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Abstract: Intracytoplasmic sperm injection (ICSI) involves the microinjection of sperm into a matured
oocyte. Although this reproductive technology is successfully used in humans and many animal
species, the efficiency of this procedure is low in the bovine species mainly due to failed oocyte acti-
vation following sperm microinjection. This review discusses various reasons for the low efficiency
of ICSI in cattle, potential solutions, and future directions for research in this area, emphasizing the
contributions of testis-specific isoforms of Na/K-ATPase (ATP1A4) and phospholipase C zeta (PLC
ζ). Improving the efficiency of bovine ICSI would benefit the cattle breeding industries by effectively
utilizing semen from elite sires at their earliest possible age.

Keywords: bovine; ICSI; sperm oocyte activation factor; phospholipase C zeta

1. Introduction

Sustainable Development Goals of the United Nations mandate a substantial increase
in global food production in the near future [1]. Canadian animal production industries
are at the forefront of improving animal productivity and contribute several billion dollars
annually to our national economy. They rely on a variety of reproductive technologies
such as artificial insemination (AI) [2] and embryo production [3] for genetic improvement
and propagation of superior germ plasm globally. Since even a modest increase in the
reproductive rate in cattle enhances productivity [4], improving efficiency of reproductive
technologies will have immediate and substantial benefits globally. Production of frozen
semen from elite bulls (progeny testing, based on their daughters’ milk production) and
its use for AI have been practiced globally for dissemination of superior genetics and
enhancing animal productivity. However, this industry has been recently revolutionized
by genomic tools [5], facilitating early selection of superior bulls and widespread dissemi-
nation of their genetics. Reproductive technologies have substantially improved efficiency
of genetic selection of bulls by reducing the generation interval from 5 years (progeny
testing) to ~1.5 years [6]. Currently, industries are under pressure to market semen from
bulls at their earliest possible age and AI centres are populated with younger bulls [7,8].
Despite the obvious benefits, this brings several challenges. Semen is now often collected
from peri-pubertal bulls, yielding fewer sperm [9] of suboptimal quality [10], limiting its
use for frozen semen production and AI. In response, in vitro production of embryos by
in vitro fertilization (IVF) and embryo culture (IVC) or intracytoplasmic sperm injection
(ICSI) are being used. Although IVF requires a minimum number of morphologically
normal and functionally competent sperm for successful fertilization, ICSI with spermato-
genic cells or sperm with suboptimal quality [11] was successful in several species [12–15].
Therefore, ICSI could be a viable option for the efficient use of semen of suboptimal qual-
ity (collected from young bulls) or sex-sorted. Although gametes contribute to genetic
variation, selection of gametes based on genetic diversity is now possible using genomic
selection [16]. Changing genetic selection from a superior animal for breeding to a superior
gamete within an individual is not far from reality, as software that can identify gametic
variance is already available [16]. Advancements in gametic selection would be an impetus
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for assisted reproductive techniques like ICSI for the efficient use of selected gametes
for embryo production. Although this technique was developed for several species, i.e.,
rodents [17,18]; humans [19]; horses [20]; and swine [21], its success is not optimal in cattle,
for various reasons. This review is focused on ICSI in cattle, with an emphasis on its
applications, efficiency, reasons for ICSI failure, recent development, and future directions
of research. The emphasis will be on sperm treatment and its contributions to the success
of ICSI in cattle. ICSI is an in vitro technique in which a single sperm is microinjected
into the cytoplasm of a matured oocyte. This technique is used to overcome infertility in
humans and domestic animals. However, the technique was first performed using hamster
sperm and oocyte, which produced a male pronucleus [14]. Thereafter, ICSI replaced
conventional failed in vitro fertilisation in humans, where the sperm from oligospermic
and asthenozoospermic patients were unable to fertilize oocytes. In addition, ICSI has
been used in livestock and wild animals for improving livestock productivity, biodiversity
conservation, transgenic animal production, e.g., pig [22] and for fertilization problems in
IVF systems, e.g., horses [23,24], plus fundamental research in reproductive biology.

The first ICSI was performed with an in vitro-matured bovine oocyte by injection of
sperm, resulting in embryo development up to a blastocyst and its transfer into a surrogate,
with birth of viable offspring [25]. Thereafter, there were reports of successful birth of live
calves [26,27]. Furthermore, ICSI-derived fully expanded blastocysts have survivability
and quality similar to IVF-derived blastocysts after slow freezing [28] or vitrification [29].
As cryopreservation has become an integral part of assisted reproductive technology [28],
development of better freezing protocols for cryopreservation of in vitro-produced embryos
would also help to preserve ICSI-derived embryos, including genetic conservation of wild
bovine species.

