months of age) and showing signs of estrus were
selected, and randomly divided into three treatments after mating. Ewes were housed in individual
pens (size: 1.5 × 3 m2) and given one of the three rations throughout the gestation period: control (no
FA supplementation, CON); supplemented with 16 mg (F16) or 32 mg (F32) rumen-protected FA per
kilogram dry matter (DM). The specific parameters of supplemented FA in this trial were the following:
purity, 99.8%; rumen passing rate and small intestinal absorption rate (measurement by rumen fistula
and small intestine fistula), 92.60% and 85.59%, respectively. Twenty-eight days after mating, type-B
ultrasonography was used to check whether the ewes were pregnant or not. Non-pregnant ewes were
removed from the groups; the litter size was not identified until lambing. After lambing, according to
the litter size at birth (Twin-born, TW; Triplet-born, TR) and the ingested FA levels in diet, the ewes
were divided into 6 groups (TW-CON n = 16, TW-F16 n = 13, TW-F32 n = 10, TR-CON n = 5, TR-F16 n
= 13 and TR-F32 n = 9) as a 2 × 3 factorial design.
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The dietary component and nutrient levels were provided according to the recommendations for
small ruminants of the National Research Council 2007 [15]. The percentage of DM basis of peanut
vines, whole corn silage, and concentrate in total mixed ration (TMR) from early (from mating to
90 days) to late (from day 91 to lambing) gestation was 50.00 : 45.00 : 5.00 and 27.00 : 28.00 : 45.00,
respectively. Concentrate composition and nutrient levels of TMR in the control group are shown
in Table 1. Folic acid was supplemented to the total mixed ration for each of the individual ewes,
the amount of TMR offered changed gradually throughout the gestation period to meet the NRC
recommendation, and fed twice daily and equally at 8:00 am and 6:00 pm. The ewes had free access to
drinking water throughout the experiment.

Table 1. Dietary concentrate components and nutrient levels of the basal diet (dry matter basis, %).

Ingredients Formula of Concentrate TMR Nutrient Levels

EG LG Nutrients EG LG

Corn 53.00 50.00 Dry matter 92.35 90.96
Soybean meal 9.70 22.50 Crude protein 9.60 10.00
Rapeseed meal 12.00 7.00 Ether extract 3.51 4.52

Wheat bran 15.70 11.50 Ash 11.19 8.85
Limestone 1.00 1.00 Neutral detergent fiber 49.19 34.15
CaHPO4 0.60 0.60 Acid detergent fiber 29.98 24.86
NaHCO3 1.30 1.30 Metabolizable energy 2) 1.93 2.15

NaCl 0.80 0.40 Calcium 0.54 0.56
Vitamin E 0.40 0.10 Phosphorus 0.37 0.26

Soybean oil 0.30 0.40
Premix 1) 5.00 5.00

De-mold agent 0.20 0.20
Total 100.00 100.00

TMR, total mixed ration; EG, early gestation; LG, late gestation. 1) Premix provide for per kilogram TMR: VA 30000
IU, VD 10000 IU, VE 100 mg, Fe 90 mg, Cu 12.5 mg, Mn 50 mg, Zn 80 mg, Se 0.3 mg, I 0.8 mg, Co 0.5 mg. The premix
was provided by Nongbolier Technology Co., Ltd. (Beijing, China). 2) Metabolizable energy value was calculated
according to the NRC, unit: Mcal/kg.

2.2. Sampling Procedure and Measurement

2.2.1. Dietary Chemical Analyses

TMR samples were collected every two weeks during early (from mating to 90 days of gestation)
and late (from 91days to parturition) gestation period and dried in an oven at 65 ◦C for 48 h to obtain
air-dry basis matter. Samples were then ground and passed through a sieve with opening size of 1 mm
mesh for chemical analyses. Dry matter was measured by drying the samples in a 105 ◦C oven for 2 h,
content of ash was assessed by burning the samples in a 550 ◦C muffle furnace until reaching a constant
weight. Crude protein was determined by nitrogen content (measured by macro-Kjeldahl method)
multiplied by 6.25 [16]. A reflux system (ANKOM XT15, Ankom Technology, Macedon, NY, USA)
with petroleum ether was performed for 1 hour at 90 ◦C to detect the ether extract content in diets.
Neutral and acid detergent fiber in the diets were measured following the methods as described by
Van Soest et al. [17]. An atomic absorption spectrometer (Czerny-Turner AAS8000, Skyray Instruments,
Dallas, TX, USA) was used to determine the content of calcium and the molybdenum blue colorimetric
method was performed to measure the phosphorus content [16].

2.2.2. Serum Parameters

Blood samples were collected from the jugular vein through a 10 mL vacuum tube in the morning
before feeding at day 1, 30, 90, 140 of pregnancy and the first day after parturition. The serum
samples were separated by centrifugation of blood and stored at −20 ◦C for determination of serum
variables. The concentration of folate, homocysteine (Hcy), insulin-like growth factor-I (IGF-I), and
growth hormone (GH) were determined using a sheep enzyme-linked immunosorbent assay (ELISA)
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commercial kit (DuMa Biological Technology Development Co., Ltd., Shanghai, China), following
the manufacturer’s instructions. The content of immunoglobulin (IgG, IgM, IgA) in the serum were
detected by a KHB-1280 automatic biochemical analyzer (KeHua Bio-engineering Co., Ltd., Shanghai,
China).

2.2.3. Milk Composition

Colostrum samples were collected at 12 and 36 h after lambing, and preserved with
2-bromo-2-nitropropane-1, 3-diol. The two samples were sub-sampled and mixed together
proportionately to each sample weight for milk composition determination. Milk samples were
taken in the morning of days 14, 15, and 16 after parturition, and mixed proportionately as for the
milk samples of day 15. The milk samples were preserved the same as colostrum. Concentrations
of folate and lactoferrin in the colostrum and milk were measured following the instruction of a
sheep enzyme-linked immunosorbent assay (ELISA) commercial kit (DuMa Biological Technology
Development Co., Ltd., Shanghai, China). IgG content in the colostrum and normal milk were
conducted as the manufacturer’s instruction of the ELISA commercial kit (DuMa Biological Technology
Development Co., Ltd., Shanghai, China). The content of protein, fat, lactose, and BUN in the colostrum
and normal milk were detected by milk analyzer (Milko-Scan FT +, Foss Electric, Hillerød, Denmark).

2.3. Statistical Analysis

Indices of blood and milk were analyzed using the generalized liner model (GLM) procedure of
SPSS version 22.0 (SPSS, IBM, Inc., Chicago, USA) to assess the main effects of litter size (TW and TR)
and the FA levels (CON, F16 and F32), and the interaction effects between the litter size and FA levels.
Statistical significance of the main effect was demonstrated at a level of P < 0.05. The time-course effect
(from mating to lambing) of folate, Hcy, IGF-I, and GH in the serum of each treatment was analyzed by
generalized linear mixed model (GLMM) using SPSS. Polynomial analysis was performed to test the
linear or quadratic response of variables to the dietary FA levels or the time-course effect.

3. Results

3.1. Serum Variables from Gestation to Parturition

3.1.1. Folate and Hcy

No significant interaction effects (litter size × FA levels) on serum folate and Hcy concentrations
were found in this experiment (P > 0.05; Table 2). The serum folate concentration was higher in the TW
group than TR only at 90 days after mating (P < 0.05), while the concentration showed a significant
linear increase with dietary FA supplementation at 1, 30, 90, and 140 days of gestation and after lambing
(P < 0.05). For the time-course effect, serum folate concentrations in the six treatments exhibited a
quadratic response throughout the gestation period, while decreasing from mating to the lowest point
at 90 days of pregnancy, and then increasing until parturition (P < 0.05, Figure 1A).

No significant difference was found between the TW and TR group on Hcy concentrations on the
30th, 90th, and 140th day of pregnancy and after lambing (P > 0.05). Concentrations of Hcy decreased
linearly with FA addition in the diets (P < 0.05; Table 2). Concentrations of Hcy were non-significant
throughout gestation in each of the 6 treatments (P > 0.05; Figure 1B).
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Table 2. Folate and Hcy concentrations in the serum from mating to parturition.