2. Applications of Bovine ICSI

Earlier, ICSI was used as a last resort when IVF failed. Viable embryos were produced
from various types of spermatogonic cells, e.g., spermatids [30] and sperm obtained
from in vitro culture of secondary spermatocytes [11]. Microinjection of bovine heat-
dried [31] or freeze-dried [32] sperm yielded blastocysts. ICSI would be beneficial in
preservation and conservation of endangered bovine species using lyophilised [32] or
heat-dried sperm [31]. Frozen-thawed bovine oocytes are suitable for ICSI, as this improves
pronuclear formation [33] and cleavage rate [34] compared to IVF with frozen-thawed
bovine oocytes. Hence, in vitro production of bovine embryos with gametes of variable
quality (blastocyst rate formation in good vs. poor quality oocytes was 23.3% and 11.1%
respectively) can be effectively achieved with ICSI [35].

Sex-sorted sperm have been used to produce female dairy and male beef calves, using
in vitro production of embryos [36]; this has substantially advanced cattle productivity,
including propagation of genetics from superior cattle that are culled due to injuries [37].
Availability of frozen sex-sorted bovine sperm increases the use of IVF in cattle breeding
programs [38]. However, embryos resulting from in vitro fertilization using sex-sorted
sperm had poor developmental competence, and the resulting embryos had poor calving
rates [36]. Jo et al. (2014) reported that ICSI of sex-sorted sperm (24.7%) yielded more
embryos than IVF (2.7%) of sex-sorted sperm [39], encouraging its use to produce sex-
specific embryos [40].

ICSI has been effectively used for production of transgenic embryos [41–44]. Sperm-
mediated gene transfer uses sperm to transport exogenous DNA into the oocyte during
fertilization, resulting in transgenic embryos [42]. In farm animals such as sheep, goats and
cattle, transgenesis has been used to generate animals that express recombinant protein in
milk, or to produce porcine organs for human xenotransplantation [43]. Intracytoplasmic
sperm injection mediated gene transfer (ICSI-MGT) has benefits over pronuclear microin-
jection as it eliminates low transgenic efficiencies and imprinting defaults inherent in
somatic cell nuclear transfer (SCNT) [41]. Bovine blastocyst production with ICSI-MGT
was comparable to or better than SCNT or pronuclear microinjection [41]. High blastocyst
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production was achieved in farm animal ICSI-MGT by chemical activation of oocytes using
ionomycin and 6-dimethylaminopurine (DMAP) [41,43]. In addition, physical or chemical
damage to the sperm membrane before microinjection improved ICSI-MGT [42].

Bovine ICSI has contributed to the assessment of oocyte activation [45] and centrosome
function [45–49] of human sperm. Bovine ICSI has also been used as a heterologous
assay system [47,50,51] for evaluating fertilising ability of human sperm [45] and human
centrosome function [46,52]. These assays have led to identification of the role of male
pronuclei in synchronising development of female pronuclei [50].

3. Potential Reasons for Failure of ICSI in Cattle

The success rate of ICSI in cattle (14%) is low compared to other domestic species
(horse: 21%, goat: 28% and pig: 18%) [53]. However, since ICSI has tremendous potential
for augmenting genetic selection and animal productivity, research is ongoing to improve
its efficiency. Major reasons for the failure of ICSI in cattle were regarded as the inability of
sperm to undergo nuclear decondensation and pronuclei formation [54], improper func-
tions of microtubule organising centre [55], and failure to elicit calcium oscillations [56]
required for oocyte activation. In Vitro-matured bovine oocytes are incapable of processing
sperm with an intact acrosome or sperm that has not undergone capacitation [54]. It has
been reported that the acrosomal enzymes deform and lyse oocytes [57]. Furthermore,
when sperm from various species (hamster, cattle, swine, human and mouse) were mi-
croinjected to mouse oocytes, the order in which they cytolyse the oocyte was correlated
with acrosome volume. Injecting trypsin and hyaluronidase (which mimicked action of
acrosome-intact sperm) into a normal, fertilized mouse oocyte disturbed pre- and post-
implantation development [57]. However, removal of sperm membranes may improve
male pronuclei formation [58] and make the sperm-derived oocyte activating factor (PLC
zeta) more readily available to the oocyte cytoplasm. Compromised release or activation of
sperm factor may cause failure of calcium oscillation [56].

During fertilization, calcium oscillation precedes oocyte activation. Fusion of sperm
and oocyte releases sperm oocyte activation factor (PLC zeta) which is involved in the
hydrolysis of phosphatidyl inositol biphosphate (PIP2), generating inositol triphosphate
(IP3) and diacetyl glycerol (DAG). IP3 binds to receptors in the intracellular calcium
reserves (e.g., endoplasmic reticulum), releasing calcium [59–61]. Oocytes have a sec-
ond messenger-controlled activation model, with calcium and IP3 as second messengers.
Increased intracellular cytosolic calcium concentrations induce calcium oscillations by acti-
vating calcium-induced calcium release (CICR), whereby calcium induces its own release
from internal reservoirs [62]. Furthermore, calcium oscillations are maintained by calcium
transients, which, depending on the time taken by the calcium stores to replenish calcium
to facilitate the next spontaneous discharge [62]. The IP3-mediated increase in intracellular
calcium is a feedback to inhibit further calcium release by inactivating calcium channel
receptors, thereby forcing calcium back to internal reservoirs. This decrease in calcium
removes the feedback inhibition on IP3-sensitive calcium channels and calcium oscillations
are maintained by the periodic release of calcium from an IP3-sensitive calcium pool [62].
Thus, calcium oscillation promotes oocyte activation, manifested by the resumption of
meiosis and formation of male and female pronuclei.

Changes during bovine capacitation and acrosome reaction during in vivo fertilization
might favour release or activation of sperm factor. The sperm oocyte activation factor is
apparently located at the perinuclear theca [63]. Persistence of the subacrosomal region
of perinuclear theca (SAR-PT) on the apex of the male pronucleus disrupts the S-phase,
not only in the male, but also in the female pronuclei [64,65]. In a primate study, complete
solubilisation of post-acrosomal sheath perinuclear theca (PAS-PT) seemed to occur in
parallel with oocyte activation [66]. Therefore, it is likely that greater rigidity of the
perinuclear theca of bovine sperm [67] contributes to its difficulty in solubilisation of the
perinuclear theca contents [66], and sperm nuclear stability [68] to its difficulty in sperm
decondensation. Bull sperm microinjected into oocyte removed its plasma membrane
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after 20 h, but there was no sign of perinuclear theca removal, likely affecting the ability
of oocyte factors to access sperm DNA and also preventing sperm decondensation [67].
The latter involves replacement of sperm protamines by oocyte-derived histones and is a
pre-requisite for male pronuclear formation [69].

Condensation of the sperm nucleus is the result of protamine binding to the DNA [70].
The protamine is rich in cysteine and arginine. It binds to DNA mainly by electrostatic inter-
action of its arginines. The aggregation is further stabilized by inter- and intra-disulphide
bonds [71]. In mammals, two distinct protamines are present, protamine 1 and protamine
2 [72]. Bull sperm has only protamine 1 and the nuclear chromatin is very stable with
maximum number of disulphide cross links [70]. Bovine protamine 1 has central arginine-
rich DNA binding domain and cysteine-rich domain at both ends [73]. Each cysteine
sulfhydryl group is oxidised to intra- and intermolecular disulphide bridges [74]. Affinity
to DNA is greater for protamine 1 versus protamine 2 [72]. The latter (present in human
and mouse), has lower cysteine content than the former, so protamine 2 is expected to have
lower disulphide bridges [75]. Therefore, sperm with a higher proportion of protamine 2
decondense quickly [54], accounting for lower stability of human and mouse sperm nuclei
(contain protamine 2) compared to bull sperm.

Furthermore, to accurately nucleate and organise the sperm aster, the ooplasmic
pericentriolar materials should be properly blended with sperm centrosomes [76]. Micro-
tubule organising centres (MTOC) of sperm-microinjected oocytes (aster formation rate
and fluorescent intensity of microtubule network) were not as functional as those of IVF
oocytes [55]. Similarly, inadequate oocyte activation and male pronuclei formation may
be due to compromised in vitro oocyte maturation, decreasing inositol-1,4,5-triphosphate
(IP3) and glutathione reserves in cumulus cells [77]. A recent report using transcriptional
regionalisation of developmental genes within M-II bovine oocytes and a preferential
sperm entry point during IVF [78] implied oocytes may be polar. Consequently, the sperm
entry point during ICSI may be important in embryo development [78]. Developing culture
conditions [79] to improve ooplasmic environment [54] and mimicking molecular changes
in sperm associated with physiological capacitation and acrosome reaction [54] through
appropriate sperm pre-treatments, may increase efficiency of ICSI in cattle.