Item
Time LZ D

SEM
P-Values

(d) TW TR CON F16 F32 LZ D I × L Q

Folate
(ng/ml)

1 18.11 18.67 14.51 c 18.09 b 22.57 a 0.63 0.325 <0.001 0.889 <0.001 0.378
30 17.19 17.23 13.35 c 17.24 b 21.04 a 0.58 0.923 <0.001 0.896 <0.001 0.895
90 14.7 13.87 10.88 c 14.86 b 17.11 a 0.46 0.01 <0.001 0.91 <0.001 0.019

140 17.44 17.97 14.25 c 18.52 b 20.35 a 0.5 0.241 <0.001 0.967 <0.001 0.006
P 18.7 19.35 15.70 c 19.90 b 21.48 a 0.48 0.23 <0.001 0.984 <0.001 0.017

Hcy
(µmol/L)

30 6.98 7.04 8.48 a 6.24 b 6.31 b 0.24 0.857 <0.001 0.746 <0.001 0.008
90 7.48 7.96 9.12 a 7.13 b 6.91 b 0.23 0.171 <0.001 0.855 <0.001 0.018

140 6.88 7.03 7.91 a 6.61 b 6.34 b 0.16 0.555 <0.001 0.986 <0.001 0.048
P 8.04 8.22 9.89 a 7.46 b 7.04 b 0.27 0.62 <0.001 0.972 <0.001 0.007

Hcy, homocysteine; LZ, litter size; D, diet; TW, twin born; TR, triplet born; CON, control group; F16 and F32, 16 or
32 mg·(kg.DM)−1 FA supplemented in the basal diets, respectively; I ×, interaction effect; L, P value of liner effect; Q,
P value of quadratic effect; SEM, standard error of mean; P, postpartum. Different superscripts in the same row
means significant difference.Animals 2020, 10, x FOR PEER REVIEW 2 of 15 

 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1. Folate (A) and Hcy (B) concentration in serum. Data are means ± SEM. Hcy, homocysteine;
TW-CON, TW-F16 and TW-F32, twins born from ewes fed 0, 16, or 32 mg·(kg.DM)−1 FA in the basal
diet, respectively; TR-CON, TR-F16 and TR-F32, triplets born from ewes fed 0, 16, or 32 mg·(kg.DM)−1

FA in the basal diet, respectively. PT, P value of time effect; PQ, P value of quadratic effect. Different
lowercases indicated significance of corresponding TR groups (dotted line); different bold lowercases
indicated significance of corresponding TW groups (full line). N = 5 for TR-CON, and n = 6 for
other groups.

3.1.2. IGF-I and GH

Concentration of IGF-I and GH in the serum did not differ significantly between TW and TR groups
throughout the gestation period (P > 0.05; Table 3). On the 90th of gestation and after lambing, IGF-I
levels increased linearly with dietary FA supplementation (P < 0.05; Table 3); with FA supplementation
in the TR groups (TR-F16 and TR-F32), the IGF-I also indicated a linear increase with the progression
of pregnancy (P < 0.05), but did not change significantly in other treatments (P > 0.05; Table 4). The
concentration of GH at different time among the treatments was not affected by litter size and dietary
FA levels (P > 0.05; Table 3), while the concentration increased linearly as gestation progressed until
lambing (P < 0.05; Table 4).
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Table 3. The concentrations of IGF-I and GH affected by litter size and dietary FA levels (ng/mL).

Item
Time LZ D

SEM
P-Values

(d) TW TR CON F16 F32 LZ D I × L Q

IGF-I

30 242.59 248.17 241.25 252.52 242.37 4.64 0.592 0.619 0.94 0.87 0.328
90 263.55 273.01 252.68 b 276.12 a 275.99 a 3 0.053 <0.001 0.611 0.001 0.023
140 246.7 256.96 237.17 258.23 260.09 4.25 0.225 0.076 0.897 0.023 0.215
P 265.57 272.84 255.93 b 278.24 a 273.43 a 3.55 0.284 0.035 0.54 0.046 0.058

GH

30 10.41 10.33 10.39 10.2 10.53 0.22 0.876 0.846 0.924 0.571 0.691
90 12.12 12.46 11.82 12.4 12.66 0.17 0.324 0.151 0.493 0.035 0.56
140 12.12 12.29 11.97 12.44 12.21 0.2 0.673 0.655 0.304 0.44 0.307
P 13.19 13.52 12.57 13.98 13.51 0.23 0.482 0.061 0.843 0.092 0.044

IGF-I, insulin-like growth factor-I; GH, growth hormone; LZ, litter size; D, diet; TW, twin born; TR, triplet born;
CON, control group; F16 and F32, 16 or 32 mg·(kg.DM)−1 FA supplemented in the basal diet, respectively; I ×,
interaction effect; L, P value of liner effect; Q, P value of quadratic effect; SEM, standard error of mean; P, postpartum.
Different superscripts in the same row means significant difference.

Table 4. The change of IGF-I and GH in serum over time of pregnancy (ng/mL).

Item Groups Time (d)
SEM

P-Values

30 90 140 P T L Q

IGF-I

TW-CON 239.09 250.93 233.4 257.83 5.45 0.414 0.447 0.571
TW-F16 247.34 271.3 250.51 271.66 4.48 0.082 0.168 0.865
TW-F32 241.33 268.41 256.2 267.2 4.83 0.175 0.127 0.391
TR-CON 243.4 254.42 240.94 254.02 5.87 0.83 0.758 0.938
TR-F16 257.70 b 281.04 a 265.94 ab 284.83 a 3.76 0.034 0.043 0.737
TR-F32 243.39 b 283.57 a 263.98 ab 279.66 a 4.83 0.003 0.012 0.111

GH

TW-CON 10.54 11.45 11.51 12.43 0.27 0.109 0.02 0.977
TW-F16 10.12 c 12.15 b 12.28 b 13.66 a 0.33 <0.001 <0.001 0.447
TW-F32 10.57 b 12.76 a 12.56 a 13.49 a 0.32 0.003 0.001 0.199
TR-CON 10.22 b 12.19 a 12.42 a 12.71 a 0.34 0.03 0.007 0.132
TR-F16 10.28 c 12.65 b 12.59 b 14.31 a 0.37 0.001 <0.001 0.54
TR-F32 10.49 b 12.55 a 11.86 ab 13.53 a 0.36 0.01 0.004 0.744

IGF-I, insulin-like growth factor-I; GH, growth hormone; P, postpartum; SEM, standard error of mean; T, time effect;
L, P value of liner effect; Q, P value of quadratic effect. TW-CON, TW-F16 and TW-F32, ewes lambing twins and fed
0, 16, or 32 mg·(kg.DM)−1 FA in the basal diet, respectively; TR-CON, TR-F16 and TR-F32, ewes lambing triplets and
fed 0, 16, or 32 mg·(kg.DM)−1 FA in the basal diet, respectively. N = 5 for TR-CON, and n = 6 for other treatments.
Different superscripts in the same row means significant difference.

3.1.3. Immunoglobulin

Compared with ewes ingested control diet, IgG content increased linearly with FA supplementation
in the diet at 140 days of pregnancy and after lambing (P < 0.05); and postpartum IgG showed a higher
level in the TR group than TW (P < 0.05; Table 5). Either in the TW or TR group, IgG concentration
indicated a linear increase from mating to laming with dietary FA supplementation (P < 0.05), while
no significance was found in ewes the fed control diet (P > 0.05; Table 6). Concentrations of IgM
and IgA only exhibited a linear increase after lambing in the ewes whose diet was supplemented
with FA (P < 0.05) (Table 5). From 30 days after pregnancy to lambing, the concentrations of IgM
exhibited a linear increase in the TR groups with FA supplementation (P < 0.05), but the levels in others
treatments stand in the same line throughout the experiment (P > 0.05). Concentrations of IgA were not
significantly different in each of the treatments throughout gestation until lambing (P > 0.05; Table 6).
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Table 5. Serum immunoglobulin concentration influenced by litter size and dietary FA levels (g/L).