4. Pre-Treatment of Sperm for Improving the Success of Bovine ICSI

Effects of various pre-treatments on sperm were provided in Table 1. Mechanical pre-
treatment of sperm by immobilisation of sperm by tail scoring improved male pronucleus
formation [80,81] as localized disruption of sperm plasma membrane is expected to promote
its disintegration within the oocyte [82]. The sperm plasma membrane is unable to heal,
compared to other cells, due to minimal cytoplasm [83]. Through the disrupted membrane,
extracellular sodium and calcium ions move inside the sperm, activating endogenous
nucleases that cleave DNA. Consequently, it is important to minimize the interval between
sperm immobilisation (disruption of sperm plasma membrane) and sperm injection into
an oocyte [83]. For species with a stable plasma membrane (e.g., cattle), it is optimal to
disrupt this membrane prior to ICSI [84].

Chemical pre-treatment of sperm improved ICSI outcome in cattle [80] by increas-
ing nuclear decondensation and pronuclei formation. As bovine ICSI bypasses critical
fertilisation events, e.g., capacitation, acrosome reaction and penetration of zona pellu-
cida [77], there is a need to artificially subject sperm to these changes. Dithiothreitol (DTT)
pre-treatment of sperm before bovine ICSI improved cleavage rate [85] and blastocyst
development in OPU-ICSI when compared to OPU-IVF [86]. Treatment of oocytes and
sperm with DTT without any oocyte activation agent resulted in the birth of a healthy
calf [87]. Conversely, there are reports that sperm pre-treatment with DTT [88,89] along
with oocyte activation with DMAP improved the efficiency of bovine ICSI. DTT reduces
the disulphide bond necessary for sperm nuclear decondensation [90] and destabilizes
the nuclear packaging of sperm head. DTT also nucleates the microtubules by organising
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ponents present in the ooplasm by the conformational change induced by reducing the
disulphide bonds in sperm centrosome [76]. DTT is a thiol compound with two thiol
groups. The reactivity of dithiol depends on its pKa value. When the pKa of a DTT is
approximately equal to the pH of the media in which it is dissolved, the thiol-disufide
interchange is maximal. The pKa of DTT is 9.0, greater than fertilization medium (7.8),
so its active form (reduced DTT) is easily converted to inactive form (oxidised DTT) [74].
Recently a dithiol group, dithiolbutylamine (DTBA) increased the efficacy of blastocyst
production in bovine ICSI [74]. DTBA is more efficient than DTT in preventing re-oxidation
of sperm and can promote pronuclei formation, as it can be retained longer in sperm, due
to its pKa of 8.2. Moreover, longer incubation of sperm with DTT increases DNA frag-
mentation and significantly reduces sperm viability compared to DTBA [74]. In addition,
DTT predisposes sperm to chromosomal abnormalities [91]. Pre-treatment of sperm with
glutathione (GSH) [92], plus oocyte activation by ionomycin in combination with ethanol,
improved the efficiency of bovine ICSI. Hence, the detrimental chemical thiol compound
pre-treatment (e.g., DTT) can be replaced by glutathione (GSH) [91,92], a major non-protein
thiol compound naturally present in mammalian cells. GSH is involved in many cellular
functions including disulphide bond reduction, protection against oxidative stress, etc.
Although disulphide bond reduction is faster with DTT than GSH, the latter causes higher
disulphide bond reduction rate (Figure 1). In ICSI, GSH can function with fewer side effects
than DTT, reducing disulphide bonds and promoting sperm chromatin decondensation
in vitro [91].

Ejaculated sperm must reside in the female reproductive tract for a species-dependent
interval for its final maturation through a series of biochemical changes, (capacitation)
enabling fertilizing ability. Pre-treatment of bovine sperm before ICSI with a capacitating
agent, e.g., MβCD (methyl-β-cyclodextrin) [93], heparin [81,94] and heparin with glu-
tathione (GSH) significantly improves fertilization and blastocyst formation rates [95,96].
Heparin + GSH improved the outcome of ICSI from sex-sorted sperm [96]. Heparin
is a polyanionic glycosaminoglycan (GAG); these are compounds present in both male
and female reproductive tract secretions and with important roles in fertilization [97].
Also, heparin and heparin-like GAGs in the oviduct contribute to capacitation of bovine
sperm [98,99]. There are receptors for heparin present on sperm plasma membranes. It
has been proposed that destabilisation of sperm plasma membrane occurs when heparin
bind to its receptors, enabling incorporation of other molecules (e.g., GSH) into the sperm
nucleus [75,100]. Heparin can decondense human sperm [101]. It has a strong affinity
for protamine, forming a highly insoluble complex [75]. Sperm decondensation is de-
pendent on the sulphation characteristics of heparin rather than a polyanionic molecule
competing with DNA for positively charged protamines [101]. The desulphation effects of
heparin affect the net charge, resulting in electrostatic interactions between charged groups
and inducing conformational changes [101]. Furthermore heparin or heparin sulphate
(a heparin analogue) were implicated in removal of sperm protamines [102] and heparin
sulphate has been identified in oocytes, implying it may be involved in sperm deconden-
sation, acting as a protamine acceptor [103]. In bull sperm, nuclear decondensation is
induced by heparin [70] and heparin-GSH [97]. GSH treatment enhanced mitochondrial
function in the sperm middle piece and significantly reduced the number of disulphide
bonds in the sperm head [91]. The sperm plasma membrane may act as a barrier against
sperm decondensation, but capacitated sperm with altered sperm plasma membranes were
able to undergo nuclear decondensation when heparin and GSH used as decondensing
agents [102]. Furthermore, addition of GSH [79] or heparin [94] to the ICSI culture medium
improved embryo development, emphasizing the importance of pre-ICSI capacitation.
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Figure 1. Sperm nuclear decondensation by disulphide bond reduction by thiol reagents. (A)
Glutathione (GSH) reduces the disulphide bond in a condensed sperm nucleus, forming a mixed
disulphide compound (-GSS-), along with a sulfhydryl compound (-SH). The reaction further pro-
gresses in the presence of thiol transferases enzymes, forming more stable oxidised GSH, using
another molecule of GSH. Reduction of the disulphide bond results in decondensation of the sperm
nucleus. (B) Dithiothreitol (DTT), a dithiol compound, reduces disulphide bonds in the condensed
sperm nucleus, resulting in its decondensation. The reaction results in the formation of a sulfhydryl
compound (-SH) and mixed disulphide compound (involving sulphur from DTT and sulphur from
sperm nucleus), resulting in immediate reorganisation of its disulphide bond to form more stable
oxidised DTT. This thiol-disulphide exchange is maximum when media pH equals pKa of DTT (9.0).

Pre-treatment of bovine sperm with detergents e.g., lysolecithin (LL) or Triton X-
100 (TX) [104] along with glutathione before ICSI, induces plasma membrane disruption
and promotes nuclear decondensation [104]. The former improved the rate of embryonic
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development, without affecting embryo quality [104]. These detergents act as membrane
destabilising agents, promoting release of acrosomal content from the sperm head [104].
Recently, bovine ICSI outcomes were improved by using cysteamine (Cys) during in vitro
maturation (IVM) of oocytes and pre-incubating sperm with mature COCs (cumulus oocyte
complexes) before ICSI [105]

Table 1. Effect of various pre-treatments on bovine sperm.

Pre-Treatment Effect on Sperm Reference

Mechanical pre-treatment
Tail scoring Removal of sperm membrane [80]
Piezo pulses [81]

Chemical pre-treatment

DTT Reduction of disulphide bond (sperm head decondensation) and
involved in microtuble organisation [85–89]

NaOH + DTT Sperm decondensation and DNA fragmentation [106]
DTBA Disulphide bond reduction [74]
LL + TX-100 Membrane destabilization [104]
LL + TX + glutathione Membrane destabilization and disulphide bond reduction [107]

Pre-treatment with capacitating agents
MβCD Capacitation-associated changes [93]
Heparin Capacitation-associated changes and Sperm decondensation [80,94]
Heparin + Glutathione Capacitation-associated changes and disulphide bond reduction Sperm

decondensation. Enhanced mitochondrial function
[95,96]

Heparin + Caffeine Capacitation associated changes and acrosome reaction, Sperm
decondensation

[80,108]

Glutathione Disulphide bond reduction (sperm head decondensation). Enhanced
Mitochondrial function [91,92]

Cumulus oocyte complexes (COCs) Acrosome reaction of sperm [105]