Item
Time LZ D

SEM
P-Values

(d) TW TR CON F16 F32 LZ D I × L Q

IgG

30 10.95 11 11.01 11.3 10.61 0.22 0.91 0.442 0.526 0.597 0.192
90 11.94 11.91 12.16 11.9 11.71 0.21 0.944 0.74 0.897 0.422 0.944
140 11.74 12.25 10.42 b 12.68 a 12.88 a 0.28 0.237 0.002 0.219 <0.001 0.033
P 13.46 14.48 12.20 b 14.98 a 14.73 a 0.32 0.033 <0.001 0.303 0.001 0.006

IgM

30 1.61 1.57 1.57 1.57 1.64 0.03 0.524 0.524 0.925 0.394 0.532
90 1.58 1.6 1.56 1.59 1.64 0.03 0.696 0.46 0.457 0.25 0.843
140 1.63 1.64 1.64 1.62 1.64 0.03 0.917 0.963 0.979 0.919 0.762
P 1.73 1.77 1.62 b 1.83 a 1.80 a 0.03 0.459 0.023 0.517 0.025 0.058

IgA

30 0.45 0.44 0.43 0.45 0.45 0.02 0.849 0.689 0.845 0.543 0.594
90 0.43 0.43 0.41 0.45 0.43 0.01 0.988 0.345 0.964 0.323 0.229
140 0.45 0.44 0.42 0.46 0.46 0.01 0.856 0.087 0.879 0.035 0.337
P 0.43 0.43 0.41 b 0.44 a 0.44 a 0.01 0.9 0.049 0.95 0.015 0.225

IgG, immunoglobulin G; IgM, immunoglobulin M; IgA, immunoglobulin A; LZ, litter size; D, diet; TW, twin born;
TR, triplet born; CON, control group; F16 and F32, 16 or 32 mg·(kg.DM)−1 FA supplemented in the basal diet,
respectively. I ×, interaction effect; L, P value of liner effect; Q, P value of quadratic effect; SEM, standard error
of mean; IgG, IgM and IgA, immunoglobulin G, M and A; P, postpartum. Different superscripts in the same row
means significant difference.

Table 6. Variance of immunoglobulin in serum from 30 days after mating to parturition (g/L).

Item Groups Time (d)
SEM

P-Values

30 90 140 P T L Q

IgG

TW-CON 10.67 12.13 10.67 12.22 0.3 0.089 0.217 0.934
TW-F16 11.62 b 11.83 b 12.4 b 14.26 a 0.32 0.005 0.001 0.11
TW-F32 10.55 b 11.88 b 12.14 b 13.92 a 0.37 0.004 0.001 0.691
TR-CON 11.35 12.2 10.18 12.17 0.35 0.156 0.876 0.388
TR-F16 10.98 c 11.98 bc 12.96 b 15.71 a 0.45 <0.001 <0.001 0.105
TR-F32 10.66 c 11.55 c 13.62 b 15.55 a 0.48 <0.001 <0.001 0.345

IgM

TW-CON 1.6 1.59 1.65 1.65 0.03 0.893 0.522 0.995
TW-F16 1.6 1.54 1.61 1.77 0.04 0.143 0.073 0.131
TW-F32 1.65 1.62 1.63 1.77 0.04 0.626 0.378 0.382
TR-CON 1.55 1.52 1.64 1.6 0.03 0.691 0.455 0.937
TR-F16 1.53 b 1.64 b 1.63 b 1.89 a 0.04 0.01 0.003 0.268
TR-F32 1.64 1.66 1.64 1.83 0.03 0.1 0.046 0.185

IgA

TW-CON 0.44 0.42 0.43 0.41 0.01 0.687 0.338 0.912
TW-F16 0.45 0.45 0.46 0.44 0.01 0.838 0.837 0.566
TW-F32 0.45 0.43 0.46 0.44 0.01 0.688 0.826 0.986
TR-CON 0.42 0.41 0.41 0.41 0.02 0.691 0.455 0.937
TR-F16 0.46 0.45 0.46 0.44 0.01 0.843 0.526 0.849
TR-F32 0.44 0.44 0.47 0.44 0.01 0.769 0.787 0.668

IgG, immunoglobulin G; IgM, immunoglobulin M; IgA, immunoglobulin A. P, postpartum; SEM, standard error of
mean; T, time effect; L, liner effect; Q, quadratic effect. TW-CON, TW-F16 and TW-F32, ewes lambing twins and fed
0, 16, or 32 mg·(kg.DM)−1 FA in the basal diet, respectively; TR-CON, TR-F16 and TR-F32, ewes lambing triplets and
fed 0, 16, or 32 mg·(kg.DM)−1 FA in the basal diet, respectively. IgG, IgM and IgA, immunoglobulin G, M and A. N
= 5 for TR-CON, and n = 6 for other treatments. Different superscripts in the same row means significant difference.

3.2. Milk Components

3.2.1. Folate, IgG and Lactoferrin Concentrations

Folate concentrations in both colostrum and milk of the 15th day were not influenced by litter size
(P > 0.05; Figure 2A), but it increased linearly in colostrum in response to dietary FA supplementation,
and a similar tendency was found at milk from the 15th day (P < 0.05; Figure 2B). The colostrum IgG
content showed a higher level in TW than that in TR group (P < 0.05; Figure 3A), whereas no difference
was observed in milk after at 15 days of lambing (P > 0.05; Figure 3C). Dietary FA supplementation
also linearly increased the IgG levels in the colostrum and the 15th days milk (P < 0.05) (Figure 3B,D).
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Lactoferrin content in colostrum was not affected by litter size (P > 0.05). However, it showed a higher
level in TR group when compared with its content in TW at 15 days after lambing (P < 0.05; Figure 4A).
The concentration of lactoferrin increased in both colostrum and milk on the 15th day in response to
the FA supplemented in diets (P < 0.05; Figure 4B).
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Figure 2. Effect of litter size (A) and FA levels (B) on the folate concentrations in milk. Data are means
± SEM. TW, twin born; TR, triplet born; CON, F16 and F32, ewes fed 0, 16, or 32 mg·(kg.DM)−1 FA in
the basal diet, respectively. PD, P value of diet FA supplementation; PL, P value of liner effect; PQ, P
value of quadratic effect.
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3.2.2. Colostrum and Normal Milk Composition

In both colostrum and the milk at 15 days after parturition, the FA levels and litter size show no
significant influence on the concentrations of fat, lactose and BUN (P > 0.05; Table 7). Whereas protein
content increased linearly (P < 0.05) in colostrum with maternal diet FA supplementation, and it still
tended to be higher from the 15th day’s milk from ewes with FA supplemented during gestation period
than the milk form ewes fed the control diet (P = 0.098).

Table 7. Components of colostrum and normal milk.

Items Time
LZ D

SEM
P-Values

TW TR CON F16 F32 LZ D I × L Q

Fat
(%)

C 12.06 11.92 11.47 12.15 12.24 0.27 0.645 0.570 0.978 0.287 0.609
15 d 5.27 5.48 4.89 5.52 5.70 0.19 0.671 0.218 0.968 0.076 0.569

Protein
(%)

C 13.46 13.23 12.68 b 13.72 a 13.64 a 0.16 0.497 0.046 0.865 0.031 0.096
15 d 5.59 5.47 5.26 5.66 5.67 0.10 0.496 0.098 0.845 0.042 0.242

Lactose
(%)

C 3.15 3.27 3.16 3.21 3.26 0.12 0.678 0.963 0.836 0.578 0.869
15 d 5.67 5.52 5.49 5.69 5.61 0.04 0.053 0.110 0.792 0.240 0.096

BUN
(mg/dL)

C 4.81 4.74 4.91 4.71 4.71 0.38 0.693 0.619 0.955 0.313 0.512
15 d 5.84 5.88 6.16 5.64 5.79 0.16 0.911 0.468 0.874 0.231 0.274

TW, twin born; TR, triplet born; CON, control group; F16 and F32, 16 or 32 mg·(kg.DM)−1 FA supplemented in the
basal diet, respectively; LZ, litter size; D, diet; I ×, interaction effect; L, P value of liner effect; Q, P value of quadratic
effect; SEM, standard error of mean; C, colostrum; BUN, blood urea nitrogen. N = 5 for TR-CON, and n = 6 for other
treatments. Different superscripts in the same row means significant difference.