5. Artificial Activation of Oocyte for Improving the Success of Bovine ICSI

Chemical or mechanical activation of the oocyte after ICSI has been commonly done
in cattle. In that regard, use of electric stimulation [109], mechanical pre-treatment [80],
or chemicals such as ethanol [110], ionomycin, anisomycin (ANY), cycloheximide (CHX),
DMAP, dehydroleucodine (DhL) [111] independently or in various combinations, have
been reported. Oocyte activation with ethanol alone or in combination with cyclohex-
imide [112,113] or ionomycin [92,114] following ICSI resulted in development of blastocysts.
Piezo-driven ICSI more efficient than conventional ICSI [81], and resulted in production of
bovine offspring [115,116] when combined with ethanol oocyte activation. Viable calves
were efficiently produced by post-ICSI oocyte activation with ethanol, compared to activa-
tion with ionomycin alone or a combination of ionomycin + DMAP [117]. Ethanol activates
oocytes by increasing concentrations of intracellular free calcium [118]. The stimulus of
sperm is sufficient to lower the maturation promoting factor (MPF) activity after ICSI and
ethanol maintains the low MPF activity until the start of the next cell cycle [110]. MPF
is a non-species specific ubiquitous cytoplasmic heterodimer protein whose activity is
sensitive to calcium; its elevated activity is required for the metaphase II arrest of meiosis
in oocytes [119]. MPF consist of cdc2 kinase which is associated with cyclin B [120,121];
activation of this kinase is dependent on its phosphorylation state [122]. Activity of a c-mos
protooncogene product called cytostatic factor [123,124] stabilises MPF and promotes the
arrest of oocyte at metaphase II [119]. The intracellular calcium surge induced by ethanol
inactivates the cytostatic factor. Alternatively, cycloheximide inactivates MPF by prevent-
ing the synthesis of nascent proteins and degradation of cyclin B. Therefore, a combined
synergistic treatment of ethanol and cycloheximide forces the oocyte out of metaphase
stage of cell cycle and results in its activation [113].
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Ionomycin in combination with DMAP [125,126], cycloheximide [28,83] or roscovi-
tine [127] have been used in bovine oocyte activation protocols [128]. Intracytoplasmic
injection of round sperm resulted in efficient production of developmentally competent
embryos with repeated ionomycin activation, followed by cycloheximide treatment [28].
The interval between the addition of ionomycin and DMAP has a crucial role in bovine
ICSI [125]. However, delaying the addition of DMAP resulted in production of activated
oocytes with reduced chromosomal abnormalities [126]. DMAP inhibits protein phos-
phorylation after oocyte activation. Also, DMAP accelerates post-fertilisation events by
inhibiting DMAP-sensitive kinases, implicated in the formation of the interphase net-
work of microtubules, remodeling of sperm chromatin and pronucleus formation [129].
Among the MPF inhibitors used for oocyte activation, roscovitine is one of the most effec-
tive, with fewer detrimental effects [130]. Anisomycin for oocyte activation has resulted
in superior developmental rates of resulting embryos, compared to cycloheximide and
DMAP [131,132]. Anisomycin is a protein synthesis inhibitor that acts specifically in the
translational stage [133]. Oocyte activation can also be induced without any artificial oocyte
activation agent. For example, injection of PLCZ1 (sperm oocyte activation factor) cRNA
resulted in calcium oscillatory pattern and embryos with low levels of aneuploidy [134].
Injection of bovine sperm cytosolic extracts (contain sperm oocyte activation factor) ac-
tivated bovine oocytes and resulted in second polar body extrusion [135]. These studies
suggested the possibility of replacement of chemical pre-treatment of sperm and chemical
oocyte activation agents with capacitating agents and sperm oocyte activation factor to
produce embryos in vitro by ICSI.

6. Sperm Oocyte Activation Factors (SOAFs)

According to the sperm factor hypothesis, a soluble sperm factor is released into the
oocyte and triggers oocyte activation [136–138]. Advances in calcium imaging and clinical
experiments involving ICSI (intracytoplasmic sperm injection) have provided substantial
evidence for this hypothesis, leading to dismissal of the receptor-based mechanism of
oocyte activation [139,140]. The search for possible sperm oocyte activation factors (SOAF),
resulted in several candidate proteins, e.g., oscillin, glucosamine-6-phosphate isomerase
(GPI) and citrate synthase [136,141]. Despite experiments supporting calcium oscillation
activity in mammalian oocytes, there is no convincing evidence for describing its role in
mammalian fertilisation [142].