4. Discussion

Serum folate concentration is an accurate indicator of the status of body folate [18]. In the present
study, serum concentration of folate increased linearly with dietary FA supplementation throughout the
experiment, which is consistent with previous studies in dairy cows [10,19,20] and sheep [21]. The folate
concentration was higher in twin born ewes than triplet born ewes at 90 days after mating, this may
be due to the higher folate requirement as gestation progressed with larger litter size from mating to
early gestation. The result is similar to a previous report that serum folate concentration decreased
more between mating and 60 d of gestation in prolific sheep breeds than for non-prolific breeds [11].
Regardless of dietary FA supplementation, we found the pattern of serum folate concentration had
the same trend from mating to lambing, decreasing from mating to the beginning of late gestation
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period, then increasing until laming. These changes may be related to the increased requirement of
FA in early gestation for embryo development and fetus organ formation, and then decreased fetal
requirement after organ formation in late gestation. Similarly, Girard et al. (1996) reported that folate
concentration of ewes from different breeds with different litter size showed a quadratic response
to time to pregnancy (from mating to 140 d of gestation) [11]. The lowest folate content at 90 d of
gestation with dietary FA supplementation was still higher than that of the early gestation period of
ewes fed the control diet. Thus, we considered the negative balance of maternal folate during the
gestation period has been improved by maternal dietary FA addition.

Hcy concentrations decreased with FA supplementation in the diet compared with the control
groups from 30 days of pregnancy to lambing, the decreased Hcy levels in serum are consistent with
studies in dairy cows [10] and piglets [22]. Dietary folate depletion could result in an increase of
serum Hcy, which could promote oxidative stress [5]. Maternal dietary FA supplementation improved
serum folate concentration and decreased Hcy concentrations from gestation to lambing. Overall
concentrations of folate and Hcy were consistent among all the treatments regardless of litter size and
supplementary FA levels.

IGF-I and GH are of major significance in the regulation of cell metabolism, muscle development,
adipogenesis, glucose, and energy metabolism [23–25]. Therefore, IGF-I and GH are valuable indicators
for evaluating the animal’s metabolic condition. In the current study, IGF-I concentrations in the
serum increased with FA supplementation from late gestation to lambing regardless of litter size,
which means FA had a positive effect on maintaining maternal metabolism. However, as gestation
progressed, IGF-I levels only in the ewes fed additional FA and pregnant with triplet fetuses increased
linearly. We speculated that this might be due to dietary FA supplementation maintaining maternal
and fetal nutrients metabolism by regulating maternal IGF-I levels to satisfy the higher requirement of
nutrients for ewes pregnant with three fetuses. In addition, maternal serum IGF-I also plays a key
role in enhancing the placental function in sheep [26], while folate is critical in modulating placental
nutrient transport and fetal growth [27]. Thus, it is likely that FA influences the fetus’s development
by regulating maternal IGF-I levels to stimulate placental efficiency, which deserves further study.

GH was not affected by litter size or dietary FA supplementation, and the linear increase of GH
from early gestation to lambing in the ewes pregnant with twins with FA supplementation and the ewes
pregnant with triplets. Maternal GH concentrations increased as gestation progressed presumably to
modulate the growth of the fetus [28].

We also considered the effect of FA on immunity because of its critical role on health. Supplementary
FA enhances the immune system in aquatic animals [6,29] and humans [30]. The increased
immunoglobulin in maternal serum offer FA supplementation in the perinatal period could contribute
to promoting the ewe’s immunity during perinatal period and postpartum recovery. From early
gestation to lambing, the increase of IgG in both TW and TR ewes indicated the ewe’s immunity was
positively affected by dietary FA levels during pregnancy. Results in human (long-term synthetic FA
supplementation) [30] and broiler (in ovo injection of FA) [31] also showed FA supplementation was
beneficial to immune function. IgM only increased in TR ewes treated with FA addition, the lack of
response by TW ewes during gestation remains unclear and is deserving of further research.

There is a close relationship between milk composition and blood constituents [32,33]. In the
present study, folate concentrations in colostrum increased with dietary FA supplementation during
gestation. It is possible that the increasing blood folate from late gestation to lambing may contribute
to the preparation of the mammary gland for lactation. Girard et al. (2005) reported that folate
concentration in milk of cows showed a quadratic response to different dietary FA supplementation,
and this may be because milk folate secretion is regulated by the mammary gland [34]. In the current
study, milk folate concentration at day 15 of lactation was still higher in ewes with FA supplementation
than CON ewes. This means maternal FA supplementation during pregnancy has a long-term influence
on milk folate concentration.
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Colostrum is a nutrient-rich source with complex biological components and contributes to the
initial acquired immunity of neonates [35]. Colostrum IgG as the major immunoglobulin involved in
stimulating the maturation of the newborn’s immune system [36]. Lactoferrin not only plays a role as
an iron-binding protein with bacteriostatic properties, but also works as a host defense mechanism
against microbial infection [37]. The IgG and lactoferrin content in both colostrum and milk increased
with dietary FA supplementation, which means maternal FA supplementation during pregnancy
may contribute to the immunity of newborn lambs. With FA supplemented in the diet, the increased
IgG content in the colostrum and milk consist with the variance of serum IgG concentrations in
the late gestation and lactation, and previous study demonstrated the positive relationship of IgG
concentrations between the ewe’s serum and colostrum [38]. We also found IgG content in colostrum
was higher in TW than TR. This may be explained by the litter size having a positive relationship with
milk production [39] and milk production having a negative relationship with milk components [40].
Compared with colostrum, IgG and lactoferrin content were decreased in milk at day 15 of lactation.
Ewes with triplets produced milk with higher concentration of lactoferrin. We suspect that mothers
with a larger litter size could stimulate more lactoferrin secretion to protect the newborn lambs against
bacteria and viruses from the environment to ensure better survival of their offspring.

Folic acid is an essential nutrient for protein synthesis, and contributes to the optimization of
milk quality [20]. For multiparous cows, folic acid injection or dietary supplementation increases milk
protein [34,41]. In our study, the protein content in colostrum also increased with FA supplemented
in the diet during pregnancy, and showed a tendency to contain more protein in milk at day 15 of
lactation. It is hypothesized that FA supplementation influences lactation performance by changing
the regeneration of methionine from homocysteine, thereby regulating the milk protein [34]. Other
studies suggest supplementary FA may modulate lactational performance by improving energy
balance [10] or energy metabolism [41]. In addition, Sacadura et al. (2008) reported that vitamin B
supplementation increased milk and milk component yields probably due to improved metabolic
efficiency of intermediary metabolism [42].

Therefore, FA supplementation during gestation could contribute to maternal blood metabolic and
improve milk quality, which suggested its benefit for the growth and development of offspring [43,44].
Moreover, more research is needed to investigate maternal nutrient digestion and transport with FA
supplementation during gestation, and milk quality affected by FA supplementing in lactation diet,
especially in high prolific breeds.

5. Conclusions

Our results indicate dietary folic acid supplementation increases serum folate concentration to
improve folate metabolism balance during the gestation period of prolific ewes. Moreover, the various
Hcy, IGF-I, GH, and immunoglobulin concentrations influenced by supplementary folic acid in the
diet and gestation progress, especially in the ewes with triplet litters and in the period from late
gestation to parturition, suggest folic acid may contribute to pregnant ewes metabolism and health.
In addition, supplementary folic acid improved the quality of colostrum and milk by modifying their
concentrations of folate, lactoferrin, IgG, and protein.
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