Phospholipase C (PLC) isoforms catalyse hydrolysis of PIP2 (phosphatidyl inositol
biphosphate) to inositol triphosphate (IP3) and diacyl glycerol (DAG). Thereafter, IP3
releases calcium via a receptor localised on the surface of the endoplasmic reticulum and
DAG and calcium together activate the protein kinase C (PKC) pathway, resulting in cel-
lular responses [137,143,144]. Moreover, previous studies characterized and identified a
sperm-specific PLC isoform, PLC zeta (PLC ζ) as a candidate for the oocyte activation fac-
tor [60,140,142,145]. Furthermore, a post acrosomal WW-domain binding protein (PAWP)
was a candidate for SOAF [146]. Microinjection of the PAWP cRNA or recombinant PAWP
into porcine, bovine, Xenopus, mouse or human oocytes resulted in calcium oscillations,
similar to those with ICSI and oocyte activation. Sperm inhibited with a competitive
inhibitor for PAWP-derived PPGY peptide prevented the calcium oscillation [146,147].
PAWP is localised to the post acrosomal sheath-perinuclear theca of sperm head; it has an
N-terminal with a sequence homology to WW-domain binding protein 2 and proline-rich
C-terminal with a PPXY binding site and unknown repeating motif [146–148]. A hypothet-
ical model on how this PAWP triggers calcium oscillation has been suggested [146,147].
It is thought to bind to oocyte-borne YAP protein and interact with the SH3 domain of
PLC γ, activating a phosphatidyl inositol pathway [146,147]. Ever since the introduction of
PAWP, it emerged to question the PLC ζ as SOAF. A study comparing the calcium oscil-
lation in mouse oocyte by the microinjection of recombinant PAWP and PLC ζ reported
that recombinant PLC ζ resulted in calcium oscillations similar to those in mammalian
fertilization, whereas recombinant PAWP did not. Consequently, PAWP is not a convincing
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SOAF candidate [149]. Moreover, independent laboratories have validated the role of PLC
ζ as a SOAF in a replicable and reliable manner [60,139,150–153].

7. PLC ζ as a Sperm-Specific Oocyte Activating Factor

In most mammalian species, an ovulated oocyte is arrested at Metaphase-II [154].
Oocyte activation normally occurs immediately following sperm penetration of the
oocyte [155], triggered by a series of calcium waves [156], leading to resumption of meiosis,
formation of male and female pronuclei, and fusion of these pronuclei leading to zygote
formation. It has been established that a sperm-specific PLC ζ (located in the sperm
head) is the sperm-derived oocyte activating factor [60,139,150–153]. The PLC ζ has been
identified in several mammalian species (rats: [157]; pigs: [158]; cattle: [132]; monkeys
and humans: [159]). Immunodepletion of PLC ζ from sperm protein extracts completely
abolished calcium oscillation-inducing activity of sperm extracts [60]. There is mounting
clinical evidence implicating involvement of abnormal, aberrant and mutant forms of
PLC ζ resulted in failure of egg activation [150,151,153]. Microinjection of sperm heads
lacking PLC ζ failed to activate oocytes, due to either no calcium oscillation or diminished
calcium profiles in humans [150,151]. It has been proposed that PLC ζ elicits calcium
oscillations in oocytes through a phosphoinositide signalling pathway, by hydrolysing
membrane-bound phosphatidylinositol 4,5-bisphosphate (PIP2), resulting in the release
of inositol triphosphate (IP3), which in turn binds to the IP3 receptors in intracellular
calcium reserves, leading to intracellular calcium oscillations [59,60]. However, mecha-
nisms of PLC activation eliciting calcium waves immediately following sperm penetration
remain unknown.

8. A Hypothetical Model for PLC ζ Activation during Sperm Capacitation

Bull sperm can be capacitated in vitro by incubating with capacitating agents [heparin;
ouabain, a cardiac glycoside; or a combination of cAMP and IBMX (a phosphodiesterase
inhibitor) at 39 ◦C under 5% CO2 and high humidity]. The activity of PIP2-PLC is higher in
capacitated versus uncapacitated sperm [160], suggesting a capacitation-associated increase
in PLC ζ activity, with key roles in regulation of sperm capacitation and fertilization.
However, the molecular basis of this PLC ζ activation and the role of specific capacitating
agents in this process remains unknown.

The ubiquitous and testis-specific isoforms of Na/K-ATPase (ATP1A1 and ATP1A4,
respectively), are present in bull sperm. Interaction of ouabain, a cardiac glycoside, with
Na/K-ATPase regulates sperm capacitation [161]. ATP1A4 interacts with several pro-
teins [162], including phospholipase C zeta (PLC) [163]. Significance of the interaction
between ATP1A4 and PLC ζ during bull sperm capacitation is unknown. Capacitation
includes tyrosine phosphorylation (Y-p) of sperm proteins [69,164], actin remodelling [165]
and hyperactivated motility [166]. Incubation of bovine sperm with ouabain induced tyro-
sine phosphorylation and an acrosome reaction [167] via PKA, RTK and Src kinases [168]
and ERK [169]. That PLC ζ exerts its effect immediately following sperm penetration of
the oocyte implies it is already active at the time of sperm penetration. In LLC-PK1 cells,
ATP1A1 tethers PLC- γ1 and IP3 receptors to form a Ca2+-regulatory complex and ouabain-
induced phosphorylation of PLC- γ1 at Tyr (783) activated PLC- γ1 in a Src-dependent
manner [170]. Ouabain-induced capacitation co-localized PLC ζ and ATP1A4 to the post-
acrosomal region of sperm head [163] and confirmed their interaction, perhaps activating
PLC ζ, generating IP3 and diacyl glycerol (DAG) in sperm. IP3 binds to IP3R, increasing
intracellular Ca2+, whereas DAG-mediated activation of PKC converts globular actin (G-
actin) to filamentous-actin (F-actin), essential for capacitation Figure 2; [171]. Therefore,
the role of ATP1A4-induced activation of PLC ζ in filamentous-actin formation during
capacitation and triggering calcium oscillations (through PLC ζ-mediated cleavage of PIP2
and generation of IP3) during sperm-oocyte fusion warrant further research (Figure 3).
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Figure 2. A hypothetical model for ATP1A4 (Na/K-ATPase α4)-mediated raft- and non-raft sig-
naling pathways during bovine sperm capacitation [172]; reproduced with permission from John
Wiley and Sons and Copyright Clearance Center]. Both raft and non-raft pools of ATP1A4 could
activate downstream pathways during sperm capacitation. In the raft, ouabain signaling involves
ATP1A4-caveolin-1-EGFR (epithelial growth factor receptor) complex which could bind and activate
PLC (phospholipase C), thereby increasing hydrolysis of PIP2 (phosphatidylinositol biphosphate),
generating IP3 (inositol triphosphate) and DAG (diacyl glycerol), which in turn activates PKC (phos-
phokinase C). IP3 binds to IP3R (inositol triphosphate receptors), increasing intracellular calcium,
whereas PKC mediates polymerisation of G-actin to F-actin through other mediator proteins. Within
non-raft, ATP1A4 signaling activates ERK1/2 (extracellular signal regulated protein kinase 1/2, a mi-
togen activated protein kinase) through activation of Src (Src kinase, a non- receptor tyrosine kinase),
leading to PTK (protein tyrosine kinase) mediated tyrosine phosphorylation of proteins. Increase in F-
actin, intracellular calcium and protein tyrosine phosphorylation contribute to capacitation-associated
changes in sperm.

In summary ICSI is a very reliable and efficient reproductive technique. Improved
fertilisation from sex-sorted sperm and gametes with variable quality is the advantage of
ICSI over other reproductive techniques. Additionally, its use in gene transfer makes it
more valuable. ICSI is not successful in cattle due to difficulties in sperm nuclear deconden-
sation, functioning of microtubule organising centre, and oocyte activation. Furthermore,
anatomical peculiarities of bovine sperm also contribute. However, various sperm pre-
treatment and oocyte activating agents have improved bovine ICSI. Sperm for ICSI is not
undergoing capacitation, an essential event in natural fertilisation. Sperm pre-treatment
using capacitating agents have improved efficiency of bovine ICSI. That the major reason
for the failure of bovine ICSI is mainly due to sperm, focusing research in this direction
is warranted.
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Figure 3. A hypothetical model depicting the involvement of ATP1A4 (Na/K-ATPase α4) mediated activation of PLC ζ

(phospholipase C zeta) and the involvement of activated PLC ζ in oocyte activation. In fresh sperm, ATP1A4 is localized
to the entire sperm head and PLC ζ to the acrosomal region. In capacitated sperm, both proteins are co-localized to
the post-acrosomal region. The interaction of these two proteins during capacitation activates PLC ζ. Following sperm
penetration, the equatorial segment of the sperm head fuses with the oolemma, resulting in the release of activated PLC
ζ into the oocyte cytoplasm. This activated PLC ζ binds to PIP2 (phosphatidylinositol biphosphate) substrate, present in
small vesicles inside the oocyte, resulting in its hydrolysis and formation of IP3 (inositol triphosphate) and DAG (diacyl
glycerol). IP3 binds to its receptor in intracellular calcium reserves and releases calcium, thereby increasing intracellular
calcium ion concentrations. In addition, DAG activates PKC (protein kinase C), which also increases calcium concentration
resulting in calcium oscillation. This calcium oscillation results in resumption of meiosis of the metaphase II-arrested oocyte,
expulsion of the second polar body and formation of a female pronucleus. Concurrently, sperm nuclear decondensation
occurs, resulting in formation of the male pronucleus. Fusion of male and female pronuclei results in zygote formation.
